

P. Kotzé et al. (Eds.): INTERACT 2013, Part I, LNCS 8117, pp. 383–400, 2013.
© IFIP International Federation for Information Processing 2013

Predictive Input Interface of Mathematical Formulas

Yoshinori Hijikata, Keisuke Horie, and Shogo Nishida

Graduate School of Engineering Science, Osaka University
Toyonaka, Osaka, Japan

{hijikata,nishida}@sys.es.osaka-u.ac.jp,
horie@nishilab.sys.es.osaka-u.ac.jp

Abstract. Currently, inputting mathematical formulas into a document using a
PC requires more effort by users than inputting normal text. This fact inhibits
the spreading of mathematical formulas as internet contents. We propose a me-
thod for predicting user’s inputs of mathematical formulas using an N-gram
model: a popular probabilistic language model in natural language processing.
Mathematical formulas are usually presented in hierarchical structure. There-
fore, our method incorporates hierarchical information of mathematical formu-
las to create a prediction model. We try to achieve high prediction accuracy of
inputting characters for mathematical formulas.

Keywords: mathematical input, probabilistic language model, predictive input,
N-gram model.

1 Introduction

Mathematical formulas are helpful tools for representing knowledge in all research
fields such as science, engineering, social science, and economics. The World Wide
Web Consortium (W3C) has standardized the markup language for representing ma-
thematical formulas, called MathML. Users have become able to present mathemati-
cal formulas on web pages. Most web browsers and formula manipulation software
comply with MathML standards. Community sites related to mathematics are just
beginning to become widespread. Those users share how to solve mathematical prob-
lems and teach each other their knowledge of mathematics. In the internet research
field, search technologies are beginning to be applied to searching for mathematical
formulas on web pages [4, 16]. It is believed that potential needs for presenting
mathematical formulas are becoming greater on the web.

However, mathematical formulas have still not spread to the internet as a represen-
tation media to the same degree as other media such as text, graphics, sounds and
movies. The currently available bothersome methods of inputting mathematical for-
mulas are a deterrent against formula usage on the web. Although we usually use
only a keyboard when inputting natural languages, one must use both a keyboard and
a mouse when inputting mathematical formulas. Mathematical formulas are not simp-
ly presented as the sequence of numerical numbers, alphabet and other symbols. They

384 Y. Hijikata, K. Horie, and S. Nishida

are usually presented as a part of some structures such as fraction and exponent,
which cannot be input using a keyboard. Users input them by clicking special buttons
for the functions on the formula editor with a mouse. We believe that insisting on
users using both a keyboard and a mouse engenders irritation when inputting mathe-
matical formulas.

In this paper, we propose an input method incorporating a function to forecast
mathematical characters that the user will input next. For predicting the subsequent
characters that the user will input, the forecasting method uses the characters in the
mathematical formulas that the user has already input. The target of the forecast is
limited to mathematical structures or characters that cannot be input using a keyboard.
Then, using keyboard, a user selects a prediction proposal given by our input method.

Predictive text entry is popular for inputting natural language, especially for hand-
held devices. In the research area of natural language processing, dictionaries are
invariably used to realize predictive text entry [1, 5, 13]. The dictionary usually cov-
ers text elements with high appearance frequency. The forecasting method using the
dictionary outputs prediction proposals when the text part the user has input most
recently begins with some text in the dictionary. It shows the user the remainder of
the matched text parts in a word or a phrase as a prediction proposal. It usually orders
prediction proposals according to the most recently used order or the most frequently
used order [3].

We need dictionaries specialized for mathematical formulas if we apply this me-
thod to mathematical formulas. However, unlike natural language, the subsequent
characters are not narrowed down in mathematical formulas when a character is input.
For example, “no see” usually comes after “Long time” in English. However, the
connections among characters in mathematical formulas are not so definitive. It is
difficult to create a dictionary that is effective for forecasting mathematical formulas.
Therefore, we propose to make a prediction based on a probability model. We apply a
probabilistic language model [7] that is popular in natural language processing, to
mathematical formulas and to make a prediction using the probability output from this
model. This method outputs prediction proposals in the order of the probability of the
next input for the user.

We assume that our input method works on an ordinary formula editor such as Mi-
crosoft Office Formula Editor or MathType. These formula editors usually provide an
input interface based on What You See Is What You Get (WYSIWYG)1 . Users can
check their input formulas on the screen immediately after they input them. They also
provide buttons for inputting characters which cannot be input using a keyboard on
the top of the screen. In this study, we implemented our original formula editor to
evaluate our proposed input method. Our formula editor follows the characteristics of
ordinary formula editors described above.

1 WYSIWYG (What You See Is What You Get) is technology which provides an input inter-

face where the content displayed on the screen matches the content of process (especially
printed results).

 Predictive Input Interface of Mathematical Formulas 385

2 Related Works

One popular input method of mathematical formulas is TeX. Users cannot see the
input formula immediately after they input each character when using TeX. Formula
editors are more popular for inputting mathematical formulas. Users can check the
input formula directly because it complies with WYSIWYG. The formula editor in
Microsoft Office, along with its enhanced version MathType and InftyEditor are pop-
ular formula editors. InftyEditor allows users to input a math structure by inputting a
command. However, they must learn the commands in advance. Handwriting input
has been studied for inputting formulas [8, 12, 17]. In these studies, the systems di-
vide the input streams into a token using the user's input stroke (or gesture). Usually,
they conduct character recognition by matching the extracted tokens to the characters
in the database. Finally, they infer the structure of the formula using the stream of the
identified characters. Although handwriting input requires a special input device like
pen input, our proposed input interface does not require it.

Input word prediction has been studied since the 1980s in the field of natural
language processing. Input characters have usually been predicted in a word unit [3].
Predicted words are usually provided when a user inputs a few beginning characters in
the word [1, 5, 13]. Prediction is done by matching the input characters to the dictionary
[9]. Especially when users input long characters, they want predictive word entry.
However, the next characters to input become various in the mathematical formula.
Therefore, it is difficult to apply the dictionary-based prediction for the predictive math
entry. We introduce the N-gram model, a popular probabilistic language model, into
predictive math entry. An N-gram model is usually used for predictive text entry in the
research area of Augmentative and Alternative Communication (AAC) [14, 15].
Reactive Keyboard is a typical study of word prediction using an N-gram model for
AAC [5]. In that study, a tree is built for the prediction, where one alphabetical
character corresponds to a node. Priority is assigned to each node based on the number
of occurrences of the N-gram. When a user inputs some characters, the method matches
them with nodes in the tree, words in the children of the matched node are provided as
prediction proposals. In another research area, Zweig et al. investigate methods for
answering sentence completion questions using an N-gram model [18]. Although all of
their methods do not consider the structure of a sentence, our method considers the
structure of mathematical formulas.

In recent years, the predictive entry of natural language has been put to practical
use in cell phones and smart phones. POBox is a major predictive entry system of
Japanese [10]. It outputs a word that matches the starting few characters. It also
outputs characters followed by the recent input words. T9 is a popular predictive entry
for cell phones [6]. Characters are divided into nine groups in T9. Each group is
assigned to one key in the cell phone. Matched words in the dictionary are shown to
the user as prediction proposals if a user pushes a key. Predictive entry is useful for
cell phones because they are equipped with limited number of buttons. Our
assessment is that it is also useful for inputting mathematical formulas because
current keyboards are not equipped with keys for numerous special mathematical
characters.

386 Y. Hijikata, K. Horie, and S. Nishida

3 Probabilistic Language Model

3.1 Introduction of a Probabilistic Language Model

The basic role of the probabilistic language model is to calculate the string generation
probability)(1

nwP under a given string of words
n

n www 11 = . Each of
nwww ,, 21

stands for a word.
1()nP w can be transformed to the following formula using the

multiplication rule in probability theory [7].

 1
1 1

1

(|)()
n

n i
i

i

P ww P w −

=

= ∏ (1)

An N-gram model is a popular probabilistic language model in the natural lan-
guage processing. We propose a method for predicting user’s inputs of mathematical
formulas using an N-gram model.

3.2 N-gram Model

Generally, when the probability of an event that might occur at some point in time is
influenced only by the events which happened at the last N time point, we call this
phenomenon an N-th order Markov Process [7]. An N-gram model is a model that
approximates word occurrences as an N-1-th order Markov Process. In other words, it is
considered that the occurrence of a word at some time point depends only on the last N-
1 words. The general prediction model in the N-gram model becomes the following.

 1 1
1 1(|) (|)n n

n n n NP w w P w w− −
− += (2)

The cases of N=1, 2, 3 are respectively called unigram, bigram and trigram. The ac-
tual formula for calculating the probability of N-gram model becomes the following.

 1 1
1 1

1

()
(|)

()

n
n n N

n n N n
n N

C w
P w w

C w
− − +
− + −

− +

= (3)

We designate this probability as the N-gram probability. The calculation of this proba-
bility presents the process by which the user inputs the next word in the context that the
user has input the recent words. This helps the prediction of the next input. Here,

1()nC w

stands for the number of occurrences of string of words
1
nw in the learning data.

4 Prediction Method of Math Input

4.1 Problems in Modeling Math Input

In predictive text entry, a user inputs characters sequentially. The system predicts a
word to be input next, as inferred from the characters that the user has already input.

 Predictive Input Interface of Mathematical Formulas 387

Natural language is a simple time series of data when we specifically examine the
apparent sequences of characters. Therefore, it can be modeled appropriately by the
probabilistic language model explained in the preceding section. Mathematical for-
mulas have structures in their presentation. They are not simple symbolic sequences.
For example, mathematical formulas including fractions or integrals have hierarchical
structures. This indicates that mathematical formulas cannot be modeled using simple
probabilistic language models.

4.2 Hierarchical N-gram Model

For solving the problem described above, we propose a hierarchical N-gram model. In
this model, the user's log of math input (hereinafter, “log data of math input”) is di-
vided in hierarchical levels. A model is constructed in each hierarchical level.

The content and hierarchical level of the user's input are recorded in the log data of
math input. Here is an example of mathematical formula for showing the actual log
data.

2

20

sin t
dt

t
π

∞
=  (*)

In this formula, , , , , ,frac d tπ =  is in the first level, 0, , , , , ,t sup sin sup t∞ is in the

second level, 2 is in the third level. frac denotes fraction and sup signifies superscript.
The hierarchical information is defined in advance in each character containing a
hierarchical structure. For example, for the symbol of integral  , it is defined that
integral range exists in the lower level of  . The previously defined hierarchical in-
formation helps to record logs with hierarchical levels.

For characters that can be input using a keyboard, the unit for recording the log is a
variable, numerical value, operator, function like sin and log. The name of function is
detected by preparing a dictionary in which popular function names are recorded in
advance. For characters that cannot be input using a keyboard, the unit for recording
the log is a character that is obtainable by clicking an input button in the formula edi-
tor. Characters that cannot be input using a keyboard are Greek alphabet characters,
mathematical symbols such as differential ∂ and quantifier ∀ , fraction, operators
such as ∩ and ⊂ , large operators such as a summation symbol and integral symbol,
accents such as tildes and circumflexes, script such as subscript and superscript. One
of the log data of the above formula becomes the following. The number written in a
parenthesis is the character's hierarchical level in the formula.

{ (1), (1), (1),0(2), (2), (1), (2), (2), 2(3),frac t supπ = ∞

(2), (2), 2(3), (2), (1), (1)}sin sup t d t

For modeling the math input, the log data are divided by the hierarchical level. The
log data corresponding to the k-th level are designated as “k-th level log data”. Not
only the characters in the k-th level but also those in the higher level are used for
representing the k-th level log data because, when predicting the next input in the
lower level, the last characters in the upper level can be a trigger here. For example,

388 Y. Hijikata, K. Horie, and S. Nishida

in the sequence (1),0(2), (2)∞ appeared in the above log data, 0 and ∞ is often

used for integral range. Therefore, these characters occurred by  as a trigger. The
log data of each hierarchical level obtained from the above log data are shown below.

• 1-st level log data : { }, , , , ,frac d tπ = 

• 2-nd level log data : { , , ,0, , , , , , , , , }frac t sup sin sup t d tπ = ∞

• 3-rd level log data : { , , ,0, , , , , 2, , , 2, , , }frac t sup sin sup t d tπ = ∞

The N-gram probability is calculated in each hierarchical level. The N-gram probabil-
ity corresponding to the k-th level log data is designated as the “k-th level N-gram
probability”. The model of math input considering hierarchical level is designated as
the “hierarchical N-gram model”.

4.3 Prediction Using Hierarchical N-gram Model

A learning dataset is required for constructing a hierarchical N-gram model. It is ideal
to create the model from the user's own log data. However, it is difficult to prepare a
massive amount of log data of a target user (a user who will use the predictive math
entry) in advance. Therefore, we prepare general log data of math input obtained from
several users. The N-gram probability in each hierarchical level is calculated based on
the general log data. To reflect the target user's input pattern in the model, the input
log obtained while the user uses the predictive math entry is added to the log data.
The hierarchical N-gram model is updated using the additional log. The prediction is
made based on the N-gram probability according to the hierarchical level where the
user sets focus by a keyboard or mouse. Characters with high probability to the last
N-1 inputs are output as prediction proposals.

The method predicts characters to be input next in the same unit used for recording
the log. It does not predict the combination of several input units at one time. The
occurrence patterns become increasingly diverse and the prediction accuracy might
become low if we predict the occurrence of the combination of input units. Prediction
proposals are limited to characters that cannot be input using a keyboard. For math
input, it is easier to input characters directly using a keyboard than to input them us-
ing predictive math entry if they can be input using a keyboard.

4.4 Smoothing

Generally, an N-gram model has a problem called the zero frequency problem. Because
the N-gram probability is calculated using occurrence frequency, the probability for a
word pair that does not occur in the learning dataset becomes zero. This fact suggests
cases in which no prediction proposal is presented. To solve this problem, we conduct a
smoothing of the probability value. We adopt a smoothing method called linear
interpolation [7], which calculates the N-gram probability 1

1(|)n
n n NP w w −

− + using not

 Predictive Input Interface of Mathematical Formulas 389

only the N-gram probability but also using the lower-order M-gram probability (M <
N). Actually, it linearly interpolates N-gram probability 1

1(|)n
n n NP w w −

− + and lower order

M-gram probability in the following equation.
The N-gram probability is calculated as follows if N=2 (bigram).

1 1(|) (|) (1) ()n n n n nP w w P w w P wλ λ− −= + − (4)

Therein, λ is the interpolation coefficient. We set 0.7λ = from our experience.
The N-gram probability is calculated as follows if N=3 (trigram).

 ()2 1 3 2 1 2 1 1(|) (|) (|)n n n n n n n n nP w w w P w w w w wP P wλ λ λ− − − − −+ += (5)

In that equation,
3λ ,

2λ and
1λ respectively represent interpolation coefficients

for a trigram, bigram, and unigram. We set
3 0.5λ = ,

2 0.3λ = ,
1 0.2λ = respectively

from our experience. We used the values above for interpolation coefficients in a
later experiment.

5 Interface of Predictive Math Entry

We implemented an interface equipped with our proposed prediction method. The
interface was implemented in JavaScript. It runs on major web browsers. Figure 1
portrays our developed interface, which conforms to general formula editors. There-
fore, the interface realizes WYSIWYG. It has buttons for inputting characters that
cannot be input using a keyboard. The usage of our interface is the following. When a
user moves a cursor to the place where the user inputs characters, predictive proposals
are shown below the cursor in the predictive proposal display (see Figure 1). The user
uses cursor buttons of the keyboard to move the cursor. The user moves a cursor to

MathML Code Output

Buttons for inputting characters

Display style with WYSIWYG

Prediction Proposal

Fig. 1. Image of a mathematical editor with our prediction method of mathematical inputs

390 Y. Hijikata, K. Horie, and S. Nishida

the predictive proposal display by hitting the space key if the user wants to select a
character from the predictive proposals. To select a character from the predictive pro-
posals, the user moves the focus to the character that the user wants to input by hitting
the space key consecutively or using the cursor buttons. The selected character is
input in the target place in the formula if the user pushes enter key. The user can ob-
tain the input formula as in the form of MathML code by clicking the “get MathML”
button.

6 Evaluation of Prediction Accuracy

The objective of this evaluation is to ascertain (1) whether our proposed prediction
method outputs more highly accurate prediction results than those provided by base-
line methods, and (2) whether the hierarchical N-gram model is effective for math
input. As baseline methods, we use a method using only the user's recent inputs, a
method using only the user's past inputs, which means that the method uses user's
recent inputs, and a method using both methods. These baseline methods can be re-
garded as the simplest prediction methods. To evaluate the effectiveness of hierar-
chical modeling, we compare our hierarchical N-gram model to a general N-gram
model that uses no hierarchical information.

6.1 Evaluation Data Set

We manually selected 1,000 mathematical formulas from a textbook of mathematical
analysis [11] for evaluation. We invited six test subjects to input those mathematical
formulas to build a dataset. The six test subjects were divided into two groups
comprising three persons each. One group inputs half of the mathematical formulas. The
other group inputs the remainder. Each test subject in the same group inputs the same
500 mathematical formulas. Consequently, three pieces of log data per mathematical
formula are obtained. Our dataset contains 3,000 pieces of log data of math input.

We apply ten-fold cross validation to these datasets and evaluate our proposed
method in terms of its prediction accuracy. In detail, the mathematical formulas are
divided into 10 subsets. Then nine subsets are used as a learning dataset, another
subset is used as an evaluation dataset. To calculate the prediction accuracy, we
presume that a user inputs each formula of the evaluation dataset from its head to the
tail. The prediction is made in each input position (see Figure 2). We examine which
prediction proposal matches the actual character at the input position in the log data of
the evaluation dataset. That is to say, at each input position in a mathematical formula
in the evaluation dataset, we acquire prediction proposals using N-1 recent inputs
extracted from the log data. We regard the character at each input position in the log
data as a correct character and examine which prediction proposal corresponds to the
correct character. We calculate prediction accuracy as a ratio of the input position
where the top k candidates of the prediction proposals include the correct character in
the log data to the entire input positions. We use the top 10 candidates for evaluation.
This calculation is done for all input positions for all formulas in the test dataset.

 Predictive Input Interface of Mathematical Formulas 391

π(1), =(1), f(1), 0(2), ∞(2), frac(1), …

Predict

π(1), =(1), f(1), 0(2), ∞(2), frac(1), …

Predict

π(1), =(1), f(1), 0(2), ∞(2), frac(1), …

Predict

Fig. 2. Method for calculating prediction accuracy

6.2 Baseline Method

The following prediction methods are compared with our proposed prediction
method. We consider these prediction methods as baselines.

- Prediction using recent inputs (Recent): This method considers the character
existing at the k-th former position in the input log as a prediction proposal ranking at
k-th order. It outputs prediction proposals to k=10. When k<10 at the current input, it
outputs prediction proposals within the k-th rank.

- Prediction using recent inputs and their frequencies (Rct & Frq): This method
orders the prediction proposals output by the recent input method described above
according to their frequencies. The frequency of each candidate is calculated by
counting its occurrences in the formula that the user is currently inputting.

- Unigram (N=1): This method makes a prediction based on the N-gram model
(N=1). The prediction proposals become the top-k characters according to the fre-
quencies in the whole dataset. It always outputs the same prediction proposals.

- Unigram (N=1) + Recent input method (Rct & N=1): This method is a hybrid me-
thod of unigram model and the recent input method. It calculates the appearance
probability for all the characters using unigram model. For characters which exist in
the former k characters in the log data of math input, it calculates the probability that
a character at the j-th rank in the recent input method becomes a correct character (the
prediction accuracy of the recent input method in Table 1 which can be calculated in
advance). It adds the both probabilities and uses the added values for ordering the
characters.

6.3 Comparison of Our Proposed Method and Baseline Methods

We show that our proposed prediction method achieves better prediction accuracy
than the baseline methods. We examine our hierarchical N-gram model (N=2, 3) and
their smoothing methods (hereinafter, “N-gram model (N=2, Smoothing(Smt))” and
“N-gram model (N=3, Smoothing(Smt))”. The implementation becomes difficult
when building an N-gram model with N = 4 and higher because it requires vast mem-
ory capacity. The prediction accuracy is calculated using the mathematical formulas

392 Y. Hijikata, K. Horie, and S. Nishida

in the evaluation dataset. The results are presented in Table 1. Bold values represent
the best prediction accuracy among the prediction methods, which is true also for the
latter table. As the results show, the proposed method (N=3 with smoothing) appar-
ently achieves the highest accuracy. Its accuracy becomes about 89% when the num-
ber of prediction proposals to show to the user is limited to the top five ranking. Its
accuracy becomes about 95% when the number of prediction proposals to show to the
user is limited to the top ten ranking.

We compared our proposed method (N=3) and another proposed method (N=2).
When N=3, the prediction accuracies of the top three ranking and the smaller rankings
(k=1,2) become higher than when N=2. The prediction accuracies of the larger rank-
ings (the top four ranking and the larger rankings (5,6, ,10k = )) become worse

because of the increase of the N-gram pairs in the learning dataset. However, when
N=2, the prediction accuracies of the larger rankings become higher than when N=3.
However, the prediction accuracies of the top three ranking and the smaller rankings
become worse. The method can use only the latest input when N=2. Therefore, the
prediction accuracies of the smaller rankings become worse than N=3. Regarding
the result of N=3 with smoothing, the prediction accuracies are high both in the
smaller rankings and in the larger rankings. It is apparent that the smoothing treatment
compensates the above shortcomings by linear interpolation between the trigram and
bigram.

Finally, we provide some insight into the results of the baseline methods. The pre-
diction accuracy of the top five ranking is about 41% in the recent input method. Im-
provement of the precision is not apparent after the top five ranking. Therefore, cha-
racters that are repeated in one formula are limited to five kinds and fewer. Compared
to the recent input method, in the recent and frequent input method, the accuracies
become higher in the larger rankings. However, the degree of improvement is not
great. Although unigram (N=1) always outputs the same prediction proposals, it
achieves nearly 80% of accuracy in the top ten ranking. However, the accuracies in
the smaller rankings are worse than those achieved using our proposed method. When
combining unigram and the recent input method, the accuracies become better in the
top three ranking and the larger rankings. However, the accuracies of the top one
ranking become worse.

Table 1. Probability of the correct charcter appearing in the top k candidates

k=1 2 3 4 5 6 7 8 9 10
Recent 0.154 0.286 0.353 0.393 0.410 0.416 0.416 0.416 0.416 0.416

Rct & Frq 0.181 0.295 0.359 0.394 0.411 0.415 0.416 0.416 0.416 0.416
N=1 0.287 0.496 0.571 0.595 0.638 0.681 0.702 0.728 0.758 0.793

Rct &N=1 0.242 0.498 0.614 0.668 0.710 0.736 0.787 0.810 0.826 0.844
N=2 0.546 0.703 0.778 0.826 0.856 0.880 0.898 0.912 0.925 0.935
N=3 0.627 0.730 0.780 0.806 0.819 0.826 0.833 0.839 0.843 0.845

N=2, Smt 0.541 0.689 0.758 0.798 0.838 0.873 0.899 0.916 0.930 0.940
N=3, Smt 0.657 0.770 0.833 0.844 0.888 0.907 0.921 0.934 0.945 0.954

 Predictive Input Interface of Mathematical Formulas 393

6.4 Effectiveness of Hierarchical N-gram

We validate the effectiveness of introducing hierarchical information to an N-gram
for predicting the math input. We compare the case which introduces hierarchical
information to the model and the case which does not introduce hierarchical informa-
tion to the model. The comparison is made for N-gram model (N=3, smoothing) that
achieves the best accuracy in the previous subsection.

Hierarchical information works well for a case in which the user inputs characters
at a shallower level after inputting characters at a deep level. We examine the predic-
tion accuracy for this case. Those cases cover about 15% of input positions in our
dataset. Table 2 shows results for those cases. They reveal that we can increase the
prediction accuracy using the hierarchical information. It might decrease the overall
usability if the prediction accuracy decreases for some input conditions. We infer that
incorporating hierarchical information into the model is effective for predictive entry.

6.5 Effectiveness for Adding the Personal Log Data

This subsection validates the effectiveness for adding the target user's log data to the
learning data. This might deal with the inconsistency problem of the input order
among users. 400 log data are always used as learning data in this evaluation. One
user's 500 input logs are divided in to five sets, each of which has 100 input logs.
Each set is used as test data in turn. At first, 400 input logs consist of those of the
other two users. As we explained, one formula has three user’s input logs. One user is
randomly selected from the other two users. The selected user’s log is used here. We
increase the ratio of the target user's log data to the all log data in the learning data set
from 0% to 25, 50, 75, 100% and calculate the prediction accuracy. Note that we do
not add the target user's log data to the original 400 learning data but replace the log
data for the same formula in the original learning data set. The number of logs in the
learning data stays constant. This eliminates the influence of the increase of the learn-
ing data to the prediction accuracy. Six users' logs are used for this evaluation.

The average of the six users' prediction accuracies are presented in Table 3. The re-
sults show that the prediction accuracy increases a little when the ratio of the personal
logs increases. The improvement is not so large. However, we can also say that our
prediction method achieves accurate prediction even if it does not use the target user's
personal logs. It is expected that our method improves the prediction accuracy when
many log data are used as learning data even if they are other users' logs.

Table 2. Probability of the correct character appearing in the top k candidates :comparing the
case with hierarchical information(with) and that without hierarchical information(w/o)

 k=1 2 3 4 5 6 7 8 9 10
with 0.603 0.712 0.790 0.816 0.845 0.872 0.889 0.915 0.928 0.940
w/o 0.507 0.631 0.723 0.755 0.789 0.823 0.844 0.865 0.896 0.905

394 Y. Hijikata, K. Horie, and S. Nishida

Table 3. Probability of the correct character appearing in the top k candidates :changing a ratio
of log data inputted by a certain user in the learning dataset

 k=1 2 3 4 5 6 7 8 9 10
0% 0.477 0.596 0.647 0.690 0.729 0.772 0.793 0.815 0.834 0.844
25% 0.476 0.597 0.647 0.688 0.728 0.772 0.794 0.818 0.832 0.844
50% 0.478 0.597 0.648 0.688 0.728 0.775 0.797 0.822 0.837 0.849
75% 0.482 0.600 0.650 0.690 0.733 0.778 0.800 0.820 0.839 0.851

100% 0.484 0.600 0.653 0.695 0.738 0.779 0.800 0.820 0.842 0.853

7 Evaluation of Usability

The previous section showed that our proposed method outperforms other prediction
methods in prediction accuracy. However, that fact does not mean that our proposed
method helps users to input mathematical formulas. The objective of this section is to
show that our interface of predictive math entry (an input interface incorporating our
proposed prediction method) helps users' actual inputs by conducting user evaluation
according to the interface's usability.

7.1 Experimental Condition

The evaluation of usability is accomplished according to quantitative indices and
qualitative indices. The number of times of switching between a keyboard and a
mouse (hereinafter, “#switching”), input time and the number of incorrect inputs (he-
reinafter, “#incorrect”) are used as quantitative indices. Questionnaires related to the
usability of the interface, comprising multiple-choice questions and free description,
were used as qualitative indices. In this experiment, 12 graduate and undergraduate
students participated. We asked them about their experiences of inputting mathemati-
cal formulas on PCs. All users answered that they had some experiences on inputting
mathematical formulas on PCs. They answered that they had used general formula
editors or TeX. Among the participants, three users were good at inputting formulas
using TeX and were able to input most formulas without seeing the reference.

7.2 Evaluation on the Differences among Interfaces

Experimental Method
This subsection shows the effectiveness of our interface of predictive math entry. Our
interface was compared to a general formula editor and an input interface using TeX.
Our interface of predictive math entry used in the experiment is the interface depicted
in Figure 1. We eliminated the function of our predictive entry from the above inter-
face. That is used as a general formula editor. We originally implemented an input
interface using TeX on JavaScript. The screen shot is depicted in Figure 3. A user

 Predictive Input Interface of Mathematical Formulas 395

inputs mathematical formulas using TeX command in its text area. When the user
clicks the compile button, the system outputs the compiled formulas with rendering.
This interface does not comply with WYSIWYG.

The users input 60 formulas (20 formulas using each interface). The number of
characters in each formula is set within some range. These formulas are selected from
a textbook of mathematical analysis [11]. We carefully selected formulas different
from the formulas in the learning dataset. All the 3,000 formulas used in evaluation of
prediction accuracy are used as the learning data for our interface. The quantitative
indices are measured in each input formula. After inputting 60 formulas, users ans-
wered the questionnaires for qualitative evaluation. The question items are shown in
the 1-st column of Table 4. Q1 and Q3 are provided to ascertain which interface the
users can use to input formulas with a good level of comfort. We set Q2 to find the
time the user felt for inputting formulas. The actual time might differ from their sen-
sory time. Q4 is provided to elicit how fast the user can learn the input method in each
interface. Q5 is provided to find out which interface the user prefers with all evalua-
tion viewpoints considered.

Text area for inputting a Tex command

Compiled Tex command

Fig. 3. Input interface using TeX

Results on Quantitative Indices
The results related to quantitative indices are presented in Table 5. The number of
times necessary for key inputs and those of mouse clicks (hereinafter, #keyinputs and
#clicks) are also presented in Table 5. Furthermore, we examined whether a statisti-
cally significant difference exists among the interface on these indices using a Student
t-test. The results are presented in Table 6. In Tables 5 and 6, “ours” means our inter-
face with predictive math entry, “w/o prediction” means the input interface without
predictive math entry and “TeX” means the input interface using TeX. We confirmed
the statistically-significant difference among interfaces in all indices except #incorrect
between our interface and that without predictive entry.

The results showed on input time, it is apparent that our interface achieves the
shortest input time. Input time is an important index to show that the user can input
formulas smoothly. When comparing our interface and the interface without

396 Y. Hijikata, K. Horie, and S. Nishida

predictive entry, it is apparent that our interface decreases the #switching that is re-
garded as a reason that inputting mathematical formulas is bothersome. The reduction
rate is about 89.1%. In the TeX interface, #incorrect becomes the three times that of
the proposed interface and the interface without predictive entry. From these results, it
is apparent that the incorrect inputs decrease when users can see the input formulas
immediately after inputting characters. No significant difference was found between
our proposed interface and the input interface without predictive math entry. Howev-
er, the value of #incorrect is lower in the proposed method than the interface without
predictive entry. A clear difference might be found if we increase the number of users
in the experiment. #keyinputs is higher in the proposed method than the interface
without predictive entry because users input characters by selecting the prediction
proposal with a keyboard and move the cursor with cursor key.

Results on Qualitative Indices
The results of questionnaires for qualitative evaluation are presented in Table 4. The
value for each item is the number of users who selected the item. Values shown in the
parentheses are the numbers of users who can input mathematical formulas without
seeing any references (hereinafter “TeX users”). Our interface achieves the best eval-
uation for all questionnaire items (Q1 - Q5). Especially for Q3, all users answered that
they can input formulas most intuitively using our interface. In our interface, users
can see the input formulas right after they input each character. Our interface also
provides the prediction proposals that the users want to input. These characteristics
engender the users' high evaluations to our interface. When we checked users' free
descriptions, many users gave the opinion that switching a keyboard and a mouse
took a burden in inputting mathematical formulas. This result supports our proposed
interface that decreases the mouse input using the predictive entry.

However, some users supported the TeX interface in answers to the questionnaires.
They gave the opinion that they are comfortable with the interface, and that they are
used to it because they usually use TeX for inputting formulas. Actually, they were
able to input formulas smoothly when using the TeX interface in the experiment. In
the TeX interface, users can input formulas only by a keyboard when they learn the
TeX command. Therefore, users who learn the TeX command tend to assign positive
opinions to the input interface using TeX.

Table 4. Results of questionnaires for finding differences between each interfaces (The value
for each item is the number of users who selected the item. The values shown in parentheses are
the numbers of users who can input mathematical formulas without seeing any references).

 ours w/o
prediction

TeX

Q1. By which interface could you input the most smoothly? 10(2) 0 2(1)
Q2. By which interface could you input the most quickly? 10(2) 0 2(1)
Q3. By which interface could you input the most intuitively? 12(3) 0 0
Q4. Which interface could you get familiar with the most quickly? 11(3) 0 1
Q5. Which interface do you prefer most? 9(1) 0 3(2)

 Predictive Input Interface of Mathematical Formulas 397

Table 5. Results of the experiment for finding differences between interfaces

 ours w/o prediction TeX
#clicks 1.69 13.2 0
#keyinputs 86.8 52.2 121
#switching 1.79 16.5 0
input time 66.0 74.0 89.6
#incorrect 1.38 1.57 4.43

Table 6. Results of t-test for the experiment for finding differences between interfaces

 Ours vs. w/o prediction Ours vs. TeX w/o prediction vs. TeX
#switching *** *** ***
input time *** *** ***
#incorrect *** ***

*** : p<0.01

7.3 Evaluation on the Differences in Prediction Accuracy

Experimental Method
This subsection presents results of an examination of the influence of the differences
in prediction accuracy on usability. Prediction methods of three types were selected
considering the difference in prediction accuracy. The N-gram model (N=3, smooth-
ing) was selected as a method with high prediction accuracy. The recent input and
unigram method and the recent input method were selected as a method with medium
prediction accuracy and a method with low prediction accuracy, respectively. Herei-
nafter, we designate these methods as “high-accuracy method (high)”, “medium-
accuracy method (medium)”, and “low-accuracy method (low)”. We conducted a user
experiment using our input interface depicted in Figure 1. We changed the prediction
method in this interface for the experiment.

The experimental method is the same as that used in the evaluation on the differ-
ences among interfaces. Only question items for the qualitative evaluation differ from
those used in the previous evaluation. Table 7 presents the question items. Q3 is pro-
vided to know that the users noticed the difference in the prediction accuracy. Q1, Q2,
and Q4 are the same questions as those used in the prior evaluation.

Table 7. Results of questionnaires for finding differences between different prediction methods

 high medium low

Q1. By which interface could you input the most smoothly? 11 0 1
Q2. By which interface could you input the most quickly? 12 0 0
Q3. Which interface’s prediction did you feel the most accurately? 11 0 1
Q4. Which interface do you prefer most? 12 0 0

398 Y. Hijikata, K. Horie, and S. Nishida

Table 8. Results of the experiment for finding differences between different prediction methods

 high medium Low
#clicks 1.32 4.00 6.99
#keyinputs 87.5 96.3 73.4
#switching 1.46 4.20 8.70
input time 54.3 62.7 61.9
#incorrect 1.21 1.43 1.53

Table 9. Results of t-test for the experiment for finding differences between different prediction
methods

 high vs. medium high vs. low medium vs. low
#switching *** *** ***
input time *** ***
#incorrect ** *

*** : p<0.01, ** : p<0.05, * :p< 0.1

Results on Quantitative Indices
Table 8 presents the results on quantitative evaluation. #keyinputs and #clicks are also
shown in Table 8. We conducted Student t-test to assess differences among the pre-
diction methods. The results are presented in Table 9. We confirmed statistically sig-
nificant difference among the methods in all indices except input time and #incorrect
between the medium-accuracy method and the low-accuracy method. When particu-
larly addressing #switching in Table 8, #switching decreases when the prediction
accuracy becomes high. #incorrect decreases in the high-accuracy method compared
to the other methods. The input time becomes the shortest in the high-accuracy me-
thod. From these results, it is apparent that prediction accuracy influences the usabili-
ty for inputting formulas.

It is particularly interesting that the input time becomes shorter in the low-accuracy
method than in the medium-accuracy method. The reason for this result is the follow-
ing. The low-accuracy method (recent input method) shows only those characters
which the user has input before as prediction proposals. In this case, the user can ex-
pect what characters are given as prediction proposals while inputting characters. We
think that users use predictive entry by considering what characters are given as pre-
diction proposals next. In fact, when we observed the users' input activities when they
used the N-gram model (N=3, smoothing), we found that some users moved the input
cursor to the predictive proposal display before checking what predictive proposals
are shown there. In N-gram model (N=3, smoothing), the users input formulas under
the expectation in which their target character exists in the higher rank in the predic-
tive proposal list because the prediction accuracy is highly sufficient. Actually, they
input formulas very smoothly by forecasting the prediction results. With the recent
input and unigram method, the users had difficulty forecasting the next prediction
proposals because unigram does not achieve the high-accuracy prediction and the

 Predictive Input Interface of Mathematical Formulas 399

prediction proposals change according to the most recent inputs. Based on this result,
it is important for users to forecast the next prediction proposals for predictive entry.

Results on Qualitative Indices
The results of questionnaires for qualitative evaluation are presented in Table 7. Most
users selected the high-accuracy method as the best method for all question items.
This result corresponds to the results on the quantitative evaluation. For Q1 and Q3,
one user selected the low-accuracy method as the best method. The reason is related
to the user's input activities explained in the previous subsection. The user preferred
the prediction that is easily forecasted before shifting the input cursor to the prediction
proposal display.

8 Conclusions

As described in this paper, we proposed an input method that predicts the next input
characters for mathematical formulas. N-gram model is applied to our method, which
is a popular probabilistic language model. We incorporated hierarchical information
in mathematical formulas into an N-gram model. The calculated probability was used
for predictive math entry. The proposed method is evaluated using prediction accura-
cy. Results showed that the prediction accuracy of our method is higher than that of
other baseline methods. The proposed input interface was evaluated using a user ex-
periment. Results showed that our interface outperforms the input method without
predictive entry and the input method using Tex in the usability. We expect that our
interface for predictive math entry shall contribute to the spread of math contents. The
ease with which users can forecast the prediction proposals is important for usability.
We will examine the relation between user predictability and usability for the predic-
tive math entry.

References

1. Copestake, A.: Augmented and alternative nlp techniques for augmentative and alternative
communication. In: Proceedings of the ACL Workshop on Natural Language Processing
for Communication Aids, pp. 37–42 (1997)

2. Darragh, J., Witten, H., James, L.: The reactive keyboard: A predictive typing aid. IEEE
Computer 23, 41–49 (1990)

3. Garay-Vitoria, N., Abascal, J.: Text prediction systems: A survey. Univers. Access Inf.
Soc. 4(3), 188–203 (2006)

4. Hashimoto, H., Hijikata, Y., Nishida, S.: Incorporating breadth first search for indexing
mathml objects. In: IEEE International Conference on Systems, Man and Cybernetics,
SMC 2008, pp. 3519–3523 (2008)

5. Hunnicutt, S.: Input and output alternative in word prediction. In: STL/QPRS, pp. 15–29
(1987)

6. King, M.T., Grover, D.L., Kushler, C.A., Grunbock, C.A.: Reduced keyboard disambi-
guating system patent (1998)

400 Y. Hijikata, K. Horie, and S. Nishida

7. Kita, K.: Gengo to Keisan – Kakuritsuteki Gengo Model (Language and Computation -
Probabilistic Language Model). University of Tokyo Press, Tokyo (1999)

8. LaViola Jr., J.J., Zeleznik, R.C.: Mathpad2: a system for the creation and exploration of
mathematical sketches. ACM Trans. Graph. 23(3), 432–440 (2004)

9. Mackenzie, I.S., Felzer, T.: Sak: Scanning ambiguous keyboard for efficient one-key text
entry. ACM Trans. Comput.-Hum. Interact. 17(3), 11:1–11:39 (2010)

10. Masui, T.: POBox: An efficient text input method for handheld and ubiquitous computers.
In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 289–300. Springer, Heidel-
berg (1999)

11. Miyake, T.: Introduction of Derivation and Integration. Baihukan, Tokyo, Japan (1992)
12. O’Connell, T., Li, C., Miller, T.S., Zeleznik, R.C., LaViola, J. J.J.: A usability evaluation

of algosketch: a pen-based application for mathematics. In: Proceedings of the 6th Euro-
graphics Symposium on Sketch-Based Interfaces and Modeling, SBIM 2009, pp. 149–157.
ACM, New York (2009)

13. Swiffin, A., Arnott, J., Pickering, J., Newell, A.: Adaptive and predictive techniques in a
communication prosthesis. In: Augmentative Aleternative Communication, pp. 181–191
(1998)

14. Vertanen, K., Kristensson, P.O.: The imagination of crowds: conversational aac language
modeling using crowdsourcing and large data sources. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing, EMNLP 2011, pp. 700–711.
Association for Computational Linguistics, Stroudsburg (2011)

15. Wandmacher, T., Antoine, J.-Y., Poirier, F.: Sibylle: a system for alternative communica-
tion adapting to the context and its user. In: Proceedings of the 9th International ACM
SIGACCESS Conference on Computers and Accessibility, Assets 2007, pp. 203–210.
ACM, New York (2007)

16. Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expressions. Interna-
tional Journal on Document Analysis and Recognition (IJDAR), 1–27 (2011)

17. Zeleznik, R., Bragdon, A., Adeputra, F., Ko, H.-S.: Hands-on math: a page-based multi-
touch and pen desktop for technical work and problem solving. In: Proceedings of the
23nd Annual ACM Symposium on User Interface Software and Technology, UIST 2010,
pp. 17–26. ACM, New York (2010)

18. Zweig, G., Platt, J.C., Meek, C., Burges, C.J.C., Yessenalina, A., Liu, Q.: Computational
approaches to sentence completion. In: ACL (1), pp. 601–610. The Association for Com-
puter Linguistics (2012)

	Predictive Input Interface of Mathematical Formulas
	1 Introduction
	2 Related Works
	3 Probabilistic Language Model
	3.1 Introduction of a Probabilistic Language Model
	3.2 N-gram Model

	4 Prediction Method of Math Input
	4.1 Problems in Modeling Math Input
	4.2 Hierarchical N-gram Model
	4.3 Prediction Using Hierarchical N-gram Model
	4.4 Smoothing

	5 Interface of Predictive Math Entry
	6 Evaluation of Prediction Accuracy
	6.1 Evaluation Data Set
	6.2 Baseline Method
	6.3 Comparison of Our Proposed Method and Baseline Methods
	6.4 Effectiveness of Hierarchical N-gram
	6.5 Effectiveness for Adding the Personal Log Data

	7 Evaluation of Usability
	7.1 Experimental Condition
	7.2 Evaluation on the Differences among Interfaces
	7.3 Evaluation on the Differences in Prediction Accuracy

	8 Conclusions
	References

