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Abstract. We introduce a probabilistic framework for the automated
analysis of security protocols. Our framework provides a general method
for expressing properties of cryptographic primitives, modeling an at-
tacker more powerful than conventional Dolev-Yao attackers. It allows
modeling equational properties of cryptographic primitives as well as
property statements about their weaknesses, e.g. primitives leaking par-
tial information about messages or the use of weak random generation al-
gorithms. These properties can be used to automatically find attacks and
estimate their success probability. Existing symbolic methods can neither
model such properties nor find such attacks. We show that the probabil-
ity estimates we obtain are negligibly different from those yielded by a
generalized random oracle model based on sampling terms into bitstrings
while respecting the stipulated properties of cryptographic primitives.
As case studies, we use a prototype implementation of our framework
to model non-trivial properties of RSA encryption and automatically
estimate the probability of off-line guessing attacks on the EKE protocol.

Keywords: Probability, Off-line Guessing, Equational Theories, Ran-
dom Oracle Model.

1 Introduction

Cryptographic protocols play an important role in securing distributed compu-
tation and it is crucial that they work correctly. Symbolic verification approaches
are usually based on the Dolev-Yao model: messages are represented by terms in
a term algebra, cryptography is assumed to be perfect, and properties of crypto-
graphic operators are formalized equationally [I]. This strong abstraction eases
analysis and numerous successful verification tools rely on it [2l3]. However, it
may not accurately represent an attacker’s capabilities. As a consequence, broad
classes of attacks that rely on weaknesses of cryptographic primitives fall outside
the scope of such methods. In contrast, proving security by reasoning directly
about bitstrings, as in computational approaches [A5], yields stronger security
guarantees. However, it requires long, error-prone, hand-written proofs to estab-
lish the security of given protocols using specific cryptographic primitives.

Much research has been devoted to bridging the gap between these two meth-
ods [6]. Below we discuss existing approaches in greater detail.
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Related work. There are two main lines of research that aim to bridge the gap be-
tween symbolic and computational models: (1) obtaining computational sound-
ness results for symbolic methods, and (2) developing techniques that reason
directly with computational models.

The first line of research, developing computational soundness results, was
initiated with Abadi and Rogaway’s seminal paper [7]. They investigated as-
sumptions under which security against a Dolev-Yao attacker (easier to ver-
ify) implies computational security (much stronger). Many such results are now
known, e.g. [SHI0]. However, such results require strong assumptions on the secu-
rity of cryptographic primitives. Moreover, messages must be tagged so that their
structure is known to any observer, and extending the results to new primitives
often involves re-doing most of the work.

The second line of research aims to automate computational security proofs,
by formulating security properties in terms of games and obtaining a sequence
of security-preserving transformations between such games. Such methods have
been implemented by tools like CryptoVerif [I1], CertiCrypt [12], and Easy-
Crypt [13]. When successful, these tools can prove protocols computationally
correct and provide upper bounds on the probability of an attack. [I4l[15] pro-
pose another approach: an automatable, symbolic framework in which it is pos-
sible to express security properties of cryptographic primitives and use them to
prove computational protocol security.

A limitation of all of the above approaches is that they can only be used to
prove security. Failure to obtain a security proof does not imply that an attack
exists. Therefore, their usefulness remains limited when cryptographic primitives
are too weak to meet the assumptions of their methods.

Our applications in this paper focus on off-line guessing attacks. Given the
pervasive use of weak human-picked passwords, off-line guessing attacks are a
major concern in security protocol analysis and have been the subject of much
research. Symbolic [16,[I7] and computational approaches [I8] have been used,
and computational soundness results [19,20] relate the two. However, off-line
guessing attacks remain a real threat to protocol security. Password-cracking
software is freely available on the Internet, and is remarkably successful [21].
Furthermore, such attacks often rely on weaknesses of cryptographic primitives
outside the scope of existing automated methods [22,[23].

Contributions. We present a fundamentally new approach to strengthening the
security guarantees provided by automated methods. Our approach is in a sense
dual to current research that aims to bridge the gap between symbolic and
computational models: Rather than assuming strong security properties of cryp-
tographic primitives and using them to prove security, we explicitly describe
weaknesses of cryptographic primitives and random number generation algo-
rithms and use them to find attacks.

We propose a probabilistic framework for security protocol analysis in which
properties of cryptographic primitives can be specified. Besides equational prop-
erties, our framework allows us to express security relevant properties of random
number generation algorithms and relations between the input and the output of
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cryptographic primitives. For instance, it can model a random number genera-
tion algorithm that generates bitstrings representing primes of a certain length,
a hash function that leaks partial information about the original message, or
a cryptosystem whose valid public keys have some recognizable structure. The
specified properties can then be used to find attacks and to estimate their success
probability. Such properties cannot be modeled by existing symbolic methods
and often lead to attacks on real-world implementations.

We model cryptographic functions using a generalized random oracle model.
Given a specification of the cryptographic primitives used and their properties,
symbolic terms are sampled to bitstrings in a way that ensures that the specifi-
cation properties are always satisfied, but otherwise functions behave as random
oracles. Under reasonable assumptions on the specification, we can define such
generalized random oracles and prove that they yield valid probability measures.
Moreover, we show that probabilities in this model can be effectively computed,
and we provide a prototype implementation that calculates these probabilities.
We believe that this model is interesting in its own right. It is a non-trivial gen-
eralization of the standard model of random oracle for hash functions, and it
captures the intuitive idea that cryptographic primitives satisfy stated proper-
ties, which can be exploited by an attacker, but otherwise behave ideally.

We illustrate the usefulness of our framework by representing the redundancy
of RSA keys and using this to model and estimate the success probability of
off-line guessing attacks on variants of the EKE protocol [22]. Although these
attacks are well-known, their analysis was previously outside the scope of sym-
bolic methods. Potential further applications of our approach include reasoning
about differential cryptanalysis or side-channel attacks [24], as well as short-
string authentication and distance-bounding protocols.

Outline. In Section 2l we describe our framework’s syntax and semantics. In Sec-
tion Bl we introduce our generalized random oracle model and show that it yields
a computable probability measure. In Section ] we show how our framework can
be used to find off-line guessing attacks. In Section Bl we draw conclusions and
discuss future work. Our technical report [25] provides full proofs of all results.

2 Definitions

In this section we introduce the syntax and semantics of our framework.

2.1 Setup Specification

Term algebra. A signature ¥ =4, .y ¥n is a set of function symbols, where X;
contains the symbols of arity ¢. Given a set G of generators, we define Tx;(G) as
the smallest set such that G C Tx(G), and if f € X, and ty,...,t, € Tx(G),
then f(t1,...,tn) € Ts(G). If ¢ € Xy, we write ¢ instead of ¢(). Unless otherwise
stated, we will consider G = @ and write T instead of Tx(0)). We define the
head of a term t = f(t1,...,t,) by head(t) = f. The set sub(t) of subterms of a
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term ¢ is defined as usual. The set psub(t) of proper subterms of t is psub(t) =
sub(t)\ {t}. If f: A — B and A’ C A, we write f[A'] for the set {f(a) | a € A'}.

Given a signature X', an equational theory = is a congruence relation on T's.
We write ¢ ~ t' instead of (¢,t') € ~. We consider an equational theory ~p
obtained from a subterm convergent rewriting system R, as in [26].

Property statements. We assume fixed a set T of types. Given a signature X,
a property statement is a tuple (f,Ty,...,T,,T), written f[Ty,...,T,] C T,
where f € X, and Th,...,T,,T € T. Property statements represent properties
of function symbols by expressing relations between their inputs and outputs.
If ps = (f[T1,...,Tn] € T), we define the head symbol of ps by head(ps) = f,
dom(ps) =T1 x ... x T, and ran(ps) =T.

Given a set PS of property statements and f € X', we denote by PSy the set
of property statements in PS whose head symbol is f. Note that, in general, we
may have more than one property statement associated to each function symbol.
We write f[T1,...,T,] Cps T instead of (f[T1,...,T,] CT) € PS.

Syntaz. The syntax of our setup is defined by a four-tuple (¥, ~g, T, PS ), where
X is a signature, ~p is an equational theory on T’z defined by a convergent
rewriting system R, 7 is a set of types, and PS is a set of property statements.

We require that X is infinite and that X\ X is finite. Symbols in Xy represent
either cryptographically relevant constants (e.g., the constant bitstring 0) or
random data generated by agents or the attacker.

Interpretation functions. Let B = {0,1}. A type interpretation function is a
function [-]: 7 — P(B*) associating each type T € T to a finite and non-empty
set [T]. We extend [-] to tuples by defining [T7 x ... x T,,] = [T4] x ... x [T5].

A setup specification is a pair S = (S, []), where S = (¥, ~g, T, PS) defines
the setup’s syntax as in the above paragraph and [-] is a type interpretation
function which consistently defines the behavior of all function symbols: that is,
PSy # 0 for all f € X and, whenever psi,ps2 € PSy, we have [dom(ps1)] N
[dom(ps2)] = 0. For ¢ € Xy, this implies that there is a single T € T such that
¢ Cps T. We denote this unique type T by type(c).

We assume that functions are undefined unless otherwise specified by a prop-
erty statement: That is, if f € X, and there is no ps € PSy such that (by, ..., b,)
€ [dom(ps)], then the function represented by f is undefined on the input
(b1, ..., by). Inlight of this, we set the domain of definability of f to be doms(f) =
LﬂpsePSf [dom(ps)]. Note that @ C domg(f) C (B*)" for all f € X,,.

Ezxample 1. We specify a simple yet realistic setup that includes: a hash func-
tion h that maps any bitstring to a bitstring of length 256; a pairing func-
tion (-,-) that, given any pair of bitstrings, returns their labeled concatenation;
and a symmetric encryption scheme {-[}. that uses a block cipher together with
some reversible padding technique. The corresponding signature XY is given
by Y = xPYUSPYyXPY where XPY is a countably infinite set of constant

symbols, TP = {h, w1, w2} and IF¥ = {{-}. {3}
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Standard equational properties of these primitives are represented by the
rewriting system Rpy containing the rules 71 ({z,y)) — =z, m2({z,y)) — y, and

-1
x — 2. It is simple to check that this rewriting system is convergent.
v It is simple to check that thi iti t i t
y

The types we will consider and their interpretations under [-] are as follows.
Weak (e.g., human-chosen) passwords are represented by the type pw. We model
these passwords as 256-bit bitstrings sampled from a small set: thus, [pw] C B%%¢
and |[pw]| = 224, Symmetric keys are represented by the type sym key, with
[sym key] = B?°%; text represents one block of plaintext, with [text] = B2°C.
Furthermore, for each n,m € N, we consider the following types: Tg~, with
[T:] = B Tgom, with [Tgem] = B™™ = |2 B and Tgnsm, with
[Tgnswm] = B#m™ C Brtmtlloe(ntm)] representing the set of labeled concate-
nations of two bitstrings of size n and m.

We define PS as the set that contains all property statements of the form
h[Tgr] C Tgese, m1[Tgnem] C Tgn, ma[Tgnem] C Tpm, (Tgr,Tgm) C Tgnsm,
{|TB(2567L+1,255(’!L+1) |}T3256 - T5256(n+1) or {‘TB256(7L+1) |};;256 - TB(2567L+1,255(’!L+1))’
for n,m € N. Note that all functions are modeled as undefined on all arguments
that fall outside the domains of these property statements. For example, the
encryption of any term is undefined unless the key is a 256-bit bitstring.

Example 2. We use our framework to formalize RSA encryption, taking into
account properties of the key generation algorithm. An RSA public key is a pair
(n,e), where n = p- ¢ is the modulus (with p and ¢ being large primes, typically
of around 512 bits), and the exponent e is coprime to ¢(n) = (p—1)(q¢—1). The
private key d is the multiplicative inverse of e modulo ¢(n).

We extend the setup specification of Example[ll We add to the signature the
following five primitives: the unary functions mod, expn, and inv, representing
the extraction of the modulus, the exponent, and the exponent’s multiplicative
inverse, respectively, from an RSA public-private key pair; a binary function
{~}__1, representing the RSA decryption function; and a ternary function {},
representing RSA encryption. The only rlewriting rule that we must add to model
RSA encryption is {{m}mod(k)’expn(k) }inv(k) — m, where m and k are variables.

The additional types that we will use to model properties of these functions
and their interpretations are as follows: random represents the random values
used to generate an RSA public-private key pair, including two 512-bit prime
numbers and the 1024-bit exponent, with [random] C B2%4%; prodprime represents
the product of two 512-bit prime numbers, so that [prodprime] C B'924 and,
by the prime number theorem, |[prodprime]| ~ (2512/log(2°12))? ~ 21099 odd
represents 1024-bit odd numbers, with Jodd] C B1%2* and |[odd]| = 21023.

The additional property statements we include are the following: mod[random]
C prodprime, because the modulo of an RSA public key is the product of two
primes; expn[random] C odd, because the exponent of an RSA public key is
always odd; inv[random] C Tgio2a, because an RSA private key is a 1024-bit
bitstring (note that we do not allow extracting modulus, exponents, or in-
verses from anything other than a valid value for generating an RSA key pair);
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{T51024}prodprime,odd - T51024; and {TB1024};;1024 - T51024. The last two proper-
ties state that encrypting any 1024-bit plaintext with a valid RSA public key
yields a 1024-bit bitstring, and that RSA decryption takes a ciphertext and a
private key which are both 1024-bit bitstrings and outputs a 1024-bit plaintext.
Note that encryption is undefined if the plaintext is not a 1024-bit bitstring, the
modulus is not the product of two primes, or the exponent is even.

One limitation of our method is that, although it is simple to express rela-
tions between the input and output of a cryptographic primitive, more complex
relations between terms are harder to model. For example, modeling the fact
that the ¢(n) and e are coprime would require modeling the public key as a
single term. An attacker could then extract the modulus and the exponent from
such a key, and it can build such a key from a modulus and an exponent. The
simpler model we present here illustrates the expressiveness of our framework
and is sufficient to model the attacks in our case studies.

2.2 Semantics

Let us fix a setup specification S = ((X,~g, T, PS), []).

Term assignments. Let BY = B* U {L}. A term assignment is a function
w:Tx — B associating a bitstring to each symbolic term. Let Q2 be the set of
all term assignments. We say that w € € satisfies =g, and write w | &g, if,
whenever t &g t/, either w(t) = w(t'), or w(t) = L, or w(t’) = L. We say that
w satisfies a property statement ps (under [-]), and write w =] ps if, whenever
(w(t1),...,w(ty)) € [dom(ps)], then w(f(t1,...,tn)) € [ran(ps)], and whenever
(w(t1),...,w(tn)) ¢ [dom(ps)] for all ps € PSy, then w(f(t1,...,tn)) = L. We
say that w satisfies PS (under [-]), and write w = PS, if w =) ps for all
ps € PS. We say that w satisfies S, and write w | S, when w = ~pg and
w =1 PS. We denote by (25 the set of all w € € which satisfy S.

Ezample 3. Functions w that satisfy our equational theory may be such that
w(t) = L and w(t’) # L for terms ¢ and ¢’ such that ¢t ~g t’. To see why this
is allowed, recall from Example [T that {H}_1 represents a symmetric encryption
algorithm in which valid keys always have 256 bits. Let ¢,k € Xy, with type(t) =
text, and t' = {|{\t|}k|},:1 We have t ~p t'. If w represents a possible real-
world assignment (of terms to bitstrings), we have w(t) # L (since ¢ represents a
bitstring freshly sampled from B25). Moreover, if w(k) is not a 256-bit bitstring,
then w(t’) = L since our encryption and decryption functions are only defined
for 256-bit keys. Therefore, w({|{t[}, ;") = L.

Probabilistic models. Since valid, real-world protocol execution traces are finite,
we are interested in events that depend on finitely many terms. For each finite
set of terms K C T, let Ax be the set of functions \: K — P(B%}) and, for
each A € Ak, let £2) be the set of all w € Q such that w(t) € \(¢) for all t € K.
Let A = UKePﬁn(Tz) Ag and 24 = {2\ | A € A}, where Pgn(X) is the set of
finite subsets of X. Note that {2, is the set of subsets of £2 whose specification
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depends on only the instantiation of finitely many terms. Thus, we want our
probability measure to be defined in the o-algebra generated by (2,. Let F be
this o-algebra; we say that F is the o-algebra of finitely generated events.

We consider probability spaces (2, F, i), where € and F are as defined above
and p: F — [0,1] is a probability measure. Note that €2 and F are fixed for
a given §; it is p that we are interested in studying. If t € Ty, we write
t:Q — B*% to denote the random variable on © defined by #(w) = w(t). We
adopt standard (abuses of) notation from probability theory. If C(by,...,by)
is a condition whose satisfaction depends on the bitstring values by, ..., by,
we write P,[C(f1,...,1,)] for p({we Q| C(ﬂ(w),...,t;(w))}), provided that
{weq] C’(t:(w),,t;(w))} € F. If 2 € F, we write P,[f2] instead of u(£2).
We say p satisfies the equational theory ~p if p({w | w = ~r}) = 1, and we
write p = &g to denote this fact. Analogously, we define the satisfaction of PS
(under []) by p, p =g PS, by p({w | w =pj PS}) = 1. We say that u satis-
fies, or is a model of, the setup specification S, written p = S, if u = ~g and
v =g PS. Note that p is a model of S if and only if u(f2s) = 1.

3 A Generalized Random Oracle Model

In this section we propose an algorithm for sampling the random variables associ-
ated with symbolic terms. Our algorithm interprets functions as random oracles
subject to satisfying our setup specification S = ((¥, =g, T, PS), ['])-

3.1 Tentative Term Sampling in the ROM

Term sampling. Suppose that K C T’ is a finite set of terms and P is a partition
of K. We define ~p to be the smallest congruence relation on T such that
~gr C ~p and t ~p t’ whenever there is p € P such that ¢,#' € p. Note that ~p
may be coarser than both K/~ and P: For example, if there are a,b € Xy and
p € P such that a,b € p, then {{M[] [}, ~p M. However, {{{M[} I}, #r M

and there is not necessarily a p € P such that M, { {\M|}a\}b_1 € p.

The sampling algorithm below builds a function ¥roy mapping a finite set
of terms to B%. We denote by P(¢rom) the partition of dom(yrom) given by
P(trom) = {¥ron(b) | b € ran(Yrom) }. The algorithm is probabilistic: at var-
ious steps, it samples a random bitstring from a finite subset of B* . We assume
that this sampling is always done with uniform probability distribution. We also
assume fixed some total order < on the set of terms such that, if ¢ € psub(t'),
then ¢ < ¢. We say that such an order is subterm-compatible.

Algorithm 1 (Tentative Term Sampling Algorithm)

Input: a finite set of terms K C Tx;.

Output: « function Yron: sub[K] — B .
1: Yrom 0
2: let tq,...,t, be such that t1 < ... <ty and sub[K| = {t1,...,tx}
3: for i from 1 to k
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4o detti=f(t, ... t)

5: i (Yrom(th), --. Yrom(ty,)) & doms(f)

6: Yrom(t;) « L

7: continue

8 let ps be the unique ps € PSy s.t. (Yrom(t)), - .., Yrom(t,)) € [dom(ps)]
9 if 3’ € dom(Yrom)- ti %p(wROM)t’ and Yrom(t') # L
0 Yrom(t:) < Yrom(t')

11: continue

12: randomly sample b from [ran(ps)]

13: Yrom(ti) b

14: return Yrom

Algorithm [l samples terms in order (lines 2-3), by interpreting each function
symbol as a random oracle with uniform probability distribution (lines 12-13),
and respecting the equational theory in case an equal term has already been
sampled (lines 9-10), as long as its argument values (previously sampled) form
a tuple in its domain of definability (lines 5-6).

We remark that this procedure is only used to define our probability distri-
bution p: in general, it may not be feasible to decide membership of the sets
[dom(ps)] or to sample from [ran(ps)]. In [25] we describe our algorithm for
computing .

Problems with the tentative term sampling algorithm. We show that Algorithm [I]
does not necessarily yield a probability measure over F as desired.

Given a finite set K C T and a subterm-compatible order <, Algorithm [I]
is a probabilistic algorithm, and thus outputs functions ¢: sub[K] — B} with
some probability distribution. We would therefore like to define a model p of S
by defining p(£2)) for each generator {2, of F as the probability that executing
Algorithm [[ on input dom()) yields as output a function ¥ron such that, for
each t € dom(\), Yrom(t) € A(¢).

Unfortunately, the next example shows that this is not well-defined in gen-
eral. Concretely, we show that there are terms ¢ and ' such that, letting A\, =
{t = b,a > b} for each b € B, the probability of the set UbEB1 {2, depends
on the input set K and the order relation < considered.

Ezample 4. Suppose that a,b, k € Xy are such that type(a) = Tio24, type(b) =

Tpgoz4 and type(k) = random. Consider executing Algorithm [I] on the set {t},
1

with t = {{a}mod(k)’expn(k) }b . Algorithm [M] outputs a function ¢: sub(t) — B .

Let us consider the probability that ¢ (t) = ¥(a). It is simple to check that both

¥(t) and ¢ (a) are sampled by Algorithm [l with uniform probability distribution

from B1024. Therefore, the probability that ¢ (t) = 1(a) is 271924,

Now, consider executing Algorithm [[lon the set {¢,inv(k)}. If ¢ < inv(k), then
the execution of Algorithm [T will be exactly the same until ¥(s) is sampled for
all terms s € sub(t), and ¥ (inv(k)) is only sampled afterwards. Therefore, 1 (s)
is sampled according to the same probability distribution for all s € sub(t), and
the probability that 1 (¢) = ¥(a) is still 271024, However, if inv(k) < b, we have
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a probability of 271924 that 1 (b) = ¢ (inv(k)). If ¢(b) = ¢ (inv(k)), then we have
¥ (t) = ¥(a) with probability 1. Otherwise, 1 (t) and v (a) will still be sampled
from B1924 with uniform probability distribution, and the probability that they
are sampled to the same value is again 271924, In this case, we conclude that
Plp(a) = (t)] = 271024 . (2 — 271024) £ 2-1024 Thyg, the probability that
¥(t) = 1(a) depends on both the input set K and the order <.

Despite the example above, the following result shows that, given a fixed finite
set of terms K and a subterm-compatible order <, Algorithm[]does yield a prob-
ability distribution on the o-algebra Fx generated by the set {2\ | A € Ak }. We
remark that Fp is the o-algebra of events that depend only on the instantiation
of terms in the set K.

Theorem 2. There is a unique probability distribution MK7_<:fsub[K] — [0,1]
such that, for each X\ € Ay, p*=(82) is the probability that executing Algorithm
@ on input K and using the order < yields a function ¥rom such that, for each
t € K, Yrom(t) € A1)

3.2 Revised Term Sampling in the ROM

To avoid problems like the one illustrated by Example @l we need two additional
hypotheses on the setup specification §. We will explicitly distinguish a set of
weak function symbols and consider a revised algorithm that uses this distinc-
tion. This revised algorithm is equivalent to Algorithm [I] when all functions are
treated as weak. We show that, under these hypotheses, we can define a prob-
ability measure from this new sampling algorithm, while also simplifying the
calculation of probabilities.

Weak terms. We assume fixed a set X C X of weak function symbols. We
say that a term t € T is weak if head(t) € X" and denote by TW the set
of weak terms. Intuitively, weak function symbols are those that represent func-
tions whose outputs are sampled from “small” sets, and a probabilistic model
must therefore take into account the possibility of collisions between them. By
contrast, non-weak function symbols are those that represent functions whose
outputs are sampled from large enough sets, so that ignoring the possibility of
collisions changes our probability estimates only negligibly. Theorem [, stated
below, formalizes this idea.

Example 5. In our running example, we consider the set of weak function sym-
bols XV = {h} U {a € Xy | a Cps pw}. That is, a term is weak if it is a hash or
if it is derived from a humanly-chosen password. Note that the probability of a
collision in a hash function is in fact rather low, and indeed the security of many
protocols relies on hash functions being collision-resistant. However, modeling
hash functions as weak increases the accuracy of our model while still allowing
us to define a consistent probability distribution.
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Term sampling revisited. If K and K’ are sets of terms and P is a partition of
K, welet Plg={pnN K'|pe P}. Note that P|g- is a partition of K N K'. We
denote by W (¥rom) the partition P(¢¥ronm)|7w .

Our revised term sampling algorithm, targeted at solving the anomaly de-
scribed in Example E is the same as Algorithm [ with the exception that
we replace the condition t; ®p(yps 0t Y ti MW (ypoynt in line @ Note that
this revised sampling algorithm does not necessarily respect congruences, i.e.,
we may have Yron(t) = Yrou(t') and vron(f(8)) # Yrom(f(t). However,
this only happens if either ¢ or ¢’ is not weak, in which case the collision
Yrom(t) = Yrom(t") only occurs with negligible probability.

This revised algorithm yields a probability distribution on F provided that
the setup specification S satisfies two reasonable conditions, described below.

Disjointness. The first condition we require on the specification S is that weak
function symbols do not occur in the rewriting system R.

Intuitively, this disjointness condition implies that the equality of terms de-
pends only on the equalities between their weak subterms. Thus, sampling terms
in a different order does not affect any equalities because terms are sampled only
after all their subterms are sampled. This condition excludes cases like that de-
scribed in Example @ because inv ¢ X% even if ¥rom(b) = Yrom(inv(k)), we

-1
never have {{a}mod(k)’expn(k)}b

between non-weak terms may be disregarded, as they occur only with negligible
probability. Ignoring equalities between non-weak terms, besides allowing us to
consistently define a probability measure, also simplifies the calculation of prob-
abilities. In [25] we present a simple algorithm for deciding ~p (that is, given
terms ¢ and ¢/, decide whether ¢ &p t'), and thus to perform the test in Line 9
of Algorithm [M and its revised version.

AW (ppoy) @ The key idea is that equalities

Compatibility. The second condition we require on our setup is compatibility.
Let K be a finite set of terms and P be a partition of K. Recall the definition
of ~p given in Section Bl We say that P is ~g-closed if, for all ¢t,t’ € K,
whenever ¢t ~p ¢’ there is p € P such that ¢,t' € p; equivalently, P is ~g-closed
if ~p|kxr= {(t,t") | there exists p € P such that ¢,t’ € p}. We are interested
in partitions of weak terms. Thus, given a finite set K, we denote by PW (K)
the set of ~g-closed partitions of sub[K]NTW.

A selection function for K is a function ¢: sub[K| — PSU { L} such that, for
each t € sub[K], either «(t) = L or head(c(t)) = head(t). Given w € £, we say
that w satisfies ¢ if, for all t = f(t1,...,t,) € sub[K], either (w(t1),...,w(ty)) €
[dom(c(t))] and w(t) € [ran(c(t))], or (w(t1),...,w(tn)) ¢ doms(f) and ¢(t) =
w(t) = L. We denote by I(K) the set of selection functions for K, and by
Is(K) C I(K) the set of selection functions ¢ for K such that there is w € Q
that satisfies ¢. In [25] we show that, given a finite set of terms K, Is(K) is a
finite and computable set.

If K is a finite set of terms, a selection function for K determines which
property statement applies to each term in sub[K]: Indeed, if w € € satisfies
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PS, there exists exactly one selection function ¢ € I(K) satisfied by w, which
associates each term f(¢1,...,%¢,) to the unique property statement ps € PS;
such that (w(t1),...,w(t,)) € [dom(ps)], or L if no such ps exists.

The compatibility condition is that, if K is a finite set of terms, ¢ € sub[K],
P e PY(K), . € Is(K), and «(t) # L, then there is ¢’ € sub(t) such that
E AP b t' and, whenever t” € sub[K] and t R P psube t”, either o(t"") = L
or [ran(c(t'))] C [ran(c(t”))]. Intuitively, this condition requires the equational
theory ~p and the property statements in PS to be compatible. It is a basic
requirement that should be satisfied by any meaningful setup specification. The
following example illustrates this.

Ezample 6 (Incompatibility between ~pg and PS). Consider a rewriting system R

~1

-1 v -1
erty statements {‘ngsa ‘}TB256 C Tpiizs, {‘ngsa ‘}TBZSG C Tyess. Let t' = {‘ {|t‘}k‘}k ,
where ¢,k € Xy and type(t) = type(k) = Tpzss. In this case, we have ¢(t) = Tiese
and ¢(t') = Tpizs for all selection functions ¢ € Is({t,t'}). We have ¢t ~p ¢/,
[ran(c(t))] = Tgess, and [ran(c(t'))] = Tpgizs. Because B28 N B2 = 0, it
follows that there is no w € € that satisfies ~p and PS. Note that, having
{|T 5256 ‘};51255 C Tpese instead of {|Tgzs6 ‘};51255 C Tpizs, we could have type(t) =

containing the symmetric decryption rewrite rule {’{|x|}y ’} — x and the prop-

B for any non-empty set B C B2°6 without violating our compatibility condition.

Example 7. With the choice of X" given in Example B, our running example
(from Examples [[H3)) satisfies the disjointness and compatibility conditions.

Probability measure. Under the disjointness and compatibility conditions, the
revised sampling algorithm yields a probability measure puron. For each total
subterm-compatible order < and each A € A, let () be the probability that
executing the revised version of Algorithm [[]on input dom()) using the order <
yields a function ¥ rom: sub[K| — B7 such that yrom(t) € A(t) for all t € K.

Theorem 3. Suppose that the disjointness and compatibility conditions are sat-
isfied by S and XV, and let < and <’ be two subterm-compatible orders. If \,\' €
A are such that 2\ = 2\, we have p=(X\) = p=~ (N). There exists a unique ex-
tension purom of u= to F that is a probability measure, and prom(£2s) = 1.

Theorem Bl implies that prop is well-defined, as it does not depend on the
choice of the order <, and that it is a model of S.

3.3 Comparing Probability Measures

We describe the relationship between the probability measures u= described
in Theorem [2] and the probability measure pronm described in Theorem [3

For each f € X, let Ly = min, . pg, |[ran(ps)]| and L = mingcs\sw Ly.
Note that, if non-weak terms are always sampled from “large” sets of bitstrings
whenever they are defined, then L is large as well. Intuitively, Theorem [ shows
that, in this case, u®*= and puron coincide except on a set whose probability is
“small”. More precisely, fixed K, the probability of this set is O(1/L).
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Theorem 4. For any finite set of terms K, there exists a set 2(K) such that,
for any subterm-compatible order <:

(1) for any X € A, p™= (23 N R(K)) = prom(2x N 2(K));
(2) there exists a polynomial function p such that

PSR\ K)) = prom(R\ 2(K)) < |sublK][* - [Is(K)| - (1/L).

Note that the statement of Theorem Ml is stronger than merely bounding the
difference in the probability of sets in §2,4. For example, Theorem M implies that
the probability of two terms being sampled to the same bitstring as measured
by 5= and pgon also differs by at most |sub[K]|* - [Is(K)| - (1/L).

Asymptotic interpretation. Suppose that, for each n € N, [[]]77 is a type interpre-
tation function and S, = ((¥,~g, T, PS ), [],) is a setup specification which,
together with a set Z" of weak function symbols, satisfies the disjointness and
compatibility conditions. Assume further that 1/L, is negligible as a function
of n, where Ly, = min, pg, [ran(ps)], and L, = minges\sw Ly, for each
n € N. Note that this condition is equivalent to requiring, for each function
symbol f € ¥\ W and each ps € PSy, that 1/ ‘[[ran(ps)]]n’ is negligible as
a function of 7. Intuitively, this condition requires that non-weak terms, when
defined, are always mapped to bitstrings sampled from large enough sets.

Let ,unK = (respectively, grom,,) be the probability measure given by Theorem
(respectively, Theorem B]) when Algorithm [II (respectively, the revised version
of algorithm [I)) is executed using the interpretation function [[]]77 Then, the
following is a corollary of Theorem [l

Corollary 1. Let K be a finite set of terms, and suppose that |ISn (K)’ grows
polynomially as a function of 1. For any finite set of terms K, there exists a set
Q(K) such that, for any subterm-compatible order <:

(1) for any \ € Ak, pff”((l,\ N 2(K)) = prom,n (25 N 2(K));
(2) Mff’*(ﬂ \ 2(K)) = prom,n (2 \ 2(K)), and both quantities are negligible as
functions of n.

Comparison with the random oracle and ideal cipher models. Algorithm[exactly
matches the random oracle model for hash functions. Its only difference with
respect to the ideal-cipher model for symmetric encryption is that two different
bitstrings may be encrypted to the same ciphertext under the same key. However,
if the range of the encryption function is large enough (i.e., larger than any
polynomial function of the security parameter), then the probability of such a
collision is negligible for any (finite) input set. In light of Corollary [Il we thus
conclude that the probability measure prop differs only negligibly from the
probabilities yielded by the random oracle and the ideal cipher models.
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3.4 Computing Probabilities

In [25] we present an equivalent, algebraic definition of the probability mea-
sure proym which reduces the problem of computing probabilities of the form
Pupoultt € Bi,... ty € Bty = t1,...,t,, = t,,] (with By,...,B, C BY)
to computing the sizes of intersections of sets in {Biy,...,B,} U [T]. A full
specification of the interpretations of types is not necessary.

Our prototype implementation computes probabilities of this form for the
cryptographic primitives and respective properties considered in our running
example. The user may, however, need to specify the sizes of intersections of the
sets of bitstrings By, ..., B, with the specified property types.

Let T = {t1,...,tn,t},tY,..., ), t,}. Since we must consider ~g-closed
partitions of 7Y N sub[T], the complexity of the computation is exponential in
|T gV N sub[T] ’ However, for the specification considered in our running example,
if T contains no subterms of the form 7;(¢) for ¢ € {1, 2} and ¢ such that head(t) #

(+,-), the complexity is linear in the number of non-weak subterms of T'.

4 Off-Line Guessing

Let s be a term representing a bitstring in B C B* that is intended to be secret.
If an attacker can feasibly enumerate all bitstrings in B, he may try to rule out
the possibility that s represents each such bitstring. The attacker’s ultimate aim
is to exclude all but one bitstring in B and thereby learn the secret s even if it
may not be directly deduced by constructing terms and reasoning equationally.
When the attacker does not need to interact with other agents to verify his
guess, this is called an off-line guessing attack. In this section we describe how
properties of cryptographic primitives described by S can be used to find and
estimate the success probability of non-trivial off-line guessing attacks.

4.1 Attacker Model

We will assume fixed an infinite set ' C Xy such that X \ A is finite. Symbols
in NV represent random data generated by the agents, whereas symbols in Yo\ N
represent cryptographically relevant constants (such as the bitstring 0). We also
assume fixed a countably infinite set V of variables, disjoint from X

We represent an attacker’s knowledge by a frame [27], i.e., a pair (71, o), written
vin.o, where nn C N is a finite set of names and o:V - T is a substitution.
Given a frame ¢ = vi.o, we define Ty = T'x;\5(dom(c)). We say that terms in T
are ¢-recipes as they represent the ways in which an attacker can build terms.

Suppose that an attacker whose knowledge is represented by a frame ¢ = vi.o
attempts an off-line guessing attack of a secret s. We require that the set of
bitstrings tried by the attacker is [type(w)] for some w € A that does not occur
in either 7 or o, and we model the attacker’s guess by w. Letting « ¢ dom(o) be
a fresh variable, we consider the frames ¢s = vi,.0s and ¢, = vNy,.04, where
Ny = nU{w}, 0s = cU{x — s}, and 0, = cU{z — w}. Here, ¢ represents the
attacker’s knowledge using the right guess, while ¢,, represents his knowledge
when his guess is wrong.
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Guess verifiers. We consider two ways in which an attacker can verify whether
his guess w is correct. First, he can use his guess to construct a pair of terms (¢,t’)
that are equal under ~p if w = s, but different if w # s. This is equivalent to
¢ and ¢, not being statically equivalent, and is the usual definition of security
against off-line guessing used in symbolic methods [16,20,27]. Second, he can
use his guess to construct a term ¢ whose corresponding bitstring satisfies some
given property if w = s, and not necessarily otherwise.

Given a term ¢t and p € N*, we denote the subterm of t at position p by t|,,
where t|. = ¢ and, for t = f(t1,...,tn), tlip = ti|p for i € {1,...,n}, where i.p
denotes the sequence of integers obtained by prepending ¢ to the sequence p. The
set eqv(¢,t) of equational verifiers of a term ¢ (under ¢) is the set of pairs (¢,t')
such that t,t' € Ty, tos ~g t'os, toy, #r t' 0w, and there is no p € N*\ {¢} such
that these conditions hold for the pair (¢],,#|,). These are the pairs of recipes
that an attacker may use to validate his guess using the first strategy.

To model the second attacking strategy, we will consider a set 7T of test types
that model the attacker’s ability to test whether a bitstring is in a given set. The
set tv(¢,t) of type verifiers of t (under ¢) is the set of pairs (¢,7T) such that
t €Ty, T € TT, Pupoyltos € [TT]] = 1, Puppy,ltow € [TT]] # 1, and there
are no p € N*\ {e}, TT" € TT such that these conditions hold for (¢|,, TT").
Note that to model a realistic attacker one must choose test types such that [17]
is efficiently decidable for all T' € TT.

Ezample 8. We will consider the test types odd, with Jodd] corresponding to the
set of 1024-bit bitstrings that represent an odd number, so that |[odd]| = 21923,
and nspf, with [nspf] corresponding to the set of 1024-bit bitstrings representing
numbers with no prime factors smaller than 10°. We have |[nspf]| ~ [],cp o (p—
1)/p = 1/24, where P; represents the set of prime factors smaller than ¢. These
test types are used to model off-line guessing attacks in Section

Our requirements on the sub-positions of verifiers prevent us from having
infinite sets of spurious verifiers. For instance, let h%(¢) = t and h"*!(t) =
h(h™(t)) for each n € N, and let (¢,t') be an equational verifier. Without this
requirement, all pairs (hi(¢), hi(t')) for i € N would be verifiers as well. However,
if an attacker tests the pair (to,,t 0y ), he cannot obtain more information by
testing the pairs (h%(t)oy,, hi(t')oy,), for i > 0.

In [25] we describe an algorithm for computing equational and type verifiers
for any signature X' and any convergent rewriting system R.

4.2 Off-Line Guessing Examples on EKE

The EKE (Encrypted Key Exchange) protocol, proposed in [22], is designed to
allow two parties to exchange authenticated information using a weak symmet-
ric key. The authors show that naive versions of the protocol, while possibly
symbolically secure, are nevertheless subject to off-line guessing attacks when
implemented using RSA public keys. These examples illustrate that such attacks
can result from implementation details that, while often trivial, are outside the
scope of traditional symbolic methods.
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We now show how our methods can be used to model and estimate the suc-
cess probability of two such off-line guessing attacks. In both cases it is sufficient
to consider the first step of the protocol. Probability calculations in this sec-
tion rely on the setup specification of our running example and are performed
automatically by our prototype implementation in less than one second.

Example 9. In the first step of this version of the protocol, an agent A samples
a bitstring from [random] represented by a term r € Xy such that type(r) =
random, and uses it to compute an RSA public key (mod(r),expn(r)). Then, A
(symmetrically) encrypts this public key with a password s shared between A
and the intended recipient B. To keep our analysis simple, we assume that the
participants encrypt the modulus and the exponent separately and send them
over the network as a pair of encryptions (instead of the encryption of the pair).
Thus, this first message is represented by the term ({{mod(r)[}, , {expn(r)[},)-
See [22] for a full description of the protocol and its variants.

After observing this message in the network, the attacker’s knowledge is given
by ¢ = vi.o, where 0 = {x1 — ({mod(r)[},, {lexpn(r)[},)} and 7 = {r}. The
relevant frames for the analysis of off-line guessing are ¢; = vi,.05 and ¢, =
VTl .0, Where 1, = U {w}, 05 = 0 U {z2 — s}, and o, = o U {z2 — w}.

There are no equational verifiers: eqv(¢,s) = 0. However, while it may be
infeasible to check whether the modulus is the product of two primes, an attacker
can use his guess w to decrypt the pair sent by A and test whether the result is
a 1024-bit modulus without small prime factors and an odd exponent e. Thus,

tv(6,5) = { (Im (@), nsph), (Ima(an) ;) odd) }.

—

We have mmw € B2, Thus, {m (x1)|};21 0y is sampled from B!
and the probability that {m; (x1)|};21 has 1024 bits is [B1024| /|B(769:1020)| —
21024/ ‘23227%9 2| ~ 1/2. The probability that a 1024-bits bitstring is in [nspf]

is approximately 1/24, and the probability that {72 (x1)|};21 is odd is 1/2. There-
fore, each wrong guess satisfies the two type verifiers with probability

769,1024)
b

= = 1 1 1 1

B [ma @) o € Do et o € ocdll] = -5 = o

Since there are 22* — 1 wrong guesses, we estimate the probability of success
of this off-line guessing attack as described above to be 1+(2241_1)/96 ~ 27175
corresponding to the probability of picking the right guess from those which
satisfy the equational and type verifiers.

Ezample 10. Consider the same setup as in Example [ except that only the
exponent of the RSA public key is encrypted in the first message. The authors
of EKE note that the protocol is still vulnerable to off-line guessing attacks: Since
the exponent of an RSA key is always odd, one can decrypt each encryption of a
public key with each guess. For the right guess, decrypting each encryption will
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yield an odd exponent. The probability that a wrong guess achieves this decreases
exponentially with the number of encryptions available to the attacker [22].

To formalize this in our setting, we let ¢ = vn.c be the frame representing the
attacker’s knowledge, where o = {z; — (mod(r;), {lexpn(r;)[},) | i € {1,...,n}}
andn = {ry,...,rn,s}. The frames ¢ and ¢,, used are as expected: ¢5 = V7iy,.05
and ¢, = Vily.0q, where 7, = 7L U {w}, 05 = 0 U{zp41 — s}, and o, =
o U{zp+1 — w}. As before, there are no equational verifiers: eqv(¢, s) = @). The
set of type verifiers is given by tv(¢, s) = {({‘7‘1’2(1’2)|};"1+1 ,odd) |3 € {1,..., n}}

As in Example [@ we obtain 1/(1 + (224 — 1)/27+1) = 2n+l /(2n+] 4224 1) as
an estimate for the success probability of this off-line guessing attack.

We remark that when assessing the threat level of off-line guessing attacks one
must consider not only the probability of success, but also the computational
effort involved, i.e., the number of guesses that must be verified. In the attacks
modeled by our method, this number is approximated by G * p, where G is the
size of the space of guesses to be tried and p is the probability that a random
guess satisfies all verifiers. This corresponds to the expected number of guesses
that an attacker must try before finding one that satisfies all verifiers.

5 Conclusion

We presented a symbolic and automatable probabilistic framework for security
protocol analysis. Our framework allows one to express properties of crypto-
graphic primitives which are outside the scope of Dolev-Yao models, thereby
modeling a stronger attacker. We illustrated its usefulness by modeling non-
trivial properties of RSA and using them to analyze off-line guessing attacks on
the EKE protocol which cannot be modeled by existing symbolic methods.

We have proposed a probability distribution based on interpreting functions
as random oracles subject to satisfying the properties of cryptographic primitives
described in our setup. This is a non-trivial generalization of the random ora-
cle model. By using this probability distribution, we can (automatically) reason
about an attack’s success probability. In [28] we provide a prototype implemen-
tation of our methods, which computes probabilities in our formalization of a
Dolev-Yao attacker using RSA asymmetric encryption and terminates in less
than one second for all the examples presented in the paper.

More generally, our approach can be used to analyze a broad range of attacks
and weaknesses of cryptographic primitives that could not previously be analyzed
by symbolic models. These include some forms of cryptanalysis (such as differ-
ential cryptanalysis to AES, DES or hash functions, as in [29]) and side-channel
attacks [24]. Short-string authentication, used in device pairing protocols, and
distance-bounding protocols relying on rapid-bit exchange, are ill-suited for anal-
ysis with existing symbolic methods as their analysis is intrinsically probabilistic.
However, they are amenable to analysis using our framework.

As future work, we plan to integrate this approach with a symbolic protocol
model-checker capable of generating protocol execution traces and the proba-
bilistic queries relevant for deciding whether a trace allows an attack. In the
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case of off-line guessing, this amounts to computing the sets of equational and
type verifiers, a task closely related to that of deciding static equivalence. Since
our probabilistic analysis can be performed automatically (as illustrated by our
prototype), this allows our analysis to be fully automated. We expect that such
an approach will allow us to find numerous new protocol attacks relying on
properties of the cryptographic primitives used.
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