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Abstract. Segmentation of infant brain MR images is challenging due to insuf-
ficient image quality, severe partial volume effect, and ongoing maturation and 
myelination process. During the first year of life, the signal contrast between 
white matter (WM) and gray matter (GM) in MR images undergoes inverse 
changes. In particular, the inversion of WM/GM signal contrast appears around 
6-8 months of age, where brain tissues appear isointense and hence exhibit ex-
tremely low tissue contrast, posing significant challenges for automated seg-
mentation. In this paper, we propose a novel segmentation method to address 
the above-mentioned challenge based on the sparse representation of the com-
plementary tissue distribution information from T1, T2 and diffusion-weighted 
images. Specifically, we first derive an initial segmentation from a library of 
aligned multi-modality images with ground-truth segmentations by using sparse 
representation in a patch-based fashion. The segmentation is further refined by 
the integration of the geometrical constraint information. The proposed method 
was evaluated on 22 6-month-old training subjects using leave-one-out cross-
validation, as well as 10 additional infant testing subjects, showing superior 
results in comparison to other state-of-the-art methods. 

1 Introduction 

The first year of life is the most dynamic phase of the postnatal human brain devel-
opment, with the rapid tissue growth and development of a wide range of cognitive 
and motor functions. Accurate tissue segmentation of infant brain MR images into 
white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in this stage is of 
great importance in studying the normal and abnormal early brain development. It is 
well-known that segmentation of infant brain MRI is considerably more difficult than 
that of the adult, due to the reduced tissue contrast [1], increased noise, severe partial 
volume effect [2], and ongoing WM myelination [1, 3] in the infant images. Actually, 
there are three distinct stages in the first year brain MR images, with each stage hav-
ing quite different white-gray matter contrast patterns (in chronological order) [4]: (1) 
the infantile stage (൑ 5 months), in which the GM shows a higher signal intensity 
than the WM in T1 images; (2) the isointense stage (6-12 months), in which the signal 
intensity of the WM is increasing during the development due to the myelination and 
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maturation process; in this stage, the GM has the lowest signal differentiation with the 
WM in both T1 and T2 images; (3) the early adult-like stage (൐12 months), where the 
GM intensity is much lower than that of the WM in T1 images, and this pattern is 
similar with that of the adult MR images. As an illustration, the first two images in the 
first row of Fig. 1 show examples of T1 and T2 images around 6 months. It can be 
observed that the WM and GM exhibit almost the same intensity level (especially in 
the cortical regions), resulting in the lowest image contrast and hence significant dif-
ficulties for tissue segmentation.  

Although many methods have been proposed for infant brain image segmentation, 
most of them focused either on segmentation of the neonatal images (<= 3 months) or 
infant images (>12 months) using a single T1 or T2 modality [2, 3, 5, 6], which de-
monstrates a relatively good contrast between the WM and GM. Few studies have 
addressed the difficulties in segmentation of the isointense infant images. Shi et al. [7] 
first proposed a 4D joint registration and segmentation framework for the segmenta-
tion of infant MR images in the first year of life. In this method, longitudinal images 
in both infantile and early adult-like stages were used to guide the segmentation of 
images in the isointense stage. A similar strategy was later adopted in [8]. The major 
limitation of these methods is that they fully depend on the availability of longitudinal 
datasets [9]. Due to the fact that the majority of infant images are single time-point, a 
standalone method working for cross-sectional single-time point image is mostly 
desired. Kim et al. [9] proposed an adaptive prior and spatial temporal intensity 
change estimation to overcome the low contrast. However, their work was only eva-
luated on the images acquired around 12 months. Moreover, none of these methods 
takes advantages from the geometrical information that the WM/GM and GM/CSF 
surfaces should be free of geometrical defects. For example, WM surfaces obtained 
by these methods are normally discontinuous, corrupted by holes (or handles, which 
are topologically equivalent) and “sharp breaks” in cortical gyri, which could be im-
proved by imposing the geometrical constraint [10].  

Motivated by the fact that many classes of signals, such as audio and images, have 
naturally sparse representations with respect to each other, sparse representation has 
been widely and successfully used in many fields, i.e., for visual tracking, compres-
sive sensing, image de-noising, and face recognition [11, 12]. In this paper, we  
propose to employ the sparse representation technique for effective utilization of mul-
ti-modality information to address the isointense infant brain segmentation. Multi-
modality information comes from T1, T2 and fractional anisotropy (FA) images (the 
first row of Fig. 1), which provide rich information of major WM bundles [13], to 
deal with the problem of insufficient tissue contrast [4]. Specifically, we first con-
struct a library consisting of a set of multi-modality images from the training subjects 
and their corresponding ground-truth segmentations. Then we employ a patch-based 
method [14] to represent each patch of the testing multi-modality images by using a 
sparse set of library patches. The initial segmentation is thus obtained based on the 
majority label of library patches. By utilizing the geometrical constraint, the initial 
segmentation will be iteratively refined with further consideration of the patch simi-
larities between the segmented testing image and the ground-truth segmentation in the 
library images.  



 Integration of Sparse Multi-modality Representation and Geometrical Constraint 705 

 

2 Method 

This study has been proved by institute IRB and the written informed consent forms 
were obtained from parents. A total of 22 healthy infant subjects (12 males/10 females) 
were recruited, and scanned at 27±0.9 postnatal weeks. T1, T2 and FA images were 
acquired for each subject. T2 and FA images were then linearly aligned onto their cor-
responding T1 images. Image preprocessing includes resampling to 1×1×1mm3, bias 
correction, skull stripping, and cerebellum removal. To generate the ground truth seg-
mentation, we took a practical approach by first generating an initial segmentation using 
a publicly available software iBEAT (www.nitrc.org/projects/ibeat). Manual editing 
was then performed by experienced raters to correct segmentation errors and geometric 
defects by using ITK-SNAP (www.itksnap.org) with the help of surface rendering, e.g., 
filling the holes. 

2.1 Deriving Initial Segmentation from the Library by Sparse Representation 

To segment a testing image ࡵ ൌ ሼ்ܫଵ, ,ଶ்ܫ ௜ࡵ ி஺ሽ, ܰ template imagesܫ ൌ ൛்ܫଵ௜ , ଶ௜்ܫ , ி஺௜ܫ ൟ 
and their corresponding segmentation maps ܮ௜ ሺ݅ ൌ 1, ڮ , ܰሻ  are first nonlinearly 
aligned onto the space of the testing image using Diffeomorphic Demons [15], based on 
T1 images. Then, for each voxel ݔ in each modality image of the testing image ࡵ, its 
intensity patch (taken from ݓ ൈ ݓ ൈ ݓ  neighborhood) can be represented as a ݓ ൈ ݓ ൈ  dimensional column vector. By taking the T1 image as an example, the T1 ݓ
intensity patch can be denoted as ்࢓ଵሺݔሻ. Furthermore, its patch dictionary can be 
adaptively built from all ܰ aligned templates as follows. First, let ࣨ௜ሺݔሻ be the neigh-
borhood of voxel ݔ in the ݅-th template image ்ܫଵ௜ , with the neighborhood size as ݓ௣ ൈݓ௣ ൈ ݕ ௣. Then, for each voxelݓ א ࣨ௜ሺݔሻ, we can obtain its corresponding patch from 
the ݅-th template, i.e., a ݓ ൈ ݓ ൈ ଵ௜்࢓ dimensional column vector ݓ ሺݕሻ. By gathering 
all these patches from ݓ௣ ൈ ௣ݓ ൈ ௣ݓ  neighborhoods of all ܰ aligned templates, we 
can build a dictionary matrix ்ࡰଵ, where each patch is represented by a column vector. 
In the same manner, we can also extract T2 intensity patch ்࢓ଶሺݔሻ and FA intensity 
patch ࢓ி஺ሺݔሻ and further build their respective dictionary matrices ்ࡰଶ and ࡰி஺. Let ࡹሺݔሻ ൌ ሾ்࢓ଵሺݔሻ; ;ሻݔଶሺ்࢓ ሻݕ௜ሺࡹ ሻሿ be the testing multi-modality patch andݔி஺ሺ࢓ ൌൣ்࢓ଵ௜ ሺݕሻ; ଶ௜்࢓ ሺݕሻ; ி஺௜࢓ ሺݕሻ൧ be the template multi-modality patch in the dictionary. To 
represent the patch ࡹሺݔሻ  by the dictionaries ்ࡰଵ ଶ்ࡰ ,  and ࡰி஺ , its coefficients 
vector ࢻ could be estimated by many coding schemes, such as sparse coding [11, 16] 
and locality-constrained linear coding [17]. Here, we employ sparse coding scheme [11, 
16], which is robust to the noise and outlier, to estimate the coefficient vector ࢻ by 
minimizing a non-negative Elastic-Net problem [18] , minࢻஹ૙ ෍ԡࡰ௞ࢻ െ ሻԡଶଶ௞ݔ௞ሺ࢓ ൅ ԡଵࢻଵԡߣ ൅ ԡଶଶࢻଶԡߣ                          ሺ1ሻ 

where ݇ א ሼܶ1, ܶ2, -ሽ. In the above Elastic-Net problem, the first term is the data fitܣܨ
ting term based on the intensity patch similarity, and the second term is the ℓ1 regula-
rization term which is used to enforce the sparsity constraint on the reconstruction 



706 L. Wang et al. 

 

Fig. 1. Tissue probability maps esti-
mated by the proposed method without 
and with the geometrical constraint 

coefficients ࢻ , and the last term is the ℓ2 
smoothness term to enforce the coefficients to 
be similar for the similar patches. Each element 
of the sparse coefficient vector  ࢻ, i.e., ߙ௜ሺݕሻ, 
reflects the similarity between the target patch ࡹሺݔሻ and the patch ࡹ௜ሺݕሻ in the patch dictio-
nary. Based on the assumption that similar 
patches should share similar labels, we use the 
sparse coefficients ࢻ to estimate the probability 
belonging to the ݆ -th tissue, i.e., ௝ܲሺݔሻ ൌ∑  ௜ ∑  ௬ࣨא೔ሺ௫ሻ  ሻ is theݕ௜ሺܮ ሻሻ, whereݕ௜ሺܮ௝ሺߜሻݕ௜ሺߙ
segmentation label (WM, GM, or CSF) for voxel ݕ in the ݅-th template image, and ߜ௝ሺܮ௜ሺݕሻሻ=1 if  ܮ௜ሺݕሻ ൌ ݆ ; otherwise ߜ௝ሺܮ௜ሺݕሻሻ =0.  Finally, ௝ܲሺݔሻ  is normalized to ensure ∑  ௝ ௝ܲሺݔሻ ൌ 1. The second row of Fig. 1 shows an example of the estimated probability 
maps for a testing image, with the original T1, T2 and FA images shown in the first 
row. To convert from the soft probability map to the hard segmentation, the label of the 
voxel ݔ is determined using the maximum a posteriori (MAP) rule. 

2.2 Imposing Geometrical Constraints into the Segmentation 

The tissue probability maps derived in the Section 2.2 are purely based on the intensi-
ty patch similarity using the sparse representation technique. However, due to the low 
tissue contrast, the reliability of the patch similarity could be limited, which may re-
sult in considerable artificial geometrical errors in the tissue probability maps. A typi-
cal example is shown in Fig. 4(a), where we can observe many undesired holes (green 
rectangles), incorrect connections (red rectangles), and inaccurate segmentations (blue 
rectangles). In this section, we further address these problems by considering the 
geometrical constraint. As ground-truth segmentation results of template images in 
the library are almost free of the geometrical errors, we could expect the combination 
of these segmentation results will largely reduce the possible geometrical errors. Spe-
cifically, we can extract the patch ࢓௦௘௚ሺݔሻ from the tentative segmentation result of 
the testing image and also construct the segmentation patch dictionary ࡰ௦௘௚ from all 
the aligned segmented images in the library. Based on Eq. (1), we further incorporate 
the geometrical constraint to derive the tissue probability maps:  minࢻஹ૙ ෍ԡࡰ௞ࢻ െ ሻԡଶଶ௞ݔ௞ሺ࢓ ൅ ࢻ௦௘௚ࡰԡݒ െ ሻԡଶଶݔ௦௘௚ሺ࢓ ൅ ԡଵࢻଵԡߣ  ൅ ԡଶଶࢻଶԡߣ     ሺ2ሻ 

where ݇ א ሼܶ1, ܶ2,  is the weight parameters. In the same way, we can use ݒ ሽ andܣܨ
the derived sparse coefficient vector  ࢻ to estimate new tissue probabilities, which 
will be iteratively refined by using Eq. (2) until converged. An example of the proba-
bilities derived with the geometrical constraint is shown in the third row of Fig. 1. 
Compared with the probability maps without the geometrical constraint (the second 
row), the new probability maps are more accurate.    
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3 Experimental Results and Analysis 

The parameters used in this paper were determined via cross validation on a set of 
training images. We finally chose the following parameters for all experiments below: 
the weight for ℓ1-norm term ߣଵ ൌ 0.2, the weight for ℓ2-norm term ߣଶ ൌ 0.01, the 
patch size ݓ ൌ 5, the neighborhood size ݓ௣ ൌ 5, and the weight for the geometrical 
constraint term ݒ ൌ 1.  

Leave-One-Out Cross-Validation. To evaluate the performance of the proposed me-
thod, we adopted the leave-one-out cross-validation. Fig. 2(a) demonstrates the seg-
mentation results of different methods for one typical subject. We choose to compare 
with the coupled level sets (CLS) method [19] provided by publicly available software 
iBEAT, in which multi-modality images from T1, T2 and FA were also employed. We 
also make comparison with the majority voting (MV) and conventional patch-based 
(CPB) method [14]. There are 7 different combinations for three modalities. The fol-
lowing rows only show the results by the proposed method with three representative 
combinations of three modalities (Eq. (1)). The last row shows the result by the pro-
posed method on multi-modality images with the geometrical constraint (Eq. (2)).  To 
better compare the results by different methods, the label differences compared with 
the ground-truth segmentation were also presented, which qualitatively demonstrate 
the advantage of the proposed method. We then quantitatively evaluate the perfor-
mance of different methods by employing Dice ratio. The average Dice ratios of dif-
ferent methods on 22 subjects are shown Fig. 2(b). Besides the Dice ratio, we also 
measure the mean surface distance error between the generated WM/GM (GM/CSF) 
surfaces and the ground-truth surfaces, which are plotted in Fig. 2(b) and further dem-
onstrate the accuracy of the proposed method. It is worth noting that any combination 
of these different modalities generally produce more accurate results than any single 
modality in terms of both Dice ratios and surface distance errors.  

Results on 10 New Testing Subjects with Manual Segmentations. Instead of using 
the leave-one-out cross-validation fashion, we further validated our proposed method 
on 10 additional subjects, which were not included in the library. The manual seg-
mentations by experts were referred to as our golden standard. The Dice ratios and 
surface distance errors on 10 subjects by different methods are shown in the Fig. 3, 
which again demonstrates the advantage of our proposed method. 

Importance of the Geometrical Constraint. To further demonstrate the benefit of 
incorporating the geometrical constraint into the proposed method, we take the 
WM/GM surfaces as an example to compare the results by the proposed method 
without and with the geometrical constraint in Fig. 4. Fig. 4(a) shows the result without 
the geometrical constraint. It can be observed that there are many geometrical defects 
such as incorrect connections indicated by the red rectangle, inaccurate “zigzag” seg-
mentations indicated by the blue rectangle and holes indicated by the green rectangle. 
The intermediate and final results by the geometrical constraint are shown in Fig. 4(b) 
and (c). It can be observed the incorrect connections and inaccurate “zigzag” segmenta-
tions are gradually corrected. Although the proposed method cannot guarantee the 
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topological correctness of the final WM/GM (GM/CSF) surface, the topological er-
rors are largely reduced. By referring to the ground-truth segmentation shown in Fig. 
4(d), the result with the geometrical constraint is much more accurate and reasonable 
than the result without the geometrical constraint, which can also be demonstrated by 
the quantitative evaluation results with the Dice ratios and surface distance errors as 
shown in Fig. 2(b). 

 

                    (a)                          (b) 

Fig. 2. (a) Comparison with the coupled level sets method [19], majority voting, conventional 
patch-based method [14] on T1+T2+FA images and the proposed sparsity method with differ-
ent combinations of 3 modalities. In each label difference map, dark red colors indicate false 
negatives and the dark blue colors indicate false positives. (b) Average Dice ratios and surface 
distance errors on 22 subjects are shown in the right panel. 

 

Fig. 3. The Dice ratios and surface distance errors on 10 subjects 
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Fig. 4. Importance of using the geometrical constraint. From (a) to (c) shows the surface 
evolution from the initial stage to the final stage with the geometrical constraint. (d) is ground 
truth. 

4 Discussion and Conclusion 

In this paper, we have proposed a novel patch-based method for isointense infant brain 
MR image segmentation by utilizing the sparse multi-modality information. The seg-
mentation is initially obtained based on the intensity patch similarity and then further 
refined with the geometrical constraint. The proposed method has been extensively 
evaluated on 22 training subjects using leave-one-out cross-validation, and also on 10 
additional testing subjects. It is worth noting that our framework can also be directly 
applied to the segmentation of images in infantile and adult-like stages, for obtaining 
higher Dice ratios (compared with the isointense stage) due to their better contrast. 

FA images provide rich information of major fiber bundles, especially in the sub-
cortical regions where GM and WM are hardly distinguishable in the T1/T2 images. 
Therefore, FA images play a more important role in the WM/GM differentiation than 
GM/CSF differentiation, as demonstrated in Fig. 2. 

In our experiment, we found that increasing the number of templates would gener-
ally improve the segmentation accuracy. However, more templates would also  
bring in more computational cost. In our test, when the number reached 20, the  
improvement rate of segmentation accuracies converged.  

In our current method, the contributions of different modalities are equally 
weighted. In the future, we will further investigate to assign different weights to dif-
ferent modalities in different brain regions and validate on more datasets. In addition, 
our current library consists of only healthy subjects; therefore, it may not work well in 
pathological subjects. This will be our future work as well. 
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