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Abstract. Fetal MRI is a rapidly emerging diagnostic imaging tool. Its
main focus is currently on brain imaging, but there is a huge potential
for whole body studies. We propose a method for accurate and robust
localisation of the fetal brain in MRI when the image data is acquired as
a stack of 2D slices misaligned due to fetal motion. We first detect possi-
ble brain locations in 2D images with a Bag-of-Words model using SIFT
features aggregated within Maximally Stable Extremal Regions (called
bundled SIFT), followed by a robust fitting of an axis-aligned 3D box
to the selected regions. We rely on prior knowledge of the fetal brain
development to define size and shape constraints. In a cross-validation
experiment, we obtained a median error distance of 5.7mm from the
ground truth and no missed detection on a database of 59 fetuses. This
2D approach thus allows a robust detection even in the presence of sub-
stantial fetal motion.

1 Introduction

Fetal Magnetic Resonance Imaging (MRI) has had great successes in the last
years with the development of motion correction methods providing high quality
isotropic volumes of the brain [7,11], thus enabling a better understanding of
the fetal brain development. Such reconstruction methods typically rely on data
acquired as stacks of 2D slices of real-time MRI, freezing in-plane motion. In
order to reduce the scan time while avoiding slice cross-talk artefacts, contiguous
slices are not acquired sequentially but in an interleaved manner. Slices are
quite often misaligned due to fetal motion and form an inconsistent 3D volume
(Figure 1). Motion correction is the registration of 2D slices of the fetal brain
to an ideal 3D volume. Cropping a box around the brain is a prerequisite to
exclude maternal tissues that can make the registration fail. We thus propose a
method to automatically find a precise bounding box around the brain in order
to speed-up the preprocessing steps of the motion correction procedure.

Related Work. Regression Forests perform the task of organ detection by
learning a regression between image features, such as 3D Haar-like features, and
the offset to the corners of the bounding boxes of organs [10]. By treating the
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Fig. 1. Example scan with the native 2D slices in sagittal orientation. A zoomed patch
of the coronal section highlights interleaving artefacts due to fetal motion.

localisation problem as a regression problem, it implies some rough alignment
between part of the training database and the new data. An adult patient usually
lies inside the scanner in a standard orientation, but this is not the case of a
fetus. Moreover, the fetus is surrounded by maternal tissues instead of air, thus
hindering a straightforward application of such a method.

Marginal Space Learning (MSL) is a more general framework that can be
described as an optimized sliding window search with a hierarchy of coarse-
to-fine boosting-based organ detectors [15]. Learning is performed on affinely
registered datasets, and the search covers all locations, scales and orientations.
Steerable features apply a rotated grid over the image to sample features in order
to perform local rotation and scaling without transforming the whole volume,
thus making the search more computationally feasible. MSL has been successfully
applied to various problems, such as the localisation of the four heart chambers
in adult CT scans [15], semantic browsing of the fetal body in 2D ultrasound
[2], or automatic fetal face detection in 3D ultrasound [4].

To the best of our knowledge, only two fully automated localisation methods
of the fetal brain in MRI have been proposed so far in the literature: Anquez
et al. [1] proposed to start from detecting the eyes with 3D template matching,
followed by a segmentation of the brain using a 2D graph-cut segmentation of
the mid-sagittal slice rotated at several angles. The best matching segmentation
is selected and used to initialise a 3D graph-cut segmentation. Ison et al. [6]
proposed a more general method based on a two-stage Random Forest classifier:
the first stage distinguishes maternal tissues from fetal head tissues, while the
second stage classifies fetal head tissues into 6 classes. The last step uses a
Markov Random Field appearance model to establish an orientation of the brain
based on the centroids of the previously identified fetal tissues.

Overview. In this paper, we chose to focus on the task of finding an axis-aligned
bounding box for the fetal brain. This is in contrast with [6] which aimed at find-
ing an oriented bounding box, and [1] which aimed at segmenting the skull bone
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content. This relaxation of the problem enables us to focus on positioning a tight
bounding box on the brain while dealing with 2D slices misaligned or corrupted
due to fetal motion. Although acquisitions are carried out in conventional orien-
tations, there is unpredictability in the positioning of the fetus. Hence, similarly
to Marginal Space Learning, we decided to decompose the search space by per-
forming a 2D detection process before accumulating the votes in 3D, and we
removed the scale component by inferring it from the gestational age.

In a first stage, Maximally Stable Extremal Regions (MSER [9]) are extracted
from the 2D slices and approximated by ellipses. Then, the regions whose size
and aspect ratio conform with prior knowledge of the fetal development are
classified into brain or not-brain based on histograms of the SIFT features found
within the fitted ellipses (bundled SIFT [14]), following a Bag-of-Words model
(BOW [3]). Finally, a RANdom SAmple Consensus procedure (RANSAC [5])
is performed to find a best fitting 3D cube whose dimensions are inferred from
prior knowledge. This localisation pipeline is summarised in Figure 2. In the
remainder of this paper, we will describe in more details our proposed method
and evaluate it in a 10-fold cross validation, comparing it to a sliding window
BOW using 2D or 3D SIFT features.

Fig. 2. Proposed pipeline for localising the fetal brain

2 Method

2.1 Detection and Selection of MSER Regions

Maximally Stable Extremal Regions (MSER), introduced by Matas et al. [9], are
a common feature detection method in computer vision. MSER regions can be
defined as sets of connected pixels stable over a large range of intensity thresh-
olds. Such regions can be characterised by homogeneous intensity distributions
and high intensity differences at their boundary. Each region is defined by a seed
pixel and a lower and upper intensity thresholds, the whole region resulting from
a floodfill operation. In the case of fetal T2 MR images, MSER regions are well
suited to the task of selecting candidate regions for the brain as the skull content
appears much brighter than the surrounding bone and skin tissues.

In its first stages, our localisation pipeline proceeds slice by slice, working on
2D images, and starts by detecting candidate MSER regions Ri which are sets
of connected pixels. An ellipse Ei is then fitted to each Ri with a least-squares
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minimization. As the shape of the brain is well approximated by an ellipsoid, the
ellipses Ei have the ability to recover the shape of the brain even if the detected
Ri only corresponds to a segment of cerebrospinal fluid (CSF, Figure 3.b), or
amniotic fluid surrounding the fetal head (Figure 3.c). The ellipses Ei are then
filtered by size and aspect ratio using the gestational age combined with prior
knowledge of the fetal development, namely the occipitofrontal diameter, OFD ,
and the biparietal diameter, BPD [12]. This prior knowledge is obtained from
2D ultrasound studies [12] and is discussed in more details in Section 3.

(a) (b) (c)

Fig. 3. Example MSER regions Ri (red overlay) and their fitted ellipses Ei (green
dashes): (a) skull bone content, (b) cerebrospinal fluid, (c) amniotic fluid

2.2 Classification of Selected MSER Regions Using Bundled SIFT
Features

MSER regions alone do not provide a descriptor that can be used for classifi-
cation. As a versatile rotation invariant classification framework, we chose to
use a Bag-of-Words model by computing for each region Ri the histogram of
the SIFT features (Scale-Invariant Feature Transform [8]) within the ellipse Ei,
similarly to the bundled SIFT features of Wu et al. [14]. In the Bag-of-Words
method for image classification presented by Csurka et al. [3], SIFT features
are extracted from training images and a set of words V (visual vocabulary) is
obtained through k-means clustering, each word being the centroid of a cluster.
Each SIFT feature fSIFT can then be associated to its nearest neighbour fNN ∈ V
to build a histogram of words. A Support Vector Machine (SVM) classifier is
then used to assign a class to this histogram.

SIFT features are the association of a keypoint corresponding to a local ex-
trema in a scale-space Gaussian pyramid (blob) and a descriptor built from
histograms of gradient orientations. The blob detection process provides scale
invariance to the descriptor, whereas rotation invariance is obtained from the
main gradient orientation over the blob. Rotation invariance helps accommodate
the unknown orientation of the fetal brain, while scale invariance attenuates the
variations due to gestational age.
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In the learning stage of our pipeline, all SIFT features are extracted from
the 2D slices of all training scans and clustered using a k-means algorithm.
The N cluster centers form the vocabulary V . Then, MSER regions Ri are
detected and selected (Section 2.1). The ellipses Ei centered on the brain are
kept as positive examples, while those further than OFD/2 are kept as negative
examples. For each Ei, a histogram of bundled SIFT features is computed. After
an L2 normalisation, the histograms are used to train an SVM classifier. As in
[3], a linear kernel SVM has been used. In the detection stage, for each MSER
region selected, a normalised histogram of SIFT features is computed, and the
previously trained SVM is used to classify regions as brain or not-brain. Figure
4.a shows an example slice with all the candidate MSER regions, while Figure
4.b shows the result of the selection and classification processes.

(a) (b)

Fig. 4. (a) All detected MSER regions. (b) MSER regions are filtered based on their
size and aspect ratio, then classified according to their histograms of SIFT features
(green for brain regions, red for not-brain)

2.3 RANSAC Fitting of a Cube

The 2D detection works reliably in mid-brain slices but not in peripheral slices
of the brain. Estimating a 3D box is thus important for a reliable estimate of the
entire brain region. As the set of candidate regions classified as brain by the SVM
classifier may still contain outliers, we perform a RANSAC procedure [5] to find
a best fitting position for a 3D axis-aligned bounding cube. We thus randomly
select a small set of ellipses Ei and use their centroid to define a bounding cube
of width OFD . For a region Ri to be considered an inlier, it must be completely
included in this cube and the center of the ellipse Ei must be at a small distance
from the cube center. The cube position is then refined by taking the centroid
of these inliers. This process is repeated a predefined number of times, typically
1000 times, and the cube with the largest number of inliers is selected.

3 Experiments

Implementation. To gain prior knowledge on the expected size of the brain
knowing the gestational age, we used a 2D ultrasound study from Snijders and
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Nicolaides [12] performed on 1040 normal singleton pregnancies. The 5th and
95th centile values of OFD and BPD have been used to define the acceptable
size and aspect ratio for the selected MSER regions (Section 2.1). The size of
the detected bounding box in the robust fitting procedure (Section 2.3) has been
set to the 95th centile of OFD in order to contain the whole fetal brain. The size
N of the BOW vocabulary (Section 2.2) has been set to 400. The automated
detection process takes less than a minute on a normal PC.

Data. Fetal MRI was performed on a 1.5T MRI system, T2-weighted dy-
namic ssTSE images were obtained with the following scanning parameters: TR
15000ms, TE 160ms, slice thickness of 2.5mm, slice overlap of 1.5mm, flip angle
90◦. The in-plane resolution varies between 0.94 and 1.25mm, with the number
of interleaved packets ranging from 4 to 6. Our database includes 59 healthy
fetuses whose gestational age range from 22 to 39 weeks, with 5 fetuses scanned
twice and 1 three times, amounting to a total of 66 datasets. Each dataset con-
sists of 3 to 8 scans acquired in three standard orthogonal planes, representing a
total of 117 sagittal, 113 coronal and 228 transverse scans. We performed a 10-
fold cross validation, with 39 training subjects and 20 testing subjects for each
fold. For the ground truth, bounding boxes have been tightly drawn around the
brain.

Results. The brain localisation results are summarised in Table 1, whereas
examples of detected bounding boxes and their corresponding ground truth are
shown in Figure 5 and in the supplementary material.1 We compared our method
against sliding a window of fixed size OFD with a Random Forest classifier on
histograms of 2D or 3D SIFT features, using the extension to 3D of SIFT pro-
posed in [13]. For each stack of slices, we measured the distance between the
center of the ground truth bounding box and the detected bounding box. Sim-
ilarly to [6], we defined a correct detection as 70% of the brain being included
in the detected box. 2D SIFT features performed better than 3D SIFT features,
which can be attributed to the inconsistency of the 3D data, whereas the bun-
dled SIFT drastically improved the localisation accuracy with an error below
5.7mm in more than 50% of cases. This greater precision comes from applying
a classifier only at specific locations (MSER regions) instead of all pixels, thus
resulting in a more localised probability map. This localisation of the center of
the brain shows improved results compared to [6] who reported a median error
of 10mm in the detection of 6 landmarks corresponding to centroids of fetal head
tissues. However, contrary to [6], the orientation of the brain is not determined.
Our method is more general than [1] as it does not rely on localising the eyes.
There has been no false detection or missed detection with bundled SIFT, with
a worst case error of 25mm presented in Figure 5.e. In 85% of cases, the detected
bounding box contains entirely the ground truth bounding box.

The prior knowledge gained from the gestational age plays an important role
in disregarding most of the detected MSER regions. Indeed, on average during

1 www.doc.ic.ac.uk/~kpk09/MICCAI-451.mp4

www.doc.ic.ac.uk/~kpk09/MICCAI-451.mp4
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Table 1. Detection results averaged over the cross validation, all orientations combined

Error (mm)

Centiles 2D SIFT 3D SIFT Bundled SIFT

25th 10.9 14.8 4.0

50th 15.5 20.8 5.7

75th 20.5 30.4 8.4

Detection 98% 85% 100%

Complete brain 38% 23% 85%

(a) (b) (c) (d) (e)

Fig. 5. Examples of detected bounding boxes (green) and ground truth (red). a), b) and
c) are respectively sagittal, coronal and transverse acquisitions of different subjects. d)
and e) show detections with the largest error, which can be attributed to the presence
of the maternal bladder near the fetal head.

the 10-fold cross validation, 98% of the candidate regions are disregarded in the
first stage of the pipeline. As a comparison, the SVM classifier further disregards
41% of the remaining candidates, and the RANSAC procedure removes 18%
outliers. No distinction has been made between sagittal, transverse or coronal
acquisitions, which is another advantage of the proposed method.

When using normal growth charts to define a realistic range of sizes of the
brain, our goal is to remove improbable detections while still allowing a large
variation in brain size. From standard growth charts, extending to include 99.6%
of subjects corresponds to a 1 week error. Simulating extreme growth restriction
by adding a 5 weeks error in all gestational ages, the detection rate is still 91%.

4 Conclusion

We presented a novel automatic localisation method for the fetal brain in MRI.
Proceeding slice by slice, MSER regions are first detected and filtered by size
and aspect ratio before being classified using histograms of SIFT features. An ex-
pected size of the brain is inferred from the gestational age and prior knowledge
of the fetal development. Finally, a 3D bounding cube is fitted to the selected
regions with a RANSAC procedure. The method is not specific to the scan ori-
entation, with a median distance error of 5.7mm from the ground truth. Further
work will be required to integrate this brain localisation method in a motion
correction pipeline, such as automatically masking out maternal tissues.
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