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Abstract. In computer forensics, log files are indispensable resources
that support auditors in identifying and understanding system threats
and security breaches. If such logs are recorded locally, i.e., stored on the
monitored machine itself, the problem of log authentication arises: if a
system intrusion takes place, the intruder might be able to manipulate
the log entries and cover her traces. Mechanisms that cryptographically
protect collected log messages from manipulation should ideally have
two properties: they should be forward-secure (the adversary gets no
advantage from learning current keys when aiming at forging past log
entries), and they should be seekable (the auditor can verify the integrity
of log entries in any order, at virtually no computational cost).

We propose a new cryptographic primitive, a seekable sequential key
generator (SSKG), that combines these two properties and has direct
application in secure logging. We rigorously formalize the required se-
curity properties and give a provably-secure construction based on the
integer factorization problem. We further optimize the scheme in various
ways, preparing it for real-world deployment. As a byproduct, we develop
the notion of a shortcut one-way permutation (SCP), which might be of
independent interest.

Our work is highly relevant in practice. Indeed, our SSKG implemen-
tation has become part of the logging service of the systemd system
manager, a core component of many modern commercial Linux-based
operating systems.

1 Introduction

Pseudorandom generators. A pseudorandom generator (PRG) is an unkeyed
cryptographic primitive that deterministically expands a fixed-length random
seed to a longer random-looking string [I8]. Most often, PRGs find application
in environments where truly random bits are a scarce resource; for instance, once
a system managed to harvest an initial seed of, say, 128 uniformly distributed bits
from a suitable (possibly physical) entropy source, a PRG can securely stretch
this seed to a much larger number of bits. While such mechanisms are indis-
pensable for constrained devices like smartcards, (variants of) PRGs are also
long-serving components of modern PC operating systems. A well-known exam-
ple is the /dev/urandom device available in virtually all current Linux/UNIX
derivates.
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Other applications exploit the feature that the output of PRGs can be re-
generated: as PRGs are deterministic primitives, the entire output sequence can
be reconstructed from the initial seed, whenever needed. This directly allows
employment of PRGs for symmetric encryption (formally, one could view stream
ciphers like RC4Y or AES-CTR as PRGs with practically infinite output length),
but also in distributed systems, where locally separate agents can synchronously
generate identical sequences of (pseudo-)random bits.

For PRGs with very large output length (e.g., stream ciphers) we introduce
the notion of seekability; a PRG is seekable if, for a fixed seed, ‘random access’
to the output sequence is possible. For example, the PRG obtained by operating
a block cipher in counter mode is seekable: one can quickly jump to any part of
the output string by setting the counter value to the right ‘address’. In contrast,
RC4 is not known to be seekable: presumably, in order to jump to position k in
the output string, one has to iterate the cipher k times.

Forward security. The concept of forward security (FS), best-known from the
context of cryptographic key establishment (KE), expresses the inability of an
adversary to gain advantage from the ‘corruption’ of entities. For example, con-
sider an instance of a two-party public key-authenticated KE protocol. We say
that the established session key enjoys forward secum’tzﬂ if an adversary can-
not obtain any useful information about that key, even if participants, after
completing the protocol instance, surrender their respective secret keys. In key
exchange, forward security is recognized as one of the most fundamental security
goals [30U8].

Although less commonly seen, the notion of forward security extends to other
cryptographic settings and primitives. For instance, in forward-secure public key
encryption (FS-PKE, [7]), time is subdivided into a discrete number of epochs
to,t1,..., and messages are encrypted in respect to a combination (pk,t;) of
public key and time epoch. Recipients, starting in epoch ¢y with an initial key skg,
use an update procedure sk;11 < f(sk;) to evolve the decryption key from epoch
to epoch. An FS-PKE is correct if a recipient holding key skj can decrypt all
ciphertexts addressed to corresponding epoch tg; it is forward-secure if secrecy
of all messages addressed to ‘past’ epochs t;,7 < k, is preserved even if the
adversary obtains a copy of skg. Clearly, FS-PKE only offers a security advantage
over plain public key encryption if users securely erase ‘expired’ decryption keys.

Similarly to FS-PKE, also forward-secure signature schemes [2] work with
time epochs and evolving keys; briefly speaking, their security properties ensure
that an adversary holding an epoch’s signing key skj cannot forge signatures for
prior epochs t;,j < k (i.e., ‘old’ signatures remain secure).

Secure logging. Computer log files, whether manually or mechanically evaluated,
are among the most essential resources that support system administrators in

! In fact, practical distinguishing attacks against RC4 are known [I1]; RC4 is hence a
PRG only ‘syntax-wise’.

% in the context of key establishment also known as ‘forward secrecy’



Practical Secure Logging: Seekable Sequential Key Generators 113

their day-to-day business. Such files are generated on hosts and communication
systems, and record a large variety of system events, including users logging on or
off, network requests, memory resources reaching their capacity, malfunctioning
of disk drives, and crashing software.

While regular analysis of system logs allows administrators to maintain sys-
tems’ health and long uptimes, log files are also indispensable in computer foren-
sics, for the identification and comprehension of system intrusions and other
security breaches. However, if logs are recorded locally (i.e., on the monitored
machine itself) the problem of log authentication arises: if a system intrusion
takes place, the intruder might be able to manipulate the log entries and cover
her traces. So-called ‘log sanitizers’ aim at frustrating computer forensics and
are known to be a standard tool in hackers’ arsenal.

Two approaches to avert the threat of adversarial modification of audit logs
seem promising. One such option is the deployment of online logging. Here,
log messages are transferred over a network connection to a remote log sink
immediately after their creation, in the expectancy that entries caused by system
intrusions have reached their destination before they can be tampered with. As
a side effect, online logging might also ease security auditing by the fact that
log entries are concentrated at a single point. However, as every local buffering
of log records increases the risk of their suppression by the intruder, full-time
availability of the log sink is an absolute security requirement in this setting.
But observe that the intruder might be able provoke downtimes at the sink (e.g.,
by running a DOS attack against it) or might disrupt the network connection
to it (e.g., by injecting reset packets into TCP connections, jamming wireless
connections, etc.). An independent problem comes from the difficulty to select
an appropriate level of granularity for the events to be logged. For instance, log
files created for forensic analysis might ideally contain verbose information like
an individual entry for every file opened, every subprocess started, and so on.
Network connections and log sinks might quickly reach their capacities if events
are routinely reported in such a high resolution. This holds in particular if log
sinks serve multiple monitored hosts simultaneously.

Storing high volume log data is less an issue in secured local logging where
a networked log sink is not assumed. In such a setting, log messages are pro-
tected from adversarial tampering by cryptographic means. It cannot be ex-
pected that standard integrity-protecting primitives like message authentication
codes (MAC) or signature schemes on their own will suffice to solve the problem
of log authentication: a skilled intruder will likely manage to extract correspond-
ing secret keys from corrupted system’s memory. Instead, forward-secure signa-
tures and forward-secure message authentication schemes have been proposed for
secure logging [2912434]. Clearly, local logging can never prevent the intruder
from deleting stored entries. However, cryptographic components might ensure
that such manipulations are guaranteed to be indicated to the log auditor.
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1.1 Contributions, Organization, Applications

The key contribution of this paper is the development of a new cryptographic
primitive: a seckable sequential key generator (SSKG). Briefly, a sequential key
generator (SKG) is a stateful PRG that outputs a sequence of fixed-length strings
— one per invocation. The essential security property is indistinguishability of
these strings from uniformly random. For SSKG, we additionally require seek-
ability, i.e., the existence of an efficient algorithm that allows to jump to any
position in the output sequence. For both, SKG and SSKG, we demand that
indistinguishability hold with forward security.

This paper is organized as follows. We start in Sections 2l and [B] by formaliz-
ing the functionality and security properties of SKG and SSKG. We show that
a related primitive by Bellare and Yee securely instantiates an SKG; however, it
is not seekable. Aiming at constructing an SSKG, we introduce in Section H] an
auxiliary primitive, a shortcut one-way permutation (SCP), that we instantiate
in the factoring-based setting. In Section [}l we expose our SSKG; it is particularly
efficient, taking only one modular squaring operation per invocation. We con-
clude in Section [6l by proposing further optimizations that substantially increase
efficiency of our SSKG, making it ready for deployment in practice.

We argue that a (seekable) SKG is the ideal primitive to implement a secured
local logging system, as described above. The construction is immediate: the
strings output by the SKG are used as keys for a MAC which is applied to all
log messages. After each authentication tag has been computed and appended
to the particular log message, the SKG is evolved to the next state, making the
described authentication forward-secure. The log auditor, starting with a copy
of the SKG’s original seed, can recover all MAC keys and verify authenticity of
all log entries. Typically, log auditors will require random access to these MAC
keys — SSKGs provide exactly this functionality.

Further applications for SKGs and SSKGs. Potential applications of SKG and
SSKG are given not only by secure logging, but also by digital cameras, voice
recorders and backup systems [29]. In more detail, digital cameras could be
equipped with an authentication mechanism that individually authenticates ev-
ery photo taken. Such cameras could support modern journalism that, when
reporting from armed conflict zones, is more and more reliant on amateurs for
the documentation of events; in such settings, where post-incidental (digital) ma-
nipulation inherently has to be anticipated, cryptographic SKG-like techniques
could support the verification of authenticity of reported images.

1.2 Related Work

Secured local logging. An early proposal to use forward-secure cryptography to
protect locally-stored audit logs is by Kelsey and Schneier [2002TJ29]. The core
of their scheme is an (evolving) ‘authentication key’: for each time epoch ¢;
there is a corresponding authentication key A;. This key is used for multiple
purposes: as a MAC key to authenticate all log messages occurring in epoch t;,
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for deriving an epoch-specific encryption key K; by computing K; + Hp(A4;),
and for computing next epoch’s authentication key via iteration A; 41 + Hi(A;)
(where Hy, Hy are hash functions). An implementation of [29] in tamper-resistant
hardware is reported by Chong, Peng and Hartel [9]. Unfortunately, the scheme
by Kelsey and Schneier lacks a formal security analysisﬁ

The first rigorous analysis of forward-secure secret key cryptography was given
by Bellare and Yee [3]. They propose constructions of forward-secure variants of
PRGs, symmetric encryption schemes, and message authentication codes, and
analyze them in respect to formal security models. We anticipate here that our
security definitions are strictly stronger than those from [3], capturing a larger
class of application scenarios.

The work of Holt [14] can be seen as an extension of [29]. With logcrypt, the
author proposes a symmetric scheme and an asymmetric scheme for secure log-
ging. While the former is similar to [29] (but apparently offers provable security),
the latter bases on the forward-secure signature scheme by Bellare and Miner [2].
Holt also discusses the efficiency penalties experienced in the asymmetric vari-
ant. We finally note that [14] suggests to store regular metronome entries in
log files in order to thwart truncation attacks where adversary cuts off the most
recent set of log entries.

Ma and T'sudik propose deployment of forward-secure sequential aggregate sig-
natures for integrity-protected logging [23124]. Their provably-secure construc-
tion builds on compact constant-size authenticators with all-or-nothing security
(i.e., if any single log message is suppressed by the adversary, this will be no-
ticed). Such aggregate signatures naturally defend against truncation attacks,
making Holt’s metronome entries disposable.

Waters et al. [32] identify searchable audit logs as an application of identity-
based encryption. Here, in order to increase users’ privacy, log entries are not
only authenticated but also encrypted. This encryption is done in respect to a
set of keywords; records encrypted towards such keywords are identifiable and
decryptable by agents who hold keyword-dependent private keys.

Another interesting approach towards forward-secure logging was proposed by
Yavuz and Ning [33], and Yavuz, Ning, and Reiter [34]. In their scheme, the key
evolving procedure and the computation of (aggregatable) authentication tags
take not more than a few hash function evaluations and finite field multiplications
each; these steps are hence implementable on sensors and other devices with
constrained computing power. However, the required workload on verifier’s side
is much higher: one exponentiation per log entry.

An IETF-standardized secure logging scheme is signed syslog messages by
Kelsey, Callas, and Clemm [19]. The authors describe an extension to the stan-
dard UNIX syslog facility that authenticates log entries via a regular signature
scheme (e.g., DSA). The scheme, however, does not provide forward security.

We conclude by recommending Itkis’ excellent survey on methods in forward-
secure cryptography [16].

3 It is, in fact, not difficult to see that the scheme is generically insecure (i-e., a security
proof cannot exist).
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Seekable PRGs. We are not aware of any work so far that focuses on the seeka-
bility of PRGs. The observation that block ciphers operated in counter mode can
be seen as seekable PRGs, in contrast to most other stream ciphers, is certainly
folklore. We point out that the famous Blum-Blum-Shub PRG [4l5] is forward-
secure. Moreover, its underlying number-theoretic structure seems to allow for
seekability. Unfortunately it is not efficient: the computation of each individual
output bit requires one modular squaring.

2 Sequential Key Generators

We introduce sequential key generators (SKG) and their security properties. Note
that a similar primitive, stateful generator, was proposed by Bellare and Yee [3].
However, our syntax is more versatile and our security models are stronger, as
we will see. We extend SKGs to (seekable) SSKGs in Section

2.1 Functionality and Syntax

An SKG consists of four algorithms: GenSKG generates a set par of public pa-
rameters, GenState0 takes par and outputs an initial state stg, update procedure
Evolve maps each state st; to a successor state st;11, and GetKey algorithm de-
rives from any state st; a corresponding (symmetric) key K;. Keys Ko, K1, ... are
supposed to be used in higher level protocols, for example as keys for symmetric
encryption or message authentication schemes.

Typically, SKG instances are not run in a single copy; rather, after distributing
‘clones’ of initial state sty to a given set of parties, several copies of the same SKG
instance are run concurrently and independently, potentially on different host
systems, not necessarily in synchronization. If Evolve and GetKey algorithms are
deterministic, respective sequences Ky, K1, ... of computed symmetric keys will
be identical for all copies. This setting is illustrated in Figure [I] and formalized
as follows.

Definition 1 (Syntax of SKG). A sequential key generator is a tuple SKG =
{GenSKG, GenState0, Evolve, GetKey} of efficient algorithms as follows:

— GenSKG(1%). On input of security parameter 1*, this algorithm outputs a
set par of public parameters.

— GenStateO(par). On input of public parameters par, this algorithm outputs an
initial state stg.

— Evolve(st;). On input of state st;, this deterministic algorithm outputs ‘next’
state st;y1. For convenience, for any m € N, by Evolve™ we denote the m-fold
composition of Evolve, i.e., Evolve™ (st;) = stitm.

— GetKey(st;). On input of state st;, this deterministic algorithm outputs key
K; € {0, 1}50‘), for a fixed polynomial £. For convenience, for any m € N,
we write GetKey™ (st;) for GetKey(Evolve™ (st;)).

We also pose the informal requirement on Evolve algorithm that it securely erase
state st; after deriving state st; 41 from it. Note that secure erasure is generally
considered difficult to achieve and requires special care [12].
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Fig. 1. Interplay of GenSKG, GenState0, and Evolve algorithms of an SKG. The figure
shows two copies of the same SKG instance running in parallel. GetKey algorithm can
be applied to each intermediate state st; to derive key K.

2.2 Security Requirements

The fundamental security property of SKGs is the indistinguishability of keys K;
from random strings of the same length. Intuitively, for any n of adversary A’s
choosing, target key K, is required to be indistinguishable from random even if A
has access to all other keys K;, i # n. This feature ensures generic composability
of SKGs with applications that rely on uniformly and independently distributed
keys K;. In addition to the indistinguishability requirement, forward security
demands that an ‘old’ key K, remain secure even when A learns state st,,, for
any m > n (e.g., by means of a computer break-in).

We give two game-based definitions of these indistinguishability notions: one
with and one without forward security.

Definition 2 (IND and IND-FS Security of SKG). A sequential key generator
SKG is indistinguishable against adaptive adversaries (IND) if for all efficient
adversaries A = (A1, A2) that interact in experiments Expt'NP? from Figure @
the following advantage function is negligible, where the probabilities are taken
over the random coins of the experiment (including over A’s randomness):

AdVISNKDG’A()\) = ’Pr [ExptISNKDGlA(l)‘) = 1} —Pr {Exptls'\&%’&(lk) = 1} ’
The SKG is indistinguishable with forward security against adaptive adversaries
(IND-FS) if analogously defined advantage function Adv'SNKDG'j()\) is negligible.

It is not difficult to see that the IND-FS notion is strictly stronger than the
IND notion. The proof of Lemma[I] appears in the full version [25, Appendix A].

Lemma 1 (IND-FS = IND). Any sequential key generator SKG that is indis-
tinguishable with forward security against adaptive adversaries is also indistin-
guishable against adaptive adversaries.

2.3 Comparison with Stateful Generators

Stateful generators, first described by Bellare and Yee [3, Section 2.2], aim at
similar applications as SKGs. Syntactically, the two primitives are essentially
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Exptay 4 (1%): Exptgge 4 (1%):
(a) KList < 0 (a) KList < 0
b) par <pr GenSKG(1*) b) par <r GenSKG(1*)

(b)
(c) sto «r GenStateO(par)
(d) (state,n) <r A?Ksy(par)
— If A queries Okey(?):
(a) KList + KList U {i}
(b) K; <+ GetKey'(sto)
(c) Answer A with K;
(e) K§ < {0,1}*™
(f) K} + GetKey™(sto)
(g) b r A (state, KD)
— Answer Okey queries as above

(
(
(

c
d) (state,n,m) <r A?Key(Par)

)
) sto < r GenStateQ(par)

— Answer Oke, queries as in Expt™P
) Ky +r {0,1}%
) K. < GetKey"(sto)

e
f

g) stm + Evolve™(sto)
h)

b g ASKEY (state,stm, K
— Answer Okey queries as in Expt'ND
Return 0 if n € KList or m < n

)
i) Return b’

(h) Return 0 if n € KList
(i) Return b’

Fig. 2. Security experiments for SKG without and with forward security

identical. However, the security definition of stateful generators is weaker and
less versatile than the one of SKGs. Concretely, in the (game-based) security
definition for stateful generators, after having incremental access to a sequence
ko, k1, ... of keys that are either all real (i.e., k; = K; Vi) or all random (i.e., k; €r
{0,1}¥N)4), the adversary eventually requests to see the ‘current’ state st,,
and, based upon the result, outputs a guess on whether keys ko, ..., kn_1 were
actually real or random. Important here is the observation that an adversary that
corrupts a state st,,, cannot request access to keys K;, ¢ > m, before making this
corruption (in contrast to our model). This is a severe limitation in contexts
where multiple parties evolve states of the same SKG instance independently of
each other and in an asynchronous manner; for instance, in the secure logging
scenario, the adversary might first observe the log auditor verifying MAC tags
on ‘current’ time epochs and then decide to corrupt a monitored host that is
out of synchronization, e.g., because it is powered down and hence didn’t evolve
its state. As such concurrent and asynchronous conditions are not considered in
the model by Bellare and Yee, in some practically relevant settings the security
of the constructions from [3] should not be assumed.

2.4 A Simple Construction

It does not seem difficult to construct SKGs from standard cryptographic prim-
itives. Indeed, many of the stateful generators proposed in [3], constructed from
PRGs and PRFs, are in fact IND-FS-secure SKGs. For concreteness, we repro-
duce a simple PRG-based design. Its security is analysed in [3, Theorem 1].

Construction 1 (PRG-based SKG [3]) Let G : {0,1}* — {0, 1}}N) pe o
PRG, where for each v € {0,1}* we write G(z) as G(z) = Gr(x) || Gr(z)
with Gr(x) € {0,1}* and Gr(z) € {0,1}N. Let then GenSKG output the
empty string, GenStateO sample sty +—r {0, 1}*, Evolve(st;) output G (st;), and
GetKey(st;) output GR(st;).



Practical Secure Logging: Seekable Sequential Key Generators 119

3 Seekable Sequential Key Generators

We have seen that secure SKGs exist and are not too difficult to construct. More-
over, the scheme from Construction [lis efficient. Indeed, if it is instantiated with
a hash function-based PRG, invocations of Evolve and GetKey algorithms take
only a small (constant) number of hash function evaluations. However, this as-
sessment of efficiency is adequate only if SKG’s keys K; are used (and computed)
in sequential order. We argue that in many potential fields of application such
access structures are not given; instead, random access to the keys is required,
likely implying a considerable efficiency penalty if keys need to be computed it-
eratively via K; « GetKey(sty). The following examples illustrate that random
access patterns do not intrinsically contradict the envisioned sequential nature
of SKGs.

Consider a host that uses SKG’s keys K; to authenticate continuously in-
curring log messages. A second copy of the same SKG instance would be run
by the log auditor. From time to time the latter might want to check the in-
tegrity of an arbitrary selection of these messages@. Observe that this scenario
does not really correspond to the setting from Figure [} While the upper SKG
copy might represent the host that evolves keys in the expected linear order
K; — K,11, the auditor (running the independent second copy) would actually
need non-sequential access to SKG’s keys.

For a second example in secure logging, assume SKG’s epochs are coupled to
absolute time intervals (e.g., one epoch per second). If a host is powered up after
a long down-time, in order to resynchronize its SKG state, it is required to do
a ‘fast-forward’ over a large number of epochs. Ideally, an SKG would support
the option to skip an arbitrary number of Evolve steps in short timd.

A variant of SKG that explicitly offers random access capabilities is introduced
in this section. We claim that many practical applications can widely benefit from
the extended functionality. Observe that the advantage of SSKGs over SKGs is
purely efficiency-wise; in particular, the definition of SSKG’s security will be
(almost) identical to the one for SKGs.

3.1 Functionality and Syntax

When comparing to regular SKGs, the distinguishing property of seekable se-
quential key generators (SSKG) is that keys K; can be computed directly from
initial state stg and index i, i.e., without executing the Evolve procedure i times.
The corresponding new algorithm, Seek, and its relation to the other SKG algo-
rithms is visualized in Figure Bl For reasons that will become clear later, when
extending SKG’s syntax towards SSKG, in addition to introducing the Seek
algorithm we also had to slightly adapt the signature of the GenSKG algorithm:

4 For example, after a zero-day vulnerability in a software product run on the mon-
itored host becomes public, the log auditor might want to retrospectively look for
specific irregularities in log entries related to that vulnerability.

® Clearly, a (fast-)forward algorithm with execution time linear in the number & of
skipped epochs is trivially achievable. The question is: can we do better than O(§)?
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Definition 3 (Syntax of SSKG). A seekable sequential key generator is a
tuple SSKG = {GenSSKG, GenState0, Evolve, Seek, GetKey} of efficient algorithms
as follows:

— GenSSKG(1*). On input of security parameter 1*, this algorithm outputs a
set par of public parameters and a seeking key sk.

— GenState0, Evolve, GetKey as for SKGs (cf. Definition[).

— Seek(sk, stg,m). On input of seeking key sk, initial state stg, and m € N, this
deterministic algorithm returns a state st,,.

[GenStateO ]To{ Evolve } st { Evolve } i stm,l{ Evolve } st { Evolve Jm

par

sk

GenSSKG

par Seek

[GenStateO ]i(’){ Evolve } o, Stinlfl{ Evolve } St { Evolve }St:",“

Fig. 3. Interplay of the different SSKG algorithms. The figure shows two independent
SSKG instances running in parallel. Given seeking key sk and respective instance’s
initial state sto, one can seek directly to any arbitrary state st,,. As in SKGs, GetKey
algorithm can be applied to any intermediate state st; to derive key K;.

In contrast to SKGs, for SSKGs we need to explicitly require consistency of
keys computed with Seek and Evolve algorithms:

Definition 4 (Correctness of SSKG). A seekable sequential key generator
SSKG is correct if, for all A € N, all (par, sk) <~ GenSSKG(1*), and all sty +r
GenStateO(par), we have that Seek(sk, sto, m) = Evolve™ (sto) for all m € N.

Remark 1 (Security notions IND and IND-FS for SSKG). Indistinguishability
of SSKGs is defined in exactly the same way as for regular SKGs, with one
purely syntactical exception: As the new GenSSKG algorithm outputs the auxil-
iary seeking key, the experiments in Figure 2 need to be adapted such that the
par < GenSKG(1?*) line is replaced by (par,sk) +r GenSSKG(1%). However,
seeking key sk is irrelevant for the rest of the experiment.

Ezample 1 (Practical SSKG setting). We describe a practical setting of secured
local logging with multiple monitored hosts. The system administrator first runs
GenSSKG algorithm to establish system-wide parameters; each host then runs
GenState0 algorithm to create its individual initial state stg, serving as a basis
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for specific sequences (st;);en and (K;);en. The log auditor, having access to
seeking key sk and to initial states stq of all hosts, can reproduce all corresponding
keys K; without restriction. Observe that, as the SSKG instances run on different
hosts are independent of each other, authenticated log messages from one host
cannot be ‘replayed’ on other hosts.

In practice, it might be difficult to find ‘the right’ frequency with which keys
should be evolved. Recall that, even if forward-secure log authentication is in
place, an intruder cannot be prevented from manipulating the log entries of the
epoch in which he got access to a system. This suggests that keys should be
updated at least every few seconds — and even more often to obtain protection
against fully-automated attack tools. On battery-powered mobile devices, how-
ever, too frequent wakeups from system’s sleep mode with the only purpose of
evolving keys will noticeably contribute to draining devices’ energy reserves.

Remark 2 (On the necessity of seeking trapdoors). For standard SKGs, the secret
material managed by users is restricted to one ‘current’ state st;. In contrast, for
SSKGs, we introduced additional secret information, sk, required to perform the
seek operation. One might ask whether this step was really necessary. We fixed
the syntax of SSKGs as given in Definition [3 for a technical reason: the SSKG
construction we present in Section [ is factoring-based and its Seek algorithm
requires knowledge of modulus’ factorization n = pq. However, as knowledge
of p and ¢ thwarts the one-wayness of designated Evolve operation, we had to
formally separate the entities that can and cannot perform the Seek operation.
While this property slightly narrows the applicability of SSKGs, it is irrelevant
for the intended secure logging scenario as described in Example [l

4 Shortcut Permutations

We introduce a novel primitive, shortcut one-way permutation (SCP), as a build-
ing block for our SSKG construction in Section[Bl Consider a finite set D together
with an efficient permutation 7 : D — D. Clearly, for any z € D and m € N,
it is easy to compute the m-fold composition 7™ (x) = m o --- o w(z) in linear
time O(m), by evaluating the permutation m times. In shortcut permutations,
we have the efficiency requirement that the value 7™ (x) can be computed more
efficiently than that, using a dedicated algorithm. In addition, we require one-
wayness of 7: given y € D, it should be impossible to compute 7~ (y).

While we will rigorously specify the one-wayness requirement of SCPs, we do
not give a precise definition of what ‘more efficiently’ means for the computation
of ™. The reason is that we aim at practicality of our construction, and, in
general, practical efficiency strongly depends on the concrete parameter sizes
and computing platforms in use. However, we anticipate that the SCPs that we
construct in Section {1l have algorithms that compute 7™ (x) in constant time.

We next formalize the syntax and functionality of SCPs. For technical reasons,
the definition slightly deviates from the above intuition in that the algorithm
which efficiently computes 7™ also requires an auxiliary input, the shortcut in-
formation.
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Definition 5 (Syntax of SCP). A shortcut permutation is a triple SCP =
{GenSCP, Eval, Express} of efficient algorithms as follows:

— GenSCP(1%). This probabilistic algorithm, on input of security parameter 17,
outputs public parameters pp and a corresponding shortcut information sc.
We assume that each specific value pp implicitly defines a finite domain
D = D(pp). We further assume that elements from D can be efficiently
sampled with uniform distribution.

— Eval(pp, z). This deterministic algorithm, given public parameters pp and a

value © € D, outputs a value y € D.

Express(sc, z,m). This deterministic algorithm takes shortcut information sc,

an element x € D, and a non-negative integer m, and returns a value y € D.

A shortcut permutation SCP is correct if, for all A € N and all (pp,sc) +gr
GenSCP(1*), we have that (a) Eval(pp, -) implements a bijection © : D — D,
and (b) Express(sc,x,m) = #™(x), for all x € D and m € N.

As the newly introduced shortcut property is solely an efficiency feature, it
does not appear in our specification of one-way security. In fact, the one-wayness
definitions of SCPs and of regular one-way permutations [I8] are essentially the
same. Observe that we model one-wayness only for the case that the adversary
does not have access to shortcut information sc.

Definition 6 (One-wayness of SCP). We say that a shortcut permutation
SCP is one-way if the probability

Pr[(pp,sc) «r GenSCP(1%);y < D(pp); = < r B(pp,y) : Eval(pp,z) = y]
is negligible in X, for all efficient adversaries B.

Remark 3 (Comparison of SCPs and TDPs). The syntax of (one-way) SCPs is,
to some extent, close to that of trapdoor permutations (TDPs, [I8]). However,
observe the significant difference between the notions of ¢rapdoor and shortcut.
While a TDP’s trapdoor allows efficient inversion of the permutation (i.e., com-
putation of 771), a shortcut in our newly defined primitive allows acceleration
of the computation of 7™ for arbitrary m. In particular, for SCPs, there might
be no way to invert 7 even if the shortcut information is available. We admit,
though, that in our number-theory-based constructions from Section EI] one-
wayness does not hold for adversaries that obtain the shortcut information: any
party knowing the shortcut can also efficiently invert the permutation.

4.1 Constructions Based on Number Theory

We propose an efficient number-theoretic SCP construction: FACT-SCP.

Let N be a Blum integer, i.e., N = pq for primes p,q such that p = ¢ =
3mod 4. Let QRy = {22 : x € Z);} denote the set of quadratic residues mod-
ulo N. It is well-known [26] that the squaring operation z — z? mod N is a
permutation on @ Ry. Moreover, computing square roots in Q Ry, i.e., inverting
this permutation, is as hard as factoring N. This intuition is the basis of the
following hardness assumption.
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Definition 7 (SQRT assumption). For probabilistic algorithms GenSQRT that
take as input security parameter 1* and output tuples (N,p, q, p) such that N =
pq, factors p and q are prime and satisfy p = ¢ = 3mod 4, and ¢ = ¢(N) =
|ZX |, the SQRT problem is said to be hard if for all efficient adversaries A the
success probability

Pr [(N,p,q,go) R GenSQRT(l)‘);y +r QRN;z Rr A(N,y) : z? = y mod N]

18 negligible in A\, where the probability is taken over the random coins of the
experiment (including A’s randomness). The SQRT assumption states that there
exists an efficient algorithm GenSQRT for which the SQRT problem is hard.

The construction of an SCP based on the SQRT assumption is now straight-
forward:

Construction 2 (FACT-SCP)  Construct SQRT-based SCP as follows:  Let
GenSCP(1*) run GenSQRT(1*) and output pp = N andsc = ¢, let D = QRy, let
Eval(N, z) output 2> mod N, and let Express(p, z,m) output (3" ™°4 %) mod N.

Remark 4 (Correctness and security of FACT-SCP). Observe that the specified
domain D is efficiently samplable (take z <—r Zx and square it), that correct-
ness of the SCP follows from standard number-theoretic results (in particular [26]
Fact 2.160] and [26], Fact 2.126]), and that every Express operation takes about
one exponentiation modulo N. Further, comparing the experiments in Defini-
tions [6] and [l makes evident that FACT-SCP is one-way if the SQRT problem is
hard for GenSQRT, i.e., if integer factorization is hard [26], Fact 3.46].

Similarly to FACT-SCP, in the full version [25, Appendix C] we define the
RSA-based RSA-SCP. Observe that both constructions rely on different, though
related, number-theoretic assumptions. In fact, while the security of FACT-SCP
can be shown to be equivalent to the hardness of integer factorization, RSA-SCP
can be reduced ‘only’ to the RSA assumption. Although equivalence of the RSA
problem and integer factorization is widely believed, a proof has not been found
yet. Hence, in some sense, SQRT-based schemes are more secure than RSA-based
schemes. In addition to that, our SQRT-based scheme has a (slight) performance
advantage over our RSA-based scheme (squaring is more efficient than raising to
the power of e). The only situation we are aware of in which RSA-SCP might
have an advantage over FACT-SCP is when the most often executed operation
is Express, and deployment of multiprime RSA is acceptable (e.g., N = pqr).
Briefly, in the multiprime RSA setting [I7/13], private key operations can be
implemented particularly efficiently, based on the Chinese Remainder Theorem
(CRT). Observe that Definition 8 in [25, Appendix C] is general enough to cover
the multiprime setting.

5 Seekable Sequential Key Generators from Shortcut
Permutations

We construct an SSKG from a generic SCP. Briefly, the Evolve operation cor-
responds to the Eval algorithm, the Seek algorithm is implemented via SCP’s
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Express procedure, and keys K; are computed by applying a hash function (mod-
eled as a random oracle in the security analysis) to the corresponding state st;.

Construction 3 (SCP-SSKG) Let SCP = {GenSCP, Eval, Express} be a shortcut
permutation, and let H : {0,1}* — {0,1}XN be a hash function, for a polyno-
mial £. Then the algorithms of our seekable sequential key generator SCP-SSKG
are specified in Figure [

GenSSKG(1*): GenState0(par): Seek(sk, sto, m):
(a) (pp,sc) «<—r GenSCP(1*) (a) pp < par (a) sc <« sk
(b) (par,sk)  (pp,5c) (b) 0 < D(pp) (b) (PP, 0,0)  sto
(¢) Return (par,sk) (c) sto + (pp,0,z0) (¢) zm « Express(sc,zo,m)
(d) Return stg (d) stm < (pp,m,Tm)
(e) Return st
Evolve(st;): GetKey(st;):
(a) (pp,d,@:i) < st (a) (pp, i, @) < sti
(b) wit1 < Eval(pp, x:) (b) K; < H(pp,i,x;)
(c) stit1 < (pp,t+1,Tit1) (¢) Return K;

(d) Return st

Fig. 4. SCP-based SSKG construction SCP-SSKG

Correctness of Construction [ follows by inspection. We state IND-FS secu-
rity of SCP-SSKG in Theorem [} the corresponding proof appears in the full
version [25], Appendix D]. Recall that IND security follows by Lemma [Tl

Theorem 1 (Security of SCP-SSKG). The SSKG from Construction[3 offers
IND-FS security if SCP is a one-way shortcut permutation, in the random oracle
model.

6 Implementing Seekable Sequential Key Generators

Let FACT-SSKG denote the factorization-based SSKG obtained by combining
ConstructionsPland Bl Some implementational details that increase the efficiency
and versatility of this construction are discussed next.

We first propose a small tweak to the scheme that affects the storage size
of the initial state. Recall that, in foreseen applications of SSKGs, the initial
state sto is first created by (randomized) GenState0 algorithm and then copied
to other parties (cf. discussion in Section [ZT]). In FACT-SSKG, between 1024 to
4096 bits would have to be copied, depending on the desired level of security [,
just counting the size of xg € QRy. However, in the specific application we
are aiming at, described in detail in Section [G.I] that much bandwidth is not
available. We hence propose to make GenState0 algorithm deterministic, now
providing it with an explicit random seed of short length (e.g., 80-128 bits);
all randomness required by the original GenState0 algorithm is deterministically
extracted from that seed via a PRG, and only 128 bits (or less) have to be
shared with other parties. We implement this new feature by introducing an
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auxiliary algorithm, RndQR, that deterministically maps seed € {0,1}* to an
element in QR such that the distribution of RndQR(XV, seed) with random seed
is negligibly close to the uniform distribution on QRy. The new GenState0 and
RndQR algorithms are shown in Figure Bl The admissibility of proposed RndQR
construction is confirmed by [10] and [27, §B.5.1.3], in the random oracle model.

The second modification of FACT-SSKG improves the efficiency of the Seek
operation. A standard trick [I7J6] to speed up private operations in factoring-
based schemes is via the Chinese Remainder Theorem (CRT). For instance,
if an exponentiation y < z* mod N is to be computed and the factorization

N = pq is known, then y can be obtained by CRT-decomposing z into x,

zmod p and z, < x mod g, by computing y, xk mod ¢(p)

k mod ¢(q)
Tq

mod p and y, +
mod ¢ independently of each other, and by mapping (y,,yq) back to
Zn (by applying the CRT a second time). The described method to compute z*
is approximately four times faster than evaluating the term directly, without the
CRT [26], Note 14.75]. The correspondingly modified Seek algorithm is shown in
Figure Bl

GenSSKG(1*): GenStateO(par, seed): Seek(sk, seed, m):
(a) (N,p,q,¢) <r GenSQRT(1*) (a) N < par (a) (N,p,q) < sk
(b) par+ N (b) zo < RndQR(N, seed) (b) zo < RndQR(NV, seed)
(c) sk« (N,p,q) (c) sto « (N,0,z0) (¢) (xp,xq) < CRTDecomp(zo,p, q)
(d) Return (par, sk) (d) Return sto (d) kp 2" modp—1
(e) kg 2" modq—1
Evolve(st;): GetKey(st;): () @p,m < (2p)* mod p
(a) (N,i,z;) + st; (a) (N,i,z;) + st; (8) Zgm (wq)’“q mod ¢
(b) zit1 < (2:)? mod N (b) Ki < H(N,i,x;) (h) @m + CRTComp(Zp,m,Tg,m: P q)
(c) stit1 + (Nyi+1,ziq1) (¢) Return K; (i) stm — (N,m,m)
(d) Return st;qq (i) Return st,,
RndQR(N, seed): CRTDecomp(z, p, q): CRTComp(zp, zq,p,q):
(a) h <+ H'(N,seed) (a) xp + x mod p (a) u 4+ p~' mod ¢
(b) h <+ hmod N (b) zq + @ mod ¢ (b) a <+ u(zq — zp) mod ¢q
(¢) s+ h®mod N (c) Return (zp,zq) (c¢) @< xp+pa
(d) Return s (d) Return z

Fig.5. Algorithms of optimized FACT-SSKG, together with auxiliary RndQR,
CRTDecomp, and CRTComp algorithms. In the specification of RndQR we assume a
hash function H' : {0,1}* — {0,...,2" — 1}, where ¢t = [log, N + 128.

We combine Remark ] Theorem [Il and Lemma [I] to obtain:

Corollary 1 (Security of FACT-SSKG). Under the assumption that integer
factorization is hard, our seekable sequential key generator FACT-SSKG offers
both IND and IND-FS security, in the random oracle model.

6.1 Deployment in Practice

We implemented FACT-SSKG (incorporating the tweaks described above) [28§].
In fact, the code is part of the journald logging component of the systemd system
and service manager, the core piece of many modern commercial Linux-based
operating systems [31]. The SSKG is used as described in the introduction: it is
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combined with a cryptographic MAC in order to implement secured local logging,
called Forward-Secure Sealing in journald. Generation of initial state sty takes
place on the system whose logs are to be protected. The corresponding seed is
shown on screen only (hence the restriction on seed’s size), both in text and
as QR code [15]; the latter may be scanned off the screen with devices such as
mobile phones. The separation between on-disk storage of public parameters and
on-screen display of the seed is done in order to ensure the latter will not remain
on the system. Each time the SKG state is evolved, a MAC tag protecting the
data written since the previous MAC operation is appended to the log file. An
offline verification tool that checks the MAC tag sequence of log files taken from
a system is provided. If a log file is corrupted, the verification tool will determine
the time range where the integrity of the log file is intact. When the SKG state is
evolved, particular care is taken to ensure the previous state is securely deleted
from the file system and underlying physical storage, which includes techniques
to ensure secure removal even on modern copy-on-write file systems.

On the technical side, our implementation supports modulus sizes of 512—
16384 bits (1536 bits is recommended), uses SHA256 for key derivation, and
relies on HMAC-SHA256 for integrity protection. The code links against the
gerypt library [22] for large integer arithmetic and the SHA256 hash function,
and is licensed under an Open Source license (LGPL 2.1).

Conclusion

We review different cryptographic schemes for log file protection and point out
that they all lack an important usability feature: seekability. In short, seekability
allows users of sequential key generators to jump to any position in the oth-
erwise forward-secure keystream, in negligible time. We introduce a new prim-
itive, seekable sequential key generator (SSKG), and give two provably-secure
factorization-based constructions. As a side product, we introduce the concept
of shortcut one-way permutations (SCP), which may find independent applica-
tion.
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