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Abstract. In this work, we propose a visual phrase learning scheme to learn an 
optimal visual composite of anatomical components/parts from CT colonogra-
phy images for computer-aided detection. The key idea is to utilize the  
anatomical parts of human body from medical images and associate them with 
biological targets of interest (organs, cancers, lesions, etc.) for joint detection 
and recognition. These anatomical parts of the human body are not necessarily 
near each other regarding their physical locations, and they serve more like a 
human body navigation system for detection and recognition. To show the ef-
fectiveness of the proposed learning scheme, we applied it to two sub-problems 
in computed tomographic colonography: teniae detection and classification of 
colorectal polyp candidates. Experimental results showed its efficacy. 

1 Introduction 

To help radiologists read images and identify lesions, various computer-aided detec-
tion (CADe) and computer-aided diagnosis (CADx) systems have been developed  
[1, 2]. In the majority of CAD systems developed for radiology, anatomical know-
ledge is highly embedded into the algorithm design. In other words, interaction with 
radiologists during algorithm development, and integration of expert human know-
ledge into the algorithm, is crucial to the success of these CAD systems. However, 
instead of relying on a radiologist to define the anatomical knowledge used in a CAD 
system, we believe that a computer could learn what parts of the human anatomy are 
useful in performing the detection task. Particularly, this work focuses on how to 
automatically build an anatomical model of human body using only statistical infor-
mation from CT images. 

In recent years, significant progress has been made in the field of computerized ob-
ject detection and recognition due to the application of statistical learning on large-
scale data. Some cutting edge methods include bag of words (BoW) [3], deformable 
templates [4], and part-based models [5]. BoW methods are built from codebooks, or 
collections, of visual patches extracted from images. BoW methods usually employ 
affine invariant descriptors to characterize image patches. Furthermore, the efficient 
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creation of useful codebooks for visual object recognition is a critical step in BoW 
methods [5]. In the deformable templates technique, the key idea is to fit a model to 
an image by minimizing the error between the input image and the closest model 
instance. Finally, with part-based models, the target object is modeled by mixtures of 
multi-scale deformable part models [5]. In the work of [6] on part-based models, they 
proposed an explicit way to utilize auxiliary/accompanied objects to detect and recog-
nize a main target object. They called their approach visual phrase recognition [6], 
where a visual phrase is a complex visual composite containing several objects  
(i.e. “a person riding a horse”). 

In this work, we propose a visual phrase learning scheme to learn visual compo-
sites in medical images. The key motivation is to develop an automatic way to learn 
visual phrases, instead of the manual way in the original work [6]. We utilize the ana-
tomical parts of human body from medical images by composing them with a target 
of interest (e.g. organs, cancers, lesions) for joint detection and recognition. Unlike 
the work of [6], the relevant anatomical parts of human body are not necessarily near 
each other, and they serve more as a human body navigation system for detection and 
recognition. To show the efficacy of our new visual phrase, we applied our learning 
scheme to two problems encountered in CTC: the identification of the teniae coli and 
the classification of polyp candidates in a CAD system (Fig.1). 

 

Fig. 1. Overview of CTC and two applications: colonic polyp classification (green square 
shows a true polyp and blue square shows a false positive) and teniae coli detection 

2 Visual Phrase Learning 

We show a diagram of our proposed system in Fig. 2. In the work of Sadeghi and 
Farhadi [6], the visual phrases were determined by prior knowledge using bounding 
boxes. All components belonging to a visual phrase were in close spatial proximity, 
making the system a top-down approach in which a visual phrase is determined befo-
rehand and then applied to test images. What happens if we do not know the visual 
parts of the phrase a priori, or if we have a large pool of visual parts (codebook) and 
do not know which combination will be helpful for the detection of the target object? 
Also, how can visual phrases be developed for visual parts that are distributed in  
different spatial locations? In the following subsections, we address these problems  
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Fig. 2. System diagram of the proposed visual phrase learning algorithm 

by proposing a bottom-up method to learn the optimal visual phrase for joint object 
detection and recognition from a codebook of visual parts. 

2.1 Problem Formulation 

For a two-class classification problem, given training samples {(X1,y1),…,(Xn,yn)},  
yi ∈ {-1,+1}, where each training sample X is a composition of detection x and auxiliary 
data (visual patches coming from a codebook with m items) associated with each  
detection { }1 ,...,c c

mx x , the visual phrase learning problem is formulated as follows: 
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where w1 is a linear classifier in feature space; b is the bias item of the classifier;  
wc ≥ 0

 
is a parameter vector to learn visual phrase from a codebook; and C1 is a trade-

off parameter to control the classifier complexity and slack variables ξi, i =1,2,…,n; 
Please note that each training sample, Xi, is a d × (m + 1) matrix in which each col-
umn represents a detection/instance, each row corresponds to a feature and d is the 
feature’s dimension. The first column is the detection we wish to classify. The next m 
columns represent m parts from a code book. The column-wise order of detection and 
code book items is fixed to maintain consistency across all training and test samples. 
The purpose of the above learning problem is to learn the visual phrase (specified by 
wc) which has the best performance regarding classification, given a codebook from 
the image data. Our hypothesis is that a visual phrase (composed of detection and its 
surrounding structures) has better discriminating power than a single detection object. 
Eq. (1) is a new formulation which contains the key idea on visual phrase learning 
proposed in this paper. Please note that iX in Eq. (1) is a 2D matrix which differen-

tiates the proposed formulation from traditional support vector machines formulation. 
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2.2 Linear SDP Solution 

To solve the above optimization problem, we propose the following theorem: 

Theorem 1. The above visual phrase learning problem can be formulated as the fol-
lowing semi-definite programming (SDP) problem: 
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the dual problem; e is a vector filled with all ones. Our SDP solution provides a 
closed-form solution to the optimization problem in (1), which is guaranteed to be 
global optimal. The proof is omitted due to page limit. 

It is interesting to note that the solution we show in Theorem 1 has connections 
with multi-kernel learning [7] and sequence kernel learning [8]. Multi-kernel learning 
can be viewed as special cases of our visual phrase learning framework.  

2.3 Kernelization 

In the previous subsection we showed the linear solution for the visual phrase learning 
problem in the original feature space. Now let’s consider its nonlinear solution. First 
let us define a mapping function Φ which maps the data in the original Euclidean 
space to a new reproducing kernel Hilbert space (RKHS): ℝd → H. More specifically, 
the mapping function Φ maps each column of the input sample (detection plus code-
book items) to the same RKHS. H may be infinite dimensional. Utilizing a different 
mapping function and RKHS for detection and codebook is also feasible but beyond 
the scope of this paper. The visual phrase learning problem in the new Hilbert space 
can be formulated as follows: 
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Φ(Xi) is the mapping of detection xi and its corresponding codebook items. Each col-
umn of Φ(Xi) corresponds to one vector in the new RKHS. We define a symmetric 
kernel function for the input samples (detection plus codebook items) as follows: 

( ) ( ) ( )( ),
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kernel function for the mapping function Φ as follows: ( ) ( ) ( ),
T
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where subscripts m and n correspond to m’th and n’th columns of sample Xi and Xj. 
Then we have the following Theorem: 

Theorem 2. The symmetric kernel function ( ) ( ) ( )( ),
T T

f i j i j cK X X trace X X W= Φ Φ ×
 

fulfills the Mercer’s condition for any kernel function ( ) ( ) ( ),
T
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fulfilling the Mercer’s condition when 0cw ≥ (element-wise). 
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By using the Lagrange multiplier optimization method, we obtain the theorem: 

Theorem 3. The nonlinear visual phrase learning problem can be formulated as the 
following semi-definite programming (SDP) problem: 
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3 Experiments: Teniae Coli 

Teniae coli are three longitudinal smooth muscle bands in the colon surface. They are 
parallel, equally distributed, and form a triple helix structure from the appendix to the 
sigmoid colon. Fig.1 illustrates a human colon and the configuration of the teniae coli. 
Teniae are anatomically meaningful landmarks and can be used to estimate the cir-
cumferential positions of potential lesions in CT colonography.  

To detect teniae coli, colon segmentation was first performed on the original CTC 
slice. The segmented colon surface was reconstructed and unfolded into a 2D flat-
tened colon using a reversible projection. The unfolded images then were converted 
into 2D height maps. The height maps are 2D intensity images that record the eleva-
tion of the colon surface relative to the unfolding plane, where haustral folds corres-
pond to high elevation points and teniae to low elevation points.  

We used CTC data from 20 patients, dividing patients into separate training (17) 
and testing (3) sets. The separation of training/test sets was determined empirically. 
We cropped each image to only include the middle segment of each image as the 
teniae were very difficult to define at either end of the colon.  
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scan and performed a curvature-based analysis to generate an initial list of lesions of 
interest. After initial filtering, we identified 880 polyp candidates (detections) which 
include 62 true polyps. 

For each polyp candidate, our system generated 5 intraluminal, volume-rendered 
images focusing on the detection from various viewpoints (Fig. 1 shows two view-
points as illustration). Averaged prediction scores of the 5 images were used as the 
final prediction score for the polyp candidate. We used 2D HOG features to describe 
the images (the first column of sample X in Section 2.1). To generate a codebook of 
auxiliary data, traditional 3D curvature based features were extracted from original 
CT slices. These 3D features are widely used in traditional CTC CAD to capture the 
anatomical shapes of the polyp candidate and its surrounding structures. 

 

Fig. 4. ROC comparison of the proposed visual phrase method and baseline methods. The 
difference between the visual phrase method and the highest-performing baseline method (con-
catenated vector) is significant (p<0.05). 

We produced receiver operating curves (ROC) to analyze the performance of the 
visual phrase. We compared the visual phrase with 3 baseline methods. For the first 
method, we concatenated the detection data and all codebook items into a single vec-
tor that was fed to the classifier. For the second method, we set the Wc matrix to 
equally weight the detection data and each codebook item. We also compared the 
visual phrase classifier to a system that only used the detection features. In Fig. 5 the 
ROC’s of the four methods are compared. Use of visual phrases improved the classi-
fication performance compared with the baseline methods. The AUC’s of each me-
thod were 0.90 (±0.04), 0.86 (±0.04), 0.81 (±0.05), and 0.74 (±0.05) respectively. The 
difference between the visual phrase method and the highest-performing baseline 
method (concatenated vector) was significant (p<0.05). 

5 Conclusion and Discussion 

In this work, we proposed a visual phrase learning scheme to learn a visual composite 
of anatomical parts from medical images for medical computer-aided detection.  
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In theory, components of a visual phrase are not necessarily “meaningful” anatomical 
parts. In the proposed method, useful visual words were identified by the learning 
process with the guidance of training labels. Any visual words which were useful for 
the classification were highly weighted and selected. For example, visual words on 
the colon folds and colon wall near the folds were highly weighted and therefore ana-
tomically “meaningful”. Experimental results on two CTC applications showed im-
proved performance with the proposed method.  

Our proposed method has several advantages. First, we do not need manual identi-
fication of the visual phrase. In Sadeghi and Farhadi’s work on recognition using 
visual phrase [6], the appearance models for each category were learned using de-
formable part models which required manually labeled bounding boxes for training 
patches. Second, our method has more flexibility. We allow the learned visual parts to 
be distributed across the whole image, not limited to local patches. 
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