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Abstract. Diffusion-weighted MRI images acquired with multiple b-
values have the potential to improve diagnostic accuracy by increasing
the conspicuity of lesions and inflammatory activity with background
suppression. Unfortunately, the inherently low signal-to-noise ratio (SNR)
of DW-MRI reduces enthusiasm for using these images for diagnostic pur-
poses. Moreover, lengthy acquisition times limit our ability to improve
the quality of multi b-value DW-MRI images by multiple excitations ac-
quisition and signal averaging at each b-value. To offset these limitations,
we propose the Simultaneous Model Estimation and Image Reconstruc-
tion (SMEIR) for DW-MRI, which substantially improves the quality of
multi b-value DW-MRI images without increasing acquisition times. Our
model introduces the physiological signal decay model of DW-MRI as
a constraint in the reconstruction of the DW-MRI images. An in-vivo
experiment using 6 low-quality DW-MRI datasets of a healthy subject
showed that SMEIR reconstruction of low-quality data improved SNR
by 55% in the liver and by 41% in the kidney without increasing acqui-
sition times. We also demonstrated the clinical impact of our SMEIR
reconstruction by increasing the conspicuity of inflamed bowel regions
in DW-MRI of 12 patients with Crohn’s disease. The contrast-to-noise
ratio (CNR) of the inflamed regions in the SMEIR images was higher by
12.6% relative to CNR in the original DW-MRI images.

1 Introduction

Diffusion-weighted MRI (DW-MRI) of the body is a non-invasive imaging tech-
nique sensitive to the incoherent motion of water molecules inside the area of
interest. This motion is characterized by a combination of a slow diffusion com-
ponent associated primarily with the Brownian motion of water molecules, and a
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fast diffusion component associated primarily with the bulk motion of intravas-
cular molecules in the micro-capillaries [§].

The signal in DW-MRI images decays as a function of the amount of inco-
herent motion present in the tissue and a diffusion-weighting parameter known
as “b-value.” The rapid DW-MRI signal decay in tissue with normal diffusion
characteristics, combined with the reduced signal decay in regions of restricted
diffusion, increases the conspicuity of abnormal regions in DW-MRI images ac-
quired with sufficiently high b-value and aids in detecting abnormal regions.

Recent studies demonstrate the potential of sufficiently high b-value DW-MRI
images to improve the detection rate of different types of carcinoma [4J5JTT], focal
hepatic lesions [0], and inflammatory activity in the bowel [9] without ionized
radiation and/or exogenous contrast media.

Unfortunately, DW-MRI images have an inherently low signal-to-noise ratio
(SNR), which reduces enthusiasm for using these images for diagnostic pur-
poses. Koh and Collins [7] recommend acquiring the DW-MRI data with multi-
ple excitations (i.e., 5 to 6 excitations) and using the averaged signal to improve
DW-MRI image quality. However, acquiring multi b-value DW-MRI data with
multiple excitations to achieve both sufficient image quality and sufficient infor-
mation for quantiative assessment of fast and slow diffusion will substantially
increase the overall acquisition time, thus making this method less suitable for
routine clinical use.

A unique feature in DW-MRI images in particular, and in parametric imaging
techniques in general, is the addition of a 4'" dimension to the control parameters
in the acquired data. This 4*" parametric dimension, which is the diffusion-
weighting factor (b-value) at play in DW-MRI, can be exploited as an additional
source of prior information that can be utilized in reconstructing images.

Several groups have suggested incorporating the 4" parametric dimension as
a constraint to increase the quality of reconstructed images in quantitative T1
and T2 images [TI2IT2]. However, these models are difficult to optimize and have
not been successfully applied to body DW-MRI reconstruction.

In this work, we reduce the number of excitations required to obtain multi b-
value DW-MRI images of the body with sufficient SNR by introducing a Bayesian
model of the expected signal with the signal decay model utilized as the prior
information. With this model, we are able to simultaneously obtain high-quality
DW-MRI images for multiple b-values at once and estimate the signal decay
model parameter values instead of generating estimates of each b-value image
independently and without estimating the signal decay model parameter values.

We also introduce an efficient iterative solution based on the Expectation-
Maximization framework through which we obtain high SNR DW-MRI images
and parameter estimates with the “Simultaneous Model Estimation and Im-
age Reconstruction” (SMEIR) solver, a novel approach that simultaneously es-
timates the intra-voxel incoherent motion signal decay model parameters and
reconstructs high-quality DW-MRI images. In our experiments, we have shown
substantial improvements in DW-MRI image quality. Specifically, our SMEIR
reconstruction approach improves the SNR of 6 DW-MRI datasets of a healthy
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volunteer by 55% in the liver and by 41% in the kidney. We have also assessed
clinical impact, namely, by demonstrating increased conspicuity of inflammatory
bowel regions in a study cohort of 12 pediatric Crohn’s disease patients. Our re-
sults show that SMEIR-reconstructed images have a contrast-to-noise ratio that
is 12.6% higher than the CNR produced by the original DW-MRI data.

2 Method

2.1 DW-MRI Reconstruction Model

DW-MRI images have an inherently low SNR, which reduces enthusiasm for
using these images for diagnostic purposes. Specifically, the SNR of DW-MRI
images decreases as the b-values used to acquire the images increases. As a rule,
the SNR of DW-MRI images obtained with high b-values is increased by ac-
quiring the images with multiple excitations at each b-value. An SNR~optimized
DW-MRI image is then reconstructed by solving a Maximum-Likelihood esti-
mation problem for each b-value independently:

M
S; = argmin 2:(5Z - S;’j)2 (1)
i j=1
where S} ; 1s the observed signal at excitation j with b-value b;, S; is the unknown
signal, and M is the number of excitations. The solution is simply obtained by
averaging the signal at the different excitations:

. 1 M
Si= > S, (2)
j=1

Unfortunately, by obtaining images with M as the number of excitations
(NEX), we are only able to achieve a SNR increase of v/M, the low rate of
which requires acquisitions of long duration.

As an alternative, we propose to incorporate a prior knowledge on signal
evolution in the b-value dimension to reconstruct the DW-MRI images by adding
a regularization term to Eq. [k

M

S; = argmin ) _(Si — 5;;)* +a(S; — f(6,i)* (3)
i j=1

Where « is the regularization weighting parameter, f(6, 1) is the expected signal

at b-value b; given the signal decay model parameters @. In this work we used the

intra-voxel incoherent motion (IVIM) model of DW-MRI signal decay proposed

by Le Bihan et al. [§]. This model assumes a signal decay function of the form:

f(8,i) = So (fexp (=bi(D + D7) + (1 — f)(exp(=b:D))) (4)
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Where f(0,14) is the expected signal at b-value b;, © = {so, f, D*, D} are the
intra-voxel incoherent motion model parameters describing the baseline (i.e.,
without any diffusion effect) signal (sg); the fast-diffusion fraction (f); the fast-
diffusion coeflicient (D*) characterizing primarily the bulk motion of intravascu-
lar molecules in the micro-capillaries; and the slow-diffusion coefficient
(D) characterizing primarily the Brownian motion of water molecules in the
extra-cellular space.

Unfortunately, the expected signal is dependent on the parameters of the sig-
nal decay model (i.e., @) which are unknown. Therefore, we cannot optimize
Eq. Bl directly. Instead, we formulate the reconstruction problem as a simultane-
ous reconstruction of the DW-MRI images acquired with different b-values and
an estimation of the signal decay model:

o N M , N
5.6] = argmin Y0 3 (5, — 5[, +ad (5 - fO.0)° )

i=1 j=1

where S = {S4,...,5n}.

2.2 Optimization Scheme

We used an Expectation-Maximization-like approach to solve Eq. Bl by iteratively
estimating the signal decay model parameters @ given the current estimate of
signal S and then estimating signal S given the current estimate of the model
parameters ©. We describe these steps in detail next.

E-Step: Signal decay model (©) estimation:

The expected DW-MRI signal decay at each voxel is described by the intra-voxel
incoherent motion model (Eq. d). We used the spatially constrained incoherent
motion signal decay model described by Freiman et al. [3] to robustly estimate
the model parameters ©. Given the current estimate of the DW-MRI signal S¢,
the estimate of the model parameters @' was obtained by minimizing:

N
O! = argmin’y (S — £(6",1))* + Y 9(6],.6),) (6)
er =1 Vp Vg
where g(+, ) is the spatial constraint given by:
9(0s,.65,) = aW|e, -6, | (7)

and o > 0 is the spatial coupling factor; W is a diagonal weighting matrix
that accounts for the different scales of the parameters in ©; and vy, v, are the
neighboring voxels established by the employed neighborhood system utilized in
this model. We then estimated the model parameters © by minimizing Eq.
using the “fusion bootstrap moves” combinatorial solver introduced by Freiman
et al. [3].
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M-Step: DW-MRI Signal (S) reconstruction:

Given the current estimate of the DW-MRI signal decay model ©¢, we minimized
Eq. Bl using the BOBYQA non-linear optimization algorithm [I0] to get the next
estimate of the signal S**+1.

First, we initialized the algorithm with the acquired DW-MRI data as the
current estimate of the signal; and second, using the acquired DW-MRI data
and the current estimate of the model parameters, we iteratively alternated
between estimating the model parameters from the current signal (Eq. [B) and
estimating the true DW-MRI signal (Eq. B]) until the change in the estimated
signal became negligible.

3 Experimental Results

3.1 In-vivo Evaluation Using Healthy Control

We conducted an in-vivo study with healthy control volunteer data to analyze
the improvement in SNR achieved by using our SMEIR approach.

We acquired DW-MRI data of a healthy volunteer using a 1.5-T unit (Mag-
netom Avanto, Siemens Medical Solutions, Erlangen, Germany). We performed
free-breathing single-shot echo-planar imaging using the following parameters:
repetition/echo time (TR/TE) = 6800/59 ms; matrix size = 192x156; field of
view = 300x260 mm; slice thickness/gap = 5 mm/0.5 mm; 40 axial slices; 7 b-
values = 0,50,100,200,400,600,800 s/mm? with 6 excitations (i.e. NEX=6). The
acquisition time for each excitation was 3:30 min. with an overall acquisition
time of 21 min.

We generated high-quality images by averaging the data from the 6 excita-
tions and 6 low-quality datasets - each one consisting of data acquired with
1 NEX. For each low-quality dataset, we reconstructed the images using our
SMEIR reconstruction approach. We experimentally set the value of « in Eq.
to 0.01. The average (std) running time required to reconstruct DW-MRI im-
ages of 256 x 256 x 40 voxels on an 8 processors machine Intel® Xeon® at 2.40
GHz with cache size of 12 MB and overall memory of 48 GB using the SMEIR
reconstruction was 8:04 (2:35) min.

For purposes of evaluation, we defined 2 spherical regions of interest (ROI) in
the liver and in the kidney, respectively. We defined SNR at each voxel as the
average signal over the 6 low-quality datasets divided by the standard deviation
of the signal over these datasets. We likewise calculated SNR for the b-value=800
s/mm? DW-MRI image for the raw low-quality datasets (RAW) and for the
SMEIR-reconstructed datasets (SMEIR). Next, we averaged SNR for the RAW
and SMEIR data, respectively, over the liver and kidney ROIs.

Fig. [l presents a high b-value (i.e. 800 s/mm?) image acquired in high-quality
(NEX=6); in low-quality (NEX=1); in low-quality (NEX=1) combined with
SMEIR reconstruction; and a bar-plot representation of SNR of low-quality data
with and without SMEIR reconstruction. The average+std SNR of SMEIR data
(12.242.5 in the liver and 11£2.5 in the kidney) was higher than the SNR of the
low-quality data (7.944.2 in the liver and 7.8+2.7 in the kidney) - a difference
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(a) High-quality DW-MRI (6 NEX) (b) Low-quality DW-MRI (1 NEX)
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(c) SMEIR DW-MRI (1 NEX) (d) Signal to Noise Ratio (SNR)

Fig. 1. In-vivo example. This figure presents b-value=800 s/mm? images acquired in
high-quality (NEX=6); in low-quality (NEX=1); and in low-quality (NEX=1) com-
bined with SMEIR reconstruction, and a bar-plot representation of SNR of low-quality
data with and without SMEIR reconstruction.

that was statistically significant (Paired Student’s t-test, p<0.0001). Notably,
the SMEIR reconstruction of low-quality data improved SNR by 55% in the
liver and by 41% in the kidney without additional acquisition time.

3.2 Clinical Impact

To demonstrate the actual clinical impact of using our SMEIR, reconstruction ap-
proach instead of the raw low-quality DW-MRI data, we assessed the conspicuity
of inflamed bowel regions in b-value=800 s/mm? images by means of contrast-
to-noise ratio (CNR) between regions with active inflammation and surrounding
normal tissues in DW-MRI data of Crohn’s disease patients.

We retrospectively reviewed DW-MRI data of 30 patients who underwent
clinical MRI exams including a MR enterography (MRE) protocol that included
polyethylene glycol administration for bowel distention; gadolinium-enhanced,
dynamic 3D VIBE (volume-interpolated breath hold exam); and DW-MRI with
the same protocol described in section Bl acquired with 1 NEX.
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(a) Raw data (b) SMEIR reconstruction

Fig. 2. Representative Crohn’s disease patient with active inflammation in the ileum.
(a) The acquired raw DW-MRI data; and (b) SMEIR-reconstructed data. The region
with active inflammation is more conspicuous in the SMEIR-reconstructed image than
in the raw DW-MRI data.

Two board-certified radiologists reviewed the MRE data independently. Dis-
ease activity was defined as abnormal bowel wall thickening and enhancement in
the gadolinium-enhanced images by each of the readers. In case of disagreement
between the two reviewers, consensus was reached by joint reading of the data.
The consensus decision identified 12 patients with active inflammation in the
ileum. Another board-certified radiologist, blinded to the MRE data and to the
review, identified the ileum on the DW-MRI data for each patient. We manu-
ally annotated the ileum wall on the DW-MRI images with b-value=200 s/mm?.
Next, we calculated the CNR of the inflamed ileum in b-value=800 s/mm? im-
ages by subtracting the background signal from the signal of the inflamed ileum
and dividing by the standard deviation of the signal in the ileum.

Fig. 2 depicts the acquired raw DW-MRI data and SMEIR-reconstructed
data of a representative Crohn’s disease patient with active inflammation in the
ileum. Visually, the region with active inflammation is more conspicuous in
the SMEIR-reconstructed image than in the raw DW-MRI data. Quantitatively,
the average (std) CNR between the inflamed regions and the surrounding neigh-
borhood in the SMEIR-reconstructed images was higher (2.5240.69) than in the
raw DW-MRI data (2.234+0.47) - a difference that was statistically significant
(Paired Student’s t-test, p<0.05). The SMEIR-reconstructed images improved
CNR by 12.6%.

4 Conclusions

We have presented a new model and method for reconstructing high-quality
multi b-value DW-MRI images of the body without increasing overall acquisition
times. This novel approach features the signal decay model as a prior knowledge
in the image reconstruction, effectively enabling us to simultaneously reconstruct
DW-MRI images and estimate the signal decay model parameters using the
Expectation-Maximization framework.
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As demonstrated in our experiments, our method improves overall image qual-

ity by increasing the signal-to-noise ratio (SNR) by up to 55% and by increasing
the conspicuity of inflamed bowel regions of pediatric Crohn’s disease patients
by 12.6% without increasing overall acquisition times. The proposed method
permits the acquisition of high-quality DW-MRI images for diagnostic purposes
within a clinically acceptable acquisition timeframe.
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