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Abstract. In MRI, the relatively thick slices of multi-slice acquisitions
often hamper visualization and analysis of the underlying anatomy. A
group of post-processing techniques referred to as super-resolution recon-
struction (SRR) have been developed to address this issue. In this study,
we present a novel approach to SRR in MRI, which exploits the high-
resolution content usually available in the 2D slices of MRI slice stacks to
reconstruct isotropic high-resolution 3D images. Relying on the assump-
tion of local self-similarity of anatomical structures, the method can be
applied both to a single slice stack and to the combination of multiple
slice stacks that differ in the orientation of their field of view. We evalu-
ate the method quantitatively on synthetic brain MRI and qualitatively
on MRI of the lungs. The results show that the method outperforms
state-of-the-art MRI super-resolution methods.

Keywords: Super-resolution, reconstruction, MRI, self-similarity,
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1 Introduction

In magnetic resonance imaging (MRI) sequences requiring long repetition times,
conventional 3D imaging usually leads to infeasible scan times, and 2D multi-
slice imaging is used instead. However, due to hardware induced limitations on
gradient strength, requirements on signal-to-noise ratio (SNR), and other factors,
the slices are usually relatively thick compared to the in-plane resolution. Such
anisotropy negatively affects visualization and hampers analysis. The isotropy
and resolution of images may be improved by super-resolution reconstruction
(SRR) methods [I], often divided into 1) methods that base the high-resolution
(HR) reconstruction on a single image only, and 2) methods that combine multi-
ple low-resolution (LR) images of the same object acquired under varying fields
of views. In both cases, the inverse problem of recovering the HR image is ill-
posed, and regularization is applied by exploiting prior knowledge of the HR
solution, such as that it must be smooth, piecewise smooth, or sparse.
Recently, a quite different prior has been shown to be very powerful: example-
based self-similarity. It is based on the observation that small-scale structures
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Fig. 1. Left: Quantitative check of self-similarity in a T2-weighted brain MRI from
BrainWeb [12]. Similarity between the 10% axial 7x7 patches with the highest variance
and all coronal and sagittal 7x7 patches was evaluated. For several similarity thresholds,
the fraction of axial patches is plotted as function of the number of coronal and sagittal
patches exceeding the threshold. Similarity is measured as the inner product between
the patches (after vectorization and unit length normalization). Right: Example of local
self-similarity in the cortex. The yellow arrows point at a similar cortex structure in
the axial (top), coronal (middle), and sagittal (bottom) slices.

tend to repeat themselves throughout an image. This concept has been widely
applied for image compression, denoising, inpainting, and SRR [2], and has
spawned methodologies such as image hallucination [3], sparse coding using
learned dictionaries [4J5], and non-local means (NLM) [6]. A common feature
of these example-based methods is the formulation of a parent-child structure
in which the “nearest-neighbor” of an input LR-patch is sought among the LR~
parents of HR-child-patches in either a database [3] or in the image itself [7]. In
MRI, applications include resolution enhancement of T2-weighted stacks from
isotropic HR T1-weighted stacks [§], and upsampling by iteratively applying
NLM-denoising to an interpolated version of the image itself [9].

Here we propose a novel approach to SRR in multi-slice MRI based on the
concept of cross-scale self-similarity [10]. Multi-slice 2D MRI scanning yields
two native scales simultaneously: one at in-plane resolution (HR) and one in the
slice-selection direction (LR). Local self-similarity of anatomical features occurs
both within and across these scales (Fig. [l), which we exploit to achieve SRR.
Our method can be applied to both a single image and to multiple images, tran-
scending the methodological division described above. We describe our method
and show its potential by comparing it quantitatively and qualitatively with a
baseline interpolation scheme and a state-of-the-art SRR algorithm.
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2 Method

2.1 From Single-Scale to Cross-Scale Self-similarity

Our method is developed from one of the most successful applications of image
self-similarity: the non-local means (NLM) method [6JIT]. In NLM, the ith pixel
in image u, defined over the domain 2, is represented as a weighted average of
pixels from similar patches found elsewhere in the same image:

NLM((9) = ¢ 3wl () (1)

JjEN

with w(i,j) = exp(—[[u(N(9) —uWN ()5 ./h?*) and C(i) = 3;cqw(i, ).
Here, N (k) is a square patch of a fixed size centered on pixel k, ||.[|3, is the
norm weighted by a Gaussian with standard deviation a, and h is a parameter
that controls the decay of the weights as a function of the norm.

For our purposes, a HR example image v is used to modify the above NLM
expression, leading to cross-scale NLM [10]:

esNLM(u(i)) = Cti) S Wi H)v() 2)
JEN

with w(i,j) = exp(—||lu(N(D(i))) — H=(v(N(j)))II3../h*) and C(i) as defined
above. Here, D maps u onto a HR lattice, and H, is a linear model of the
imaging process, with degradation z. In other words, in ¢sNLM, HR patches
v(j) whose degraded versions are similar to an up-scaled LR patch u(i) are used
to update the HR estimate csNLM(u(z)).

The method we propose is a special case of csNLM. In the limit, when h — 0,
the weight of only one patch (the “nearest neighbor”) dominates. The cross-scale
super-resolution expression thus becomes:

csSR(u(i)) = ! Lw(t, )v(i) =v(j) with j= argllrnax w(i, ). (3)

w(i, j)
In the experiments we demonstrate that the use of only the nearest neighbor is
indeed sufficient to improve resolution and image quality considerably.

2.2 MRI Super-Resolution Using Cross-Scale Self-similarity

From a 2D viewpoint, MR stacks contain both LR images (anisotropic slices
containing the slice-selection direction) and HR images (isotropic in-plane slices).
Using the knowledge of 2D self-similarity of 3D anatomical structures (Fig. ),
we can apply Eq. ) as follows: Let u denote the 2D LR slices of a stack, let D
be an interpolation operator that maps the LR slices onto a 2D HR grid, and
‘H. a number of blurring kernels (one of them approximating the point-spread
function, PSF, of the upsampled LR slices) applied to the in-plane slices v.
We search for the nearest neighbor of u(N(D(i))) over all HR patches j, at all
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Fig. 2. Quantitative evaluations. Top: PSNR of SRR using six different methods. Bot-

tom: mSSIM of SRR by the six methods. Left: Reconstructions from images of the 3%
noise group. Right: Reconstructions from images of the 9% noise group.

I Interpolation
I siPBSR
48k [ 3orthoAvg
[___130rthoPBSR
[ LASR

a7l I L ASR+PBSR
a6}

a5}

pras

43}

42

7 3 5 7 9
Slice Thickness

PSNR
PSNR

Slice Thickness

0.9

9

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

7 9 3 5 7 9
Slice Thickness Slice Thickness

mSSIM
mSSIM

blurring levels z, in H,(v(N(j))). The reason for using multiple blurring levels
is to enrich the model and capture cross-scale self-similarity at scales besides
the two native ones (relevant for recursive structures such as vessel-trees). In the
experiments we used two levels, empirically chosen to achieve good performance.

Multiscale Dictionary. The vectorized versions of all HR patches (or a ran-
domly selected subset thereof) are collected in a matrix. The corresponding vec-
torized patches of the blurred versions of the HR slices are appended as columns
in this matrix, such that each blurring level is represented by a contiguous block
of columns. The columns are then normalized and the normalization factors are
saved for later rescaling. Adopting the terminology of the sparse coding litera-
ture, we shall call this matrix a dictionary.

Reconstruction Process. An initial HR estimate is created by interpolating
and aligning the LR images onto a 3D HR grid. The slice stack is traversed,
LR slice by LR slice. Around each pixel in each slice, a 2D patch is extracted
(of size 7x7 pixels in this study). According to the cross-scale self-similarity
assumption, the HR version of this LR patch will be well-approximated by the
in-plane patches in the dictionary. For each LR patch, the dictionary is searched
for its nearest neighbor (NN), defined as the column that has the maximum
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inner product with the vectorized and normalized LR patch. The corresponding
HR patch is found in the HR block of the dictionary and rescaled to its original
intensity. HR patches are inserted into the grid and averaged where they overlap.

3 Experiments and Results

3.1 Image Data

Simulated Brain MRI. Two isotropic HR T2-weighted images (1x1x1 mm
voxels) with intensity non-uniformity of 20%, and noise-levels of 3% and 9%,
respectively, were downloaded from BrainWeb [12]. To simulate a common case
from anatomical neuro-imaging, slice stacks were obtained from each of these
HR images by application of a 1D Gaussian PSF in the slice-selection direction.
The full-width-half-maximum of the PSF was equal to the downsampling factor
applied in the slice-selection direction. By varying this factor as well as the slice-
selection direction, three orthogonal slice stacks (axial, coronal, sagittal) were
generated for downsampling factors of 3, 5, 7, 9. Thus, a total of eight sets, each
containing three orthogonal slice stacks, with resolutions of 1x1x3 mm, 1x1x5
mm, 1xX1x7 mm, and 1x1x9 mm, were generated from the two original images
with noise-levels of 3% and 9%.

Lung MRI. Lung MRI data was acquired on a 1.5 Tesla GE scanner. Axial,
coronal, and sagittal slice stacks of a test-subject with the lung in expiratory
state were acquired during breath hold. A 2D gradient-recalled steady-state se-
quence (TR = 2.2 s, TE = 0.75 s, flip angle = 35 degrees, number of averages
= 1) was used, having a scan time of 15 seconds per slice stack. The field of
view was 400x400 mm, the acquisition matrix was 128160 pixels, yielding an
in-plane resolution of 3.125x2.5 mm. The slices were reconstructed by the scan-
ner to a grid of 256x256 pixels with uniform sizes of 1.56x1.56 mm. 40 slices
were acquired per stack with a slice thickness of 8 mm. Lung MRI courtesy of
H. Tiddens, P. Ciet, and P. Wielopolski, Dept. of Radiology, Erasmus MC.

3.2 Quantitative Evaluation

The proposed method, referred to as patch-based super-resolution (PBSR), was
quantitatively evaluated for 1) a single axial slice stack (siPBSR), 2) the com-
bination of three orthogonal stacks (3orthoPBSR), and 3) post-processing of
the result of another SRR method (LASR) [13] using three orthogonal stacks
(LASR+PBSR). Initial estimates of the HR image were created from the avail-
able data: in the case of a single stack, by cubic interpolation, and in the case of
three stacks, by either the average of the interpolated and aligned stacks (3or-
thAvg) or by the LASR method. Performance was quantified by peak-signal-to-
noise ratio (PSNR) and mean structural similarity (mSSIM) [I4]. To compute
these measures, a noise-free HR T2-weighted image (1x1x1 mm voxels) from
BrainWeb was used. The results are shown in Fig. 2l As expected, lower noise
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Fig. 3. Coronal slice of the simulated brain images reconstructed using six methods: (a)
the noise-free HR reference image, (b) cubic interpolation, (c) 3orthoAvg, (d) LASR,
(e) siPBSR, (f) 3orthoPBSR, (g) LASR+PBSR. The reconstruction method of (h)-(m)
corresponds to (b)-(g). See Section [3.2] for nomenclature. Reconstructions (b)-(g) and
(h)-(m) are, respectively, based on stacks of 3 mm and 7 mm slice thickness.

and thinner slices yielded better reconstructions, and in most cases the recon-
structions based on three slice stacks were better than the ones based on a single
stack. More importantly, compared to interpolation and LASR, PBSR consis-
tently improved the PSNR and mSSIM of the resulting images. In all cases but
one, either 3orthoPBSR or LASR+PBSR performed best.

3.3 Qualitative Evaluation

Figure Bl shows coronal brain MR images reconstructed from either one or three
LR stacks with slice thickness of 3 mm or 7 mm generated from the original
HR image with a noise level of 3%. The results of the proposed PBSR method
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Fig. 4. Axial slice of the lung data reconstructed using the six methods: (a) cubic in-
terpolation, (b) 3orthoAvg, (c) LASR, (d) siPBSR, (e) 3orthoPBSR, (f) LASR+PBSR

(e-g, k-m) appear both sharper and less noisy than the input images (b-d, h-j).
Figure [ shows axial reconstructions of the lung MRI data. The images demon-
strate the potential of multi-image SRR for MRI slice stacks: comparing (a), an
interpolated coronal slice stack, with (b, ¢, e, f), where three stacks are com-
bined using SRR methods, the difference is striking. Comparing the SRR images
based on three slice stacks with each other, again, the PBSR images (e, f) appear
sharper and less noisy than the images they are based on (b, ¢). PBSR based on
a single slice stack (d) also looks sharper and less noisy than the original inter-
polated image (a), but in this case it is difficult to assess whether (d) becomes
a more accurate representation of the underlying anatomy.

4 Discussion and Conclusions

The main contribution of this paper is the idea of exploiting redundancy across
scales in an MRI slice stack for SRR. This idea is especially appealing because
of the vast amounts of such data that could potentially be enhanced using the
proposed method. Cross-scale self-similarity has previously been exploited for
SRR in MRI [89], but, to the best of our knowledge, the present study is the
first that takes explicit advantage of the relation between structural features in
the HR slices of a stack and in the orthogonal LR slices.

Our quantitative evaluation revealed that applying PBSR on an initial HR
estimate consistently improves the PSNR and mSSIM. The fact that the PBSR
improves the HR estimate of another SRR method (LASR) is worth noting.
LASR obtains a regularized maximum likelihood estimated after an iterative pro-
cedure that takes into account the acquisition process while maintaining global
data consistency. The improved performance after applying PBSR indicates that
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the image data contain valuable information that is not exploited by the LASR
method but can be exploited using a self-similarity prior.

As future work, we plan to study in detail how patch size and the number of
patches in the dictionary affect the performance of our method. The number of
blurring levels of the dictionary is another free parameter whose effect on the
performance will be thoroughly tested. Such results may, however, not generalize
easily, since they will be dependent on the specific anatomy, and on the image
quality. Also, we have used only the first NNs for our reconstruction. Using an
average of the first n NNs may improve the results. Finally we will study how
the size of the used dictionary can be optimally chosen to balance computational
cost and reconstruction quality.
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