
Chapter 9

The IoT ARM Reference Manual

Martin Bauer, Nicola Bui, Christine Jardak, and Andreas Nettsträter

Whereas we explained the process of creating an IoT architecture with the support

of the IoT ARM in Chap. 6 [Process Chapter] and gave an example how a concrete

architecture can be defined based on different models and views of the IoT ARM in

Chap. 11 [Concrete Architecture Chapter], we now provide reference manuals with

guidelines how to use the IoT Domain Model, the IoT Information Model, the IoT

Communication Model and the Perspectives when creating a concrete architecture.

Starting with the IoT Domain Model.

9.1 Usage of the IoT Domain Model

This section is intended for architects who want to apply the IoT Domain Model on

a specific use case. We discuss typical instantiations of the IoT Domain Model.

These model cases can be used as basic patterns when doing concrete modelling.

M. Bauer (*)

NEC Laboratories Europe, Software & Services Research Division, NEC Europe Ltd,

Kurfürsten-Anlage 36, 69115 Heidelberg, Germany

e-mail: Martin.Bauer@neclab.eu; www.nw.neclab.eu

N. Bui

Consorzio Ferrara Ricerche, Via Savonarola 9, 44122 Ferrara, Italy

e-mail: buincl@unife.it; www.unife.it

C. Jardak

Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany

e-mail: christine.jardak@siemens.com; www.siemens.com

A. Nettsträter

Fraunhofer Institute for Material Flow and Logistics IML, Joseph-von-Fraunhofer Str. 2-4,

44227 Dortmund, Germany

e-mail: andreas.nettstraetter@iml.fraunhofer.de; www.iml.fraunhofer.de

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_9,
© The Author(s) 2013

213

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_11
mailto:Martin.Bauer@neclab.eu
mailto:www.nw.neclab.eu
mailto:buincl@unife.it
mailto:www.unife.it
mailto:christine.jardak@siemens.com
mailto:www.siemens.com
mailto:andreas.nettstraetter@iml.fraunhofer.de
mailto:www.iml.fraunhofer.de


9.1.1 Identification of Main Concept Instances

Similar to the identification of stakeholders and actors in standard software engi-

neering practices, the IoT Domain Model is used in a first step of the architectural

design process in order to:

1. Identify Physical Entities and related Virtual Entities;

2. Identify Resources (at least from a functionality perspective);

3. Identify Devices (or device options);

4. Identify Services;

5. Identify Users.

The identification of Resources and Devices is used together with the IoT

Communication Model to define the communication paradigms and how these

devices and resources interact. This is comparable to interaction models in standard

software engineering practices. The Services to be used and where they should be

deployed are analysed and finally the Users of these services are identified.

9.1.2 Modelling of Non-IoT-Specific Aspects

It is important to understand that the IoT Domain Model is not attempting to be a

domain model for all types of ICT systems. Rather, it focuses on the IoT-specific

parts. When modelling a complete system, many of the aspects to be covered are

not IoT-specific. For these aspects, the IoT Domain Model will provide only

little help.

For example, the Service concept in the Domain Model is primarily focused on

modelling IoT Services that directly or indirectly expose Resources; however, the

Service concept also can be used to provide a link to general services in the ICT

domain.

9.1.3 Identifiers and Addresses

Identifiers and addresses are logically two different concepts, which unfortunately

however are often confused in practice, in particular in the discussions about IoT

(Haller 2010). While in some cases the address might be used in the role of an

identifier, it is important to distinguish between these terms.

Identifiers are used to identify something, for example a Physical Entity. In this

case, the identifier is an attribute of the related Virtual Entity. Examples include URIs

(Uniform Resource Identifiers as used on theWeb, e.g. foo://example.com/building1/

room3), EPCs (Electronic Product Codes, e.g. 01.23G3D00.8886A3.365000A03)

214 M. Bauer et al.



(EPC Tag Data Standard) and uIDs (uCode Identifiers,1

e.g. 0123456789ABCDEF0123456789ABCDEF).

Addresses, on the other hand, are means for locating, accessing or communica-

tion with something, e.g., a service or a device. Addresses manifest themselves as

attributes of the corresponding concepts, i.e., attributes of a service or a device.

Examples include IPv6 or MAC addresses.

As mentioned above, there are cases in which it can make sense to use addresses

as identifiers, e.g. when the address uniquely identifies the Physical Entity. For

example, a street address is good identifier for a building, but not for a human being.

An e-mail address on the other hand provides a unique way of identifying people.

Modelling 
Option 1

An address can be used as an identifier for a Physical En-
tity (and the corresponding Virtual Entity) if it uniquely 
identifies it.

Overall, identification and addressing are very important aspects of IoT systems.

When designing an IoT system the different options should be evaluated and

decided on early in the process, but as the decision depends on various

requirements, assumptions and even technology choices, we cannot give specific

recommendation on the reference model level.

9.1.4 Granularity of Concepts

In the IoT Domain Model, concepts like Device, Resource, and User have

specialisations. Pertinent examples for Devices are Sensors and Actuators. When

modelling a concrete scenario, one can use either the general concepts or their

specialisations; the IoT Domain Model does not prescribe anything. For example,

instead of using a concrete concept like Sensor it is also possible to use a more

general concept like Device. However, the specialisations are more precise and are

therefore preferable where they apply. In other words, if at the time of modelling it

is not (yet) clear what type of device is used, then just use Device.

Model as precisely as possible based on the domain mod-
el concepts at the time of modelling. Use the more concrete, 
more fine-granular concepts and instances whenever possi-
ble, but only to the granularity that appears reasonable for
the given purpose. 

Modelling 
Rule 1

1 http://www.uidcenter.org/spec#UID-00010.

9 The IoT ARM Reference Manual 215

http://www.uidcenter.org/spec#UID-00010


9.1.5 Common Patterns

9.1.5.1 Augmented Entities

As described in Sect. 7.3.2.2, Augmented Entities are the composition of a Physical

Entity with its related Virtual Entity. In many cases though, the Augmented Entity

is of little practical relevance and will have no concrete instantiation, as the

example in Fig. 9.1 shows. In this figure, a typical pattern is shown for how Physical

Entities are mapped to data base records: In a data base of assets (a Network

Resource in terms of the IoT Domain Model), a data base record (Virtual Entity,

and also a Passive Digital Artefact) is stored for every building (Physical Entity).

Modelling 
Option 2

The Virtual Entity for a given Physical Entity can be a 
data base record stored in a Network Resource.

A different case is truly smart objects, i.e., intelligent devices that have embed-

ded logic seemingly able to act autonomously. In this case, the Augmented Entity is

the smart object itself, and the associated Virtual Entity is an Active Digital

Artefact, namely, the embedded logic (e.g., the software agent).

Figure 9.2 shows an example of a smart object: an Unmanned Aerial Vehicle
(UAV). The body of the UAV can be considered the Physical Entity, while the

Building 1 :Physical
Entity

Building 1 DB
Record :Virtual

Entity

IoT Domain Model::
Physical Entity

Domain Model::
Virtual Entity

Domain Model::
Network Resource

Asset DB :Network
Resource

IoT Domain Model::
Augmented Entity

«is instance of»

is stored in relates to

«is instance of»

1

1

is associated with

1..*

relates to

1

«is instance of»

Fig. 9.1 Data-base pattern as an example for an augmented entity

216 M. Bauer et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_7


UAV controller is the related Virtual Entity. Together they form the Augmented

Entity, the smart object.

Modelling 
Rule 2

When modelling an autonomous object, an Augmented 
Entity is used, consisting of a device (Physical Entity) and 
its software controller (Virtual Entity).

Finally, the question often arises if something should be modelled as a Physical

Entity or not. While possibly every real-world object could be modelled as a

Physical Entity, this does not make sense. Not every sand corn needs to be

represented in an IoT system. Hence we can deduce:

IoT Domain Model::
Augmented Entity

IoT Domain Model::
Physical Entity

Active Digital Artefact
Digital Artefact

IoT Domain Model::
Virtual Entity

UAV Controller :
Virtual Entity

Unmanned Aerial
Vehicle :Augmented

Entity

UAV Body :Physical
Entity

1

1..*

1

1

1..*

relates to

1

controls

«is instance of»
«is instance of»

«is instance of»

Fig. 9.2 Smart-object pattern. UAV: unmanned aerial vehicle

9 The IoT ARM Reference Manual 217



Modelling 
Rule 3

Only model something as a Physical Entity if it is rele-
vant in the IoT system so that the representing Virtual Entity
is also modelled.

9.1.5.2 Multiple Virtual Entities

In order to understand the case of multiple Virtual Entities, we take the example of a

customer buying a new car. The customer visits the exhibition of an automobile

manufacturing company and buys a new car. He then registers it under his name at

the department of motor vehicles. In order to protect himself from unexpected

financial expenses resulting from traffic collisions, he decides to buy a car insur-

ance. In this small scenario we notice that the same car, which is the Physical

Entity, is registered at three stakeholders: the manufacturer, the vehicle-registration

department, and the insurance company. As depicted in Fig. 9.3 each of the three

stakeholders maintains a unique entry in its database identifying the car. These

entries are multiple Virtual Entities representing the same car.

In practice, the number of Virtual Entities depends on the systems and domains,

where the Physical Entity is represented and of course also which stakeholders are

involved. We note that the characteristics of the Physical Entity change and,

therefore, many of the Virtual Entities need to be maintained and kept up-to-date.

Notice that the IoT Domain Model does not explicitly spell out any requirements on

the maintenance of single and multiple Virtual Entities.

9.1.5.3 Smart Phones and Other Mobile User Devices

Smart phones are a very common element in many IoT-related scenarios. They are

on the one hand Devices containing a multitude of sensors, but they also host apps

(Active Digital Artefacts), Services, and Resources. Figure 9.4 shows this in

exemplary fashion: John’s smart phone is used as a Device to track the location

of John, its owner. The GPS sensor is embedded in the phone itself. It is thus

embedded sensor hardware. Its data is made accessible through the related

On-Device Resource and the location service that exposes it. An app can be used

to display the location information.

Note that in this example (see Fig. 9.4), both the service as well as the applica-

tion are shown to be hosted on the phone itself. While this depicts a common case,

other instantiations are possible.

Instead of a smart phone other mobile user devices could be used, e.g. tablets or

PDAs. The general modelling would be the same.

218 M. Bauer et al.



9.1.5.4 IoT Interactions

The IoT paradigm enables mediated interactions between Users and the physical

world. This complements the direct interactions in the physical world that are

Automobile manufacturer data base

Vehicle registration station data base

Insurance company data base

Manufacturing plant ...

Plate number Model Owner nameColor ...

Plate number Model Owner name Insurance type ...

Chassis numberVE

VE

VE

Manufacturing date

Fig. 9.3 Multiple virtual entities (data-base entries) for a single physical entity (car)

SmartPhone :Device Location Service :
Service

GPS Sensor :Sensor Location :On-Device 
Resource

Tracking App :Active
Digital Artefact

John :Physical Entity

contains
hosts exposes

hosts

relates to

useshosts

is attached to

has location information about

Fig. 9.4 Exemplary modelling of a smart phone that is used as tracking device

9 The IoT ARM Reference Manual 219



possible between Human Users and Physical Entities. It also enables the digital

world, i.e. Active Digital Artefacts, to interact with the physical world.

9.1.5.5 Simple Mediated Interactions

A common case is that a User needs to access a Resource exposed through a Service

in order to attain a given goal. Such goals may range from observing a Physical

Entity by using a Sensor, to modifying its state by leveraging an Actuator device.

We differentiate the following cases:

• Retrieving information: In this case a user would invoke a Service for retriev-

ing some information. There are different options for the Service to get this

information, which may be pull or push based. In case the Resource pushes the

information, the Service would cache the information and provide it on request

• Subscribing for information: In the subscription case, the User subscribes to

the Services and asynchronously receives notifications. After subscription, the

Resource (e.g., on a Device) will detect the events of interest according to the

specification provided by the user. The Service providing access to the Resource

will then forward the event to the interested User. In an alternative implementa-

tion, the Service is performing the event detection by processing all the raw data

from the Resource;

• Actuation: In the case, the User wants to control some aspect of the physical

world mediated through the IoT system, it would call an Acutation service. In

this case, the Service would interact with the Resource which would trigger the

Actuator to execute the actuation.

9.1.5.6 M2M Interaction

Machine-to-Machine (M2M) communication is a technological approach for

enabling meaningful information exchange between networked machines that

show a certain degree of smartness. The term machine is generally related to an

autonomous application while the smartness is related to the capability of

controlling its own behaviour and communicating. This reflects the capability of

making decisions on the basis of information retrieved from outside the system and

being able to receive and execute commands. This approach is very relevant to the

IoT and a specific definition of IoTMachine can be provided. In the terms of the IoT

Domain Model, we define an IoT Machine as a composition of:

• An Augmented Entity whose Virtual Entity component is an Active Digital

Artefact. In this way, it can start interactions (being a User, it can invoke

Services) and can control the behaviour of the machine;

220 M. Bauer et al.



• One or more Resources and the underlying Devices which are used by the

Active Digital Artefact to monitor/control the Physical Entity. Note that,

because Resources are internal functionalities and the Active Digital Artefact

is generally co-located on the same hardware, the interaction can happen even

without the use of Services;

• The Services that are used for exposing Resources.

The example shown in Fig. 9.5 shows how a car interacts with a road barrier in

order to speed up the passage through the barrier, i.e. that the barrier is removed as

early as possible to enable the passage of the car. The incoming car is modelled as

IoT Machine1, the automated barrier operator as IoT Machine2. The

Machine1 Controller, an instantiation of an Active-Digital-Artefact

Virtual-Entity, will access as a User (Active Digital Artefact can be Users) Ser-
vice2 and will require the activation of the barrier. Service2 provides access to

Functionality2 (Resource) related to Machine2 and thus, by accessing

Service2, the car can retrieve the information about the barrier status which is

needed in turn to decide whether it needs to slow down or can pass through without

danger.

As M2M is about the communication-based interaction between machines, it is

important to clarify that IoTMachines can also interact with non-IoTMachines. For

example, an IoT-Machine could need certain information provided by an autono-

mous web application, a non-IoT Machine, in order to make decisions.

However, as the controlling program of Machine1 is a User according to the

IoT Domain Model, it can also communicate with other Machines by calling

appropriate embedded Services on another Machine, as shown in a simplified

way in Fig. 9.6.

Object identification and tracking with RFID. The term “Internet of Things” was

originally coined by the MIT Auto-ID Centre around 1999 (Ashton 2009), the

precursor to what is now known as EPCglobal. EPCglobal is a standardization

organization set up for achieving the worldwide adoption of the Electronic Product
Code (EPC). It is based on RFID technology and the sharing of related information

over the Internet. Due to its importance, it is worthwhile to map one of the most

common scenarios of EPCglobal to the IoT Domain Model: the tracking of goods –

pallets, cases, etc. – throughout the supply chain, from the manufacturer via

distribution centres to the retail stores. A reverse mapping of EPCglobal onto the

ARM can be found in Sect. 12.9.

A first thing to note is that we often have a hierarchy of Physical Entities and the

related Virtual Entities. A large boxed pallet is identified by a shipping company as

PE5 with its corresponding Virtual Entity VE5. As depicted in Fig. 9.7, the large

boxed pallet contains multiple other cases that are identified as (PE1, VE1),
(PE2, VE2), (PE3, VE3), and (PE4, VE4).

We note that the granularity of identifying PEs contained in other PEs is not

defined by the IoT Domain Model, since it intimately depends on the application. In

this example, if the large box contains four boxes of similar goods, e.g., shoes, the

interest of the shipping company usually stops at identifying PE5 and thus tracking

9 The IoT ARM Reference Manual 221

http://dx.doi.org/10.1007/978-3-642-40403-0_12


Machine2Machine1

Augmented Entity
Smart Machine1

Physical Entity
Machine1 Body

Virtual Entity
Machine1 Controller

Device
Device1

Service
Service2 Virtual Entity

Machine2 
Controller

On-Device Resource
Functionality2

Device
Device2

Physical Entity
Machine2 Body

Augmented Entity
Smart Machine2

Digital Artefact
User

IoT Domain Model::
Active Digital Artefact

relates to accesses

is attached
to (monitors
/ acts on)

exposes

is associated
with (provides)

is associated
with

hosts

is attached
to (monitors
/ acts on)

relates
to

Fig. 9.5 IoT domain model instantiation for a M2M communication scenario

Fig. 9.6 M2M communication

Fig. 9.7 Shipping box containing multiple packets. The VE-to-PE mapping is exemplified by

paper tags

222 M. Bauer et al.



Lo
gi

st
ic

s 
M

an
ag

er
 :

H
um

an
 U

se
r

SC
M

 A
pp

lic
at

io
n 

:
A

ct
iv

e 
D

ig
ita

l
A

rt
ef

ac
t

Pa
lle

t :
Ph

ys
ic

al
En

tit
y

C
as

e 
:

Ph
ys

ic
al

En
tit

y

Pa
lle

tT
ag

 :
Ta

g

Pa
lle

t R
ec

or
d 

:
Vi

rt
ua

l E
nt

ity
C

as
e 

R
ec

or
d 

:
Vi

rt
ua

l E
nt

ity

C
as

e 
Ta

g 
:

Ta
g

W
ar

eh
ou

se
W

or
ke

r :
H

um
an

 U
se

r

EP
C

IS
 :

Se
rv

ic
e

R
FI

D
 R

ea
de

r :
Se

ns
or

R
FI

D
In

ve
nt

or
y 

:
O

n-
D

ev
ic

e
R

es
ou

rc
e

EP
C

C
ap

tu
rin

g
Se

rv
ic

e 
:

Se
rv

ic
e

EP
C

 D
at

a
B

as
e 

:
N

et
w

or
k

R
es

ou
rc

e

in
vo

ke
s 

(E
P

C
IS

ca
pt

ur
e 

in
te

rfa
ce

)

ho
st

s

re
ad

s
re

ad
s

ex
po

se
s

in
te

ra
ct

s 
w

ith
(m

ov
es

)

is
 a

ss
oc

ia
te

d
w

ith
id

en
tif

ie
s

ex
po

se
s

is
 a

ss
oc

ia
te

d 
w

ith
(is

 s
to

re
d 

in
)

us
es

re
la

te
s

to

re
fe

rs
to

is
 a

ss
oc

ia
te

d
w

ith
id

en
tif

ie
s

co
nt

ai
ns

us
es

(E
P

C
IS

qu
er

y
in

te
rfa

ce
)

re
la

te
s

to

Fig. 9.8 Domain modelling of a typical EPC-based RFID scenario (pallet containing cases)

9 The IoT ARM Reference Manual 223



it by using VE5. Now if each of the four boxes contains different goods, e.g., shoes,

hats, earrings, and bags, it might be of interest for the shipping company to

additionally identify the four boxes as PE1, PE2, PE3, and PE4. The aim behind

this higher granularity is to facilitate the process of sorting out the goods after

delivery by checking VE1, VE2, VE3, and VE4.
The result of the whole mapping of the RFID logistics scenario, for only the

pallet plus everything it contains, is depicted in Fig. 9.7.

In this example, the Virtual Entities take the form of database records (Fig. 9.8)

stored in a Network Resource, the EPC Database. This database is exposed for

querying and updating through the EPCIS service (EPC Information Service).

The logistics manager, a Human User, can use the SCM application in order to

view the status of the tracked items (pallets and cases). The SCM application is

invoking the EPCIS query interface in order to get the necessary data.

Both pallet and cases have RFID tags attached that identify them. A RFID reader

– a type of sensor – reads the EPCs on the tags and hosts a resource that makes the

RFID inventory data accessible. A special service, the EPC Capturing Service, is

exposing this resource and is updating the EPC Data Base by invoking the EPCIS

capture interface of the EPCIS service. The EPCIS capture interface and the EPCIS

query interface are standardized and defined by EPCglobal (EPC 1.0.13).

In principle other technologies for identification, e.g. visual ones like bar codes

could be used. In this case, there is no hardware Device of type Tag involved and

the Sensor would be a camera or barcode reader. The identifies relation (as in

the IoT Domain Model) would then be directly between the Sensor and the Physical

Entity. The other aspects would be modelled in the same way.

Finally note that also physical interactions with the pallet can take place: a

warehouse worker – a Human User – moves around the pallet.

9.1.6 Examples for IoT Domain Model Concepts

In this section we give examples on different concepts in the IoT Domain Model.

For each concept we discuss a practical example and, where applicable, we

highlight the dependency of the concept on other concepts and also provide some

general information.

9.1.6.1 User

A User interacts with a Physical Entity, physically or mediated through the IoT

system. In the case of a mediated interaction, a User invokes or subscribes to a

Service.

224 M. Bauer et al.



Application

– Example: AWSN installed in a wine cellar monitors environmental factors such

as temperature, humidity, and light intensity. These factors play an essential role

in defining the quality of the final wine product. Therefore, the winegrower has

an intelligent application running on his smart phone. The application allows

him to periodically visualize the status of the cellar. In this example, the

application is a user and the cellar is a Physical Entity.

– Note: An application is one kind of Active Digital Artefact.

Human User

– Example: The employee in a supermarket loads the fridge with meat instead of

cheese. Therefore, he regulates the temperature of the fridge accordingly. In this

example, the employee is a Human User and the fridge is a Physical Entity.

– Note: The case of multiple Human Users for one Physical Entity is possible as

well. We take the example of the safe in a bank. For security reasons, more than

one high-ranked employee is required to identify themselves simultaneously at

the safe in order to be able to open it. In this example the eligible employees are

Human Users and the safe is the Physical Entity.

9.1.6.2 Physical Entity

A Physical Entity is a discrete, identifiable part of the physical environment which

is of interest to the User for the completion of his goal. In the following different

kinds of Physical Entities are discussed.

Environment

– Example: An optical fog sensor measures the density of water particles in the air

that limit visibility. This sensor is used for traffic-control purposes, where it is

often installed on the side of roads for monitoring visibility impairment through

fog. The information about the fog is sent to a traffic management system where

it is analyzed. In this example the near surrounding above the road is the Physical

Entity.

Living Being

– Example: A WSN for agricultural monitoring. The network targets to report on

the growth of fruits. To this end growth monitors are deployed. They are

equipped with fruit-growth sensors as depicted in Fig. 9.9. In this example, the

fruits are Physical Entities that are living beings.

9 The IoT ARM Reference Manual 225



Structural Asset

– Example: Equipping bridges with electrochemical fatigue sensors that reveal

flaws in metal (Phares 2007). This works much the same way as an electrocar-

diogram tests the human heart. First, bridge inspectors identify parts of the

bridge that are more susceptible to cracks. Second, they equip these areas with

electrochemical fatigue sensors. Third, they apply a constant electrical current

that runs between the sensors and the bridge. By monitoring the amplitude of the

current passing through the metal, sensors can detect cracks. In this example, a

susceptible area of the bridge is a structural-asset Physical Entity.

9.1.6.3 Resource

Resources are software components that provide information about or enable the

actuation on Physical Entities. We explain two examples for Resources, one

illustrating an On-Device Resource and the other a Network Resource.

On-Device Resource

– Example: TinyOS is an event-based OS for embedded networked sensors (Levis

and Gay 2009). TinyOS provides predefined software components that manage

the access and control of i.e., local LEDs, radio, or sensors. In this example, the

software components are On-Device Resources.

Fig. 9.9 Growth fruit

sensor© 2010 Phyto-Sensor

Group

226 M. Bauer et al.



Network Resource

– Example: HBase2 is an open-source, distributed, column-oriented database.

HBase offers a set of functionalities that allow the management of distributed

information. In this example the HBase software libraries and components are

-Network Resources.

9.1.6.4 Service

A Service provides a well-defined and standardised interface, offering all necessary

functionalities for interacting with Physical Entities and related processes. Often it

exposes a functionality provided by a Resource to the overall IoT system.

Interacting Services

– Example: A system for home-patient monitoring. The system is composed of a

body sensor network (BSN) attached to the body of the patient. Bioelectric chips

monitor the status of the patient and require no direct involvement from a human

being. As depicted in Fig. 9.10, the intelligence of the system resides not only in

the hardware but also in three main services. First, the BSN monitoring service

that evaluates the readings of the bioelectric chips i.e., a blood pressure. Second,

the automatic service call, which alerts the relatives of the patient whenever his

situation deteriorates. Third, another automatic service call that alerts the ambu-

lance. The diagram in Fig. 9.10 shows the conditions to be fulfilled for one

service to invoke another service.

– Note: A service demanding high processing and storage capabilities can be

divided into multiple subservices running on different machines that invoke

each other. In comparison to the original service, each of these subservices

requires less storage and processing capabilities. Therefore, a trade-off exists

between the number of subservices and the power consumption of the hosting

machines. Distributed subservices induce an inter-communication overhead that

increases the power-consumption of the hosting machines. This trade-off should

be taken into consideration when dealing with low-power communicating

devices (Polastre et al. 2005).

Service Associated with a Virtual Entity

– Example: Services can be associated with Virtual Entities and these associations

are stored and can be discovered in the IoT system. The management of these

associations can be handled in a centralized database or in a highly distributed

fashion as in a peer-to-peer system, depending on the characteristics of the

underlying system.

2 http://hbase.apache.org/

9 The IoT ARM Reference Manual 227

http://hbase.apache.org/


Service Accessing a Resource

– Example: A service for monitoring air pollution. Sensor nodes are semi-

randomly distributed in a city and measure the percentage of CO in the air. A

remote server runs software that periodically queries the readings from the

sensor nodes, analyses the readings, and monitors the evolution of the air

pollution. In this example, the monitoring software is a service that accesses

multiple resources. The latter are the components and functions running on

sensor nodes, and these components allow operations such as reading from the

sensors.

9.1.6.5 Device

Devices are technical artefacts, i.e. hardware, for bridging the real world of Physical

Entities with the digital world of the Internet. Often a Device hosts Resources,

which represent the software counterpart.

Service: BSN monitoring

Automatic service: call family

No

Yes

Familiy
available?

No

Automatic service: call ambulance

Highblood
pressure?

Yes

Fig. 9.10 Interacting

services for a home-patient

monitoring scenario

228 M. Bauer et al.



Devices

– Example: Typical devices are sensors, like temperature, noise or light sensors,

but also more complex ones like cameras – or actuators, like switches, door

openers or more complex ones like air conditioning systems.

Hierarchical Devices

– Example: As depicted in Fig. 9.11, a Telos node contains three types of

integrated sensors (photodiode, humidity and temperature), several expansion

pins to mount external sensors, and three integrated LEDs (Polastre 2005). Two

views of the node exist: The node as a whole may be seen as a single device or it

can be seen as a composition of multiple sensors and actuators acting as

individual devices.

– Note: A device can be seen as a single unit as well as a composition of multiple

devices. This granularity of modulating a device is not specified in the IoT

Domain Model due to the fact that it is application dependent.

9.1.6.6 Deployment Configurations

Figure 9.12 shows a range of deployment configurations for resources, services, and

users. In Fig. 9.12 (a) resource, service, and the user (application) are running on the

same device. This is a configuration in which we have a powerful device, and the

interaction with the user is local. In Fig. 9.12 (b) the service of the user is running

somewhere else, e.g., in the cloud, and the interaction is thus not local. The API

used between the service client and the service, however, is the same. In Fig. 9.12

(c) the service is not running on the device, but in the cloud. This is a typical

configuration for a constrained device that may not be able to expose a user

interface across the network. For example, due to energy constraints or other

limiting factors, such a device may sleep most of the time and is therefore not

able to always handle user requests. The interface between the service and the

resource may be very specific and proprietary.

Network-based resources are not shown in Fig. 9.12, as they can be regarded as

being hidden behind cloud-based services.

Of course, in a real IoT system all these different configurations may be realized

at the same time and there could be interactions between users and services from the

different configurations.

9 The IoT ARM Reference Manual 229



9.1.7 Generating a Specific IoT Domain Model

As discussed in Sect. 6.3, the IoT Domain Model is an integral part of the IoT

architecting process. In the following we provide a six-step process that supports

the generation of use-case specific IoT Domain Models. In the following, we

illustrate the answers with examples from the recurring example that we introduced

in Sect. 4.2.

In order to proceed with the modelling of a system, its usage from the perspec-

tive of each User needs to be analysed. For each of the Users identified, the architect

needs to answer six simple questions, and create suitable instance diagrams from

the Domain Model based on the answers.

Q1: What does a User invoke or subscribe to?

A1: The answer determines the Service(s) that the user invokes or subscribes to –

In the recurring example the user subscribes to the alarm service (using an

Android app).

Q2: Which part of the environment does the User want to interact with?

A2: The answer determines the PE(s) – in the recurring example the user wants

to be kept informed about the status of the load carrier.

Q3: What is used to identify/monitor this PE in the physical world?

A3: The answer determines the Device(s) – in the recurring example, the load

carrier can be identified with an RFID, a humidity sensor and a temperature

sensor can monitor relevant state information.

Q4: What is used to identify the PE in the digital world?

A4: The answer determines the VE(s) – in the digital world the identifier

provided by the RFID can be used for the VE modelling the load carrier.

Fig. 9.11 Telos ultra-low

power wireless module ©
2008 University of

California, Berkeley

230 M. Bauer et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_4


Fig. 9.12 Various

deployment configurations

of devices, resources, and

services

9 The IoT ARM Reference Manual 231



Q5: What software can provide information or allow changing aspects related to

PE?

A5: The answer determines the Resource(s) – the Alarm Resource can trigger a

notification if the temperature or the humidity are no longer within the

required range.

Q6: What exposes this Resource and/or makes it accessible?

A6: The answer determines Resource-level Service(s) – the Alarm Service

exposes the Alarm Resource.

9.2 Usage of the IoT Information Model

The IoT Information Model cannot be instantiated directly like the IoT Domain

Model. Moreover the IoT Information Model defines an abstract framework or

meta-model that is technology agnostic and restricted to a minimum. The model is

just enough to accommodate the relationships defined in the IoT DomainModel and

to model the key concepts that are used as a basis for defining interfaces of

functional components. Thus only the skeleton of an information model is provided

in the ARM that IoT-A compliant architectures will have in common. A common

model on the other hand can serve as a bridge between more specific -but different

-information models to be used in concrete architectures.

The way to work with the IoT Information Model is split into three steps (see

also Fig. 9.13 below):

1. Use the IoT Information Model, viz. meta-model, as a basis explaining the

common information structure and the core elements defined in the IoT Domain

Model, like Virtual Entities, Attributes and Services;

2. Generate a domain-specific information model out of the meta-model, which

defines a minimal set of attributes and Services for your application domain.

Attributes which every VE needs to have (e.g. EntityId or EntityType as

in Chap. 7 Fig. 9.10 “IoT Information Model”) are defined but not necessarily

described in detail. Additionally the Service Descriptions can already be defined

as interfaces with input and output parameters.

3. Several (different) representations of the domain-specific model can be

generated, implementing the defined Attributes and Services. The use of differ-

ent representations is useful when there are different implementation-specific

requirements, like binary storage of information for constrained sensor nodes

and XML storage for the backend server storage.

The IoT Information View in Sect. 8.2.3, and especially the Sect. 8.2.3.1, give

some examples how the concrete modelling of the domain-specific model can look

like. An additional example for an information model used to model events is

shown in (Voelksen 2013; Sect. 4.2).

232 M. Bauer et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_4


9.3 Usage of the IoT Communication Model

Extending the analysis performed using the other models the IoT Communication

Model is used in the architectural design process to:

1. Identify homogeneous sub-systems and their capabilities and constraints;

2. Identify suitable protocol stacks and network topologies to be merged in a

common system view;

3. Define gateways and other bridging solutions.

9.3.1 Guidelines for Using the IoT Communication Model

Since the IoT Communication Model aims at providing an overall framework for

communication in IoT systems, it requires well-defined domain and information

definitions. This can be achieved following the examples of the previous sections.

Starting from those, it is possible to identify all the sub-systems, the complete

system is composed of, where we define homogeneous sub-system as a set of

system elements sharing the same communication technology and sharing similar

hardware capability.

Once the sub-systems have been defined, it is possible to analyse capabilities and

constraints for each of them. By capabilities and constraints we intend communi-

cation specific parameters such as data rate, delays, medium reliability (channel

errors) and technology specific parameters such as the available memory, compu-

tational power and supported functionalities.

Fig. 9.13 Three steps to use the IoT information model

9 The IoT ARM Reference Manual 233



Modelling 
Rule 4

Identify homogeneous sub-systems from the complete 
domain model and determine their capabilities and con-
straints.

Subsequently, it is possible to analyse communication requirements deriving

from both services in the domain definition and interaction patterns from the

information model. The main goal of the IoT Communication Model is to identify

a set of interoperable protocol stacks and topologies with the following

characteristics:

1. Each stack must grow from a specific communication technology;

2. Interoperability shall be enforced in the lowest possible layer of stack;

3. The combination of identified stacks and topologies must satisfy all the

requirements.

Modelling 
Rule 5

Use existing standard communication mechanisms and re-
lated protocols whenever possible. If this is not possible then 
each of the sub-system is the starting point for building a 
protocol stack which is both technology specific and interop-
erability prone.

This rule enforces technology optimizations and ensures feasibility in all the

subsystems.

Modelling 
Rule 6

Interoperability shall be enforced in the lowest possible 
layer.

This rule enforces simplicity and interoperability, because it avoids stack dupli-

cation and makes it possible to reuse the same protocols (and their

implementations) horizontally in the system. Usually, the most effective interoper-

ability point is the Network & ID aspect in the IoT Communication Model (or the

Network layer in the ISO/OSI model) as it is the lowest common point in the stack

which is not technology specific and, thus, it can be the same across different

sub-systems.

For such a reason the selection of the protocols governing the Network & ID

aspect is of paramount importance, since they must satisfy the requirements from

services and respect the technology constraints.

The next aspect in the IoT Communication Model is the end-to-end aspect: this

considers every possible interaction path among any couple of sub-systems. Again,

technology dependent constraints and service dependent requirements will push the

system architect in two opposite directions and often there is no single rule for all

234 M. Bauer et al.



the systems: in fact, even though the Network & ID aspect is capable of making two

sub-systems communicate to one another, it is the end to end aspect which

harmonizes the overall system behaviour. For such a reason, this is the place

where gateways and proxies are mostly needed.

Modelling 
Rule 7

In order to allow seamless interaction between sub-
systems, gateway and proxies shall be designed for the 
whole system.

Finally, the Data interoperability aspect of the IoT Communication Model,

which accounts for the highest layer of the ISO/OSI communication stack,

considers the remaining aspects of data exchange, compression and representation.

Although application layer gateways can always be designed to map two different

data representations, it is not always advisable to do so. Most often adopting a

compressed format which fits constrained network capabilities provides two

advantages, (1) simpler network interactions, and (2) lower traffic.

9.4 Usage of Perspectives

Perspectives are used to help an architect in designing software architectures. Their

purpose is threefold (Rozanski and Woods 2011):

1. Standardised store of knowledge about a given quality property;

2. As a guide for architects not experienced with a given quality property, and

3. As a memory aid for the experienced architecture.

The actual use of perspectives in an architectural design process is shown in

Fig. 9.14. Within the IoT-A project we extended the use of perspectives by adding

another layer: the Design Choices catalogue. Design Choices which are very

concrete usages of the IoT Reference Architecture applied to Functionality Groups

and Functional Components. An architect can consider solutions provided by the

Design Choices when creating the initial candidate architecture and later on when

he is modifying the architecture to resolve the problems with unacceptable quality

properties.

The architect designing should always keep the desired use of the system into

account. For example, the architect designing the system used in the “Red Thread”

example from Sect. 4.2 would go through the scenarios with a specific “hat” for all

perspectives. He would first extract the non-functional requirements (e. g. the

reliability needs of the sensors, security concerns) and then, once he has a candidate

architecture, use the perspectives to ensure that on all the non-functional

requirements have been taken care of. He would, for example, have a specific

look at the safe storage of the sensor history and select a Design Choice which

ensures that it cannot be altered. The perspectives then will help him making sure

9 The IoT ARM Reference Manual 235

http://dx.doi.org/10.1007/978-3-642-40403-0_4


that still all other requirements are fulfilled, and if not, at least can help making the

trade-offs explicit.

Applying a perspective is more than a review process: the outcome of applying a

perspective is cross-view changes to the architecture. As an additional outcome of

the perspectives there might be additional documents like performance analysis

data etc.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

Fig. 9.14 Using perspectives (Adopted from (Rozanski 2011))

236 M. Bauer et al.


	Chapter 9: The IoT ARM Reference Manual
	9.1 Usage of the IoT Domain Model
	9.1.1 Identification of Main Concept Instances
	9.1.2 Modelling of Non-IoT-Specific Aspects
	9.1.3 Identifiers and Addresses
	9.1.4 Granularity of Concepts
	9.1.5 Common Patterns
	9.1.5.1 Augmented Entities
	9.1.5.2 Multiple Virtual Entities
	9.1.5.3 Smart Phones and Other Mobile User Devices
	9.1.5.4 IoT Interactions
	9.1.5.5 Simple Mediated Interactions
	9.1.5.6 M2M Interaction

	9.1.6 Examples for IoT Domain Model Concepts
	9.1.6.1 User
	Application
	Human User

	9.1.6.2 Physical Entity
	Environment
	Living Being
	Structural Asset

	9.1.6.3 Resource
	On-Device Resource
	Network Resource

	9.1.6.4 Service
	Interacting Services
	Service Associated with a Virtual Entity
	Service Accessing a Resource

	9.1.6.5 Device
	Devices
	Hierarchical Devices

	9.1.6.6 Deployment Configurations

	9.1.7 Generating a Specific IoT Domain Model

	9.2 Usage of the IoT Information Model
	9.3 Usage of the IoT Communication Model
	9.3.1 Guidelines for Using the IoT Communication Model

	9.4 Usage of Perspectives


