
Assessing the Performance of OpenMP Programs
on the Intel Xeon Phi�

Dirk Schmidl1,3, Tim Cramer1,3, Sandra Wienke1,3,
Christian Terboven1,3, and Matthias S. Müller1,2,3

1 Center for Computing and Communication, RWTH Aachen University, D - 52074 Aachen
2 Chair for High Performance Computing, RWTH Aachen University, D - 52074 Aachen

3 JARA High-Performance Computing, Schinkelstrae 2, D 52062 Aachen
{schmidl,cramer,wienke,terboven,mueller}@rz.rwth-aachen.de

Abstract. The Intel Xeon Phi has been introduced as a new type of compute
accelerator that is capable of executing native x86 applications. It supports pro-
gramming models that are well-established in the HPC community, namely MPI
and OpenMP, thus removing the necessity to refactor codes for using accelerator-
specific programming paradigms. Because of its native x86 support, the Xeon
Phi may also be used stand-alone, meaning codes can be executed directly on the
device without the need for interaction with a host. In this sense, the Xeon Phi
resembles a big SMP on a chip if its 240 logical cores are compared to a com-
mon Xeon-based compute node offering up to 32 logical cores. In this work, we
compare a Xeon-based two-socket compute node with the Xeon Phi stand-alone
in scalability and performance using OpenMP codes. Considering both as indi-
vidual SMP systems, they come at a very similar price and power envelope, but
our results show significant differences in absolute application performance and
scalability. We also show in how far common programming idioms for the Xeon
multi-core architecture are applicable for the Xeon Phi many-core architecture
and which challenges the changing ratio of core count to single core performance
poses for the application programmer.

1 Introduction

Intel calls the new Intel Xeon Phi a coprocessor instead of using the term accelerator.
Indeed it can be both, an accelerator which is used to speed up scientific applications,
or a standalone SMP on a single chip. In the first case compute-intensive parts of an
application can be executed on the device, as it is known from programming paradigms
like CUDA or OpenCL explicitly designed for accelerators. For the Xeon Phi this can
be achieved with the Intel Language Extensions for Offload (LEO). However, in this
work we will focus on the second scenario and assess the behavior of Xeon Phi as
an SMP machine with many cores. The coprocessor itself is able to run x86 code and
supports many standard parallel programming paradigms like OpenMP or MPI which
is meant to make the rewrite of a kernel or even complete applications unnecessary.
The aim is to reach a much better usability and make the Xeon Phi available for a wider

� Parts of this work were funded by the German Federal Ministry of Research and Education
(BMBF) under Grant No. 01IH11006.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 547–558, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

548 D. Schmidl et al.

range of applications than it is possible with GPUs today. However, the fact that code
optimized for multi-core architectures can run on this new many-core architecture by
just recompiling does not mean that the performance for general-purpose applications
is as desired. We investigate if OpenMP constructs, such as OpenMP tasks and nested
parallel regions, can be used on the Xeon Phi efficiently. This would allow executing
more complex programs natively in contrast to just offloading vector parallel loops as
it is done for other accelerators. We present a performance evaluation with both basic
kernels as well as more complex benchmarks, like a conjugate gradient solver to show
that there are no general reasons which prevents an efficient use of the Xeon Phi as a
SMP system on a chip. Furthermore, we evaluate the performance of the NAS parallel
benchmarks and some real-world application codes, which use different methods to
utilize the coprocessor.

The structure of the paper is as follows: First, we give an overview of related work
done in this field in Sec. 2 and provide an overview of the Intel Xeon Phi architecture
compared to Xeon architecture in Sec. 3. We start the performance evaluation in Sec. 4
benchmarking the memory subsystem, selected OpenMP constructs and CG method.
Then we present the NAS parallel benchmarks and some real-world application codes,
which use different methods to utilize the coprocessor, in Sec. 5 and Sec. 6, before we
conclude this paper in Sec. 7.

2 Related Work

Previous studies show that throughput-oriented processors like GPUs are one way to
fulfill the requirement for more and more compute capabilities. This is not only valid
for dense linear algebra kernels [18], but also for memory-bound kernels like sparse
matrix vector multiplication [2] (depending on the matrix storage format). In order to
benefit from the GPU compute capabilities in general-purpose CUDA applications it
is essential to understand the underlying hardware architecture in addition to the pro-
gramming model [6]. Thus, the effort for porting scientific applications to CUDA or
OpenCL can be much higher compared to directive-based programming models like
OpenMP [19].

While early experiences on Intel Xeon Phi coprocessors revealed that porting sci-
entific codes can be relatively straightforward [15], other studies also show that this
does not necessarily mean that a reasonable performance can be reached without any
architecture-specific optimizations like vectorization, software prefetching, SIMD
intrinsics, large TLB tables, hardware-supported gather or the correct padding and
alignment. [14] showed that the baseline implementation of an compute-intensive radar
computation program can be slightly faster on one Xeon Phi compared to a two-socket
Sandy Bridge (SNB) system, but that 2x speedup can only reached with architecture-
specific optimizations and modifications of the algorithm. [20] gained similar results
for multigrid methods which are widely used to accelerate the convergence of iter-
ative solvers. In their study the baseline implementation of the code is even slower
on one Xeon Phi compared to two Sandy Bridge processors, but also benefits from
the coprocesser after specific optimizations. While [14,20] concentrate on one specific

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi 549

M
em

ory &
 I/O

 interface

Core

L1

Core

L1

Core

L1

Core

L1

L2 L2 L2 L2

L2 L2 L2 L2

L1 L1 L1 L1

Core Core Core Core

…

Ring network

Ring network

…

…

…

…

…

(a) High-level architecture of the Xeon
Phi coprocessor.

Instruction Decode

32k/32k L1 Cache inst/data

512k L2 Cache

Scalar
Unit

Scalar
Registers

Vector
Unit

Vector
Registers

Ring

(b) Functional units of
the Xeon Phi coprocessor
core.

Co
re

Co
re

Co

re

Co
re

Co
re

Co
re

Co

re

Co
re

L1

L1

L1

L1

L1

L1

L1

L1

L2

L2

L2

L2

L2

L2

L2

L2

L3 cache

M
em

ory Controller

Q
PI

Co
re

Co
re

Co

re

Co
re

Co
re

Co
re

Co

re

Co
re

L1

L1

L1

L1

L1

L1

L1

L1

L2

L2

L2

L2

L2

L2

L2

L2

L3 cache

M
em

ory Controller

Q
PI

(c) High-level archi-
tecture of the SNB
system.

Out-of-Order

In-Order

Pre-decode

Instruction Queue

Decode

Rename/Alloc

Retirement Unit

Sc
he

du
le

r

ALU, Branch,
SIMD,Move

ALU, FAdd, SIMD

ALU, FMul, SIMD

Load, StAddr

Load, StAddr
L1 data
cache

Shared
L2

 cache

Store

(d) Functional units of the Xeon processor
core.

Fig. 1. CPU and core architectures of the Intel Xeon processor and the Intel Xeon Phi coprocessor

application, we focus on a wider range of smaller compute kernels as well as real-world
application studies to assess the performance of OpenMP programs.

3 Architecture Comparison

In this section, we compare the architectural differences between the Intel Xeon E5
processors and the Intel Xeon Phi coprocessors.

The Intel Xeon Phi coprocessor provides a shared-memory many-core CPU that is
packed on a PCI Express extension card. The specific version used here has 60 cache-
coherent cores clocked at 1.053 GHz and 8 GB of coprocessor memory. Each core has
32 KB L1 instruction and data cache and a 512 KB L2 cache. A ring network connects
all cores with each other and with memory and I/O devices (see. Fig. 1(a)). Every core
in the SNB system has the same amount of L1 and L2 cache as the Xeon Phi cores,
but there is also a shared 30 MB L3 cache on the SNB chip. The system used for our
experiments consists of two 8-core chips clocked at 2.0 GHz, connected through the
Intel Quick Path Interconnect (QPI) (see Fig. 1(c)). Hence, the two-socket SNB-system
offers a NUMA architecture while the Xeon Phi has a flat memory model.

550 D. Schmidl et al.

0
50

100
150
200

1 2 4 8 16 32 64 128 256Ba
nd

w
id

th
 in

 G
B/

s

Number of Threads

SNB System
Intel Xeon Phi

Fig. 2. Memory bandwidth on the SNB and the Intel Xeon Phi system, measured with the stream
benchmark

The differences between the micro-architecture of the coprocessor and Xeon proces-
sors are more substantial (see Fig. 1(b) and 1(d)). The cores in the Xeon Phi chip are
designed to deliver a high compute power per consumed watt. They are clocked compa-
rably slowly at 1.053 GHz and execute instructions in-order. The strength of these cores
is the vector unit, which can handle 512 bit vectors.

In contrast the SNB cores use a complex out-of-order engine, which is one contri-
bution to the higher power demand of a single SNB core. However the out-of-order
engine can optimize code execution on the core and depending on the executed instruc-
tion stream this may speedup execution a lot. The SNB cores are clocked at 2 GHz and
support AVX vector operations with 256 bit vectors. Overall the peak performance of
one core is nearly the same, the SNB core can deliver 16 GFLOPS and the Xeon Phi
core 16.8 GFLOPS.

If we ignore the fact that the Xeon Phi needs a host system and look at it as a SMP
system, both investigated systems consume roughly the same amount of power (250 W),
space (one blade) and cost roughly the same amount of money, which makes this com-
parison valuable.

4 Kernel Benchmarks

This section presents some basic performance data for the Xeon Phi and SNB-system.
For all benchmarks and applications investigated porting to the Xeon Phi required only
to set-mmic as a compiler option for the Intel compiler.

4.1 Memory Benchmarks

The memory subsystem on both investigated platforms differs a lot since the SNB sys-
tem uses DDR3 RAM whereas the Intel Xeon Phi is equipped with GDDR5 RAM.
Here, we use simple benchmarks to highlight the differences in memory bandwidth and
latency for both systems.

The stream benchmark [12] is a standard package to measure the available memory
bandwidth on a system. Fig. 2 shows the results for the Triad vector operation (ā =
b̄ + x ∗ c̄) for a memory footprint of roughly 2 GB. A good thread to core mapping
was ensured with the affinity support of the Intel Compiler. We set KMP AFFINITY to

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi 551

0

100

200

300

400

1
B

4
B

16
 B

64
 B

25
6

B
1

KB
4

KB
16

 K
B

64
 K

B
25

6
KB

1
M

B
4M

B
16

 M
B

64
 M

B
25

6
M

B
1

GB
4

GB

La
te

nc
y

in
 n

s

Memory Footprint

Intel Xeon Phi
Small Stride
Large Stride

Le
ve

l 1
 c

ac
he

Le
ve

l 2
 c

ac
he

0
10
20
30
40
50
60
70
80
90

1
B

4
B

16
 B

64
 B

25
6

B
1

KB
4

KB
16

 K
B

64
 K

B
25

6
KB

1
M

B
4M

B
16

 M
B

64
 M

B
25

6
M

B
1

GB
4

GB

La
te

nc
y

in
 n

s

Memory Footprint

SNB System
Small Stride
Large Stride

Le
ve

l 1
 c

ac
he

Le
ve

l 2
 c

ac
he

Le
ve

l 3
 c

ac
he

Fig. 3. Memory latency on the SNB system and the Xeon Phi system for different memory foot-
prints. A random stride is used to walk through the memory to prevent prefetching. The small
stride most probably hits on the same page whereas the large stride always hits on one of the next
pages, causing also a TLB miss.

balanced on the Xeon Phi and to scatter on the SNB system, since these options
delivered best results.

On both systems the bandwidth rises with the number of threads for a low number
of threads. When 8 threads on the SNB or 60 threads on the Phi system are used the
bandwidth reaches 62 GB/s or 150 GB/s, respectively. After this peak the bandwidth
slightly drops down on both systems.

Next, we investigated the latency of the memory. We implemented a pointer chasing
benchmark, similar to the latency test in lmbench [13]. We use a stride with a random
offset to avoid latency hiding by hardware or software prefetching. Fig. 3 shows the
latency for two different strides on both systems. One stride is small enough to hit the
same memory page in most cases, whereas the large stride will always hit the next page
if the memory footprint is large enough. This may cause a TLB miss if the correspond-
ing TLB entry is not cached.

If the memory fits into the caches, the latency slightly rises with every cache level
and the small or large stride does not make any difference since the TLB cache is large
enough to keep all entries in the cache on both systems. With a memory footprint which
only fits into the main memory the results diverge: On the SNB system, the latency is
about 55 ns for the small and about 75 ns for the large stride, whereas it is 130 ns (small
stride) and 400 ns (large stride) on the Xeon Phi. For the small stride the ratio of clock
tick to memory latency is nearly the same on both systems since the Xeon Phi is clocked
at 1 GHz and the SNB at 2 GHz. In contrast for the large stride the ratio is 400 clock
ticks/cache miss and 150 clock ticks/cache miss on the Xeon Phi and SNB, respectively.

Concluding, the memory on the Xeon Phi can deliver a very high bandwidth com-
pared to the SNB system, but the latency is worse for large strides between the data
accesses.

4.2 OpenMP Constructs

The performance of the OpenMP runtime can be essential for the overall scalability
of OpenMP applications. Here, we investigate the overhead of synchronization primi-
tives in the Intel OpenMP runtime. First, we use the syncbench benchmark, which
is part of the EPCC microbenchmarks [4] to measure the overhead of a parallel

552 D. Schmidl et al.

for, a barrier and a reduction operation in OpenMP. Second, we use self-
implemented extensions (see [16]) of the benchmark to investigate the overhead for
OpenMP tasks and for nested parallel regions, the two only ways in OpenMP to express
multi-level parallelism. For nested parallel regions we use an outer parallel region with
two threads and vary the number of threads in the inner region. For tasks we examine
the single-producer (one thread creates all tasks) and the parallelproducer
(all threads create tasks in parallel) patterns for task creation.

Table 1. Overhead in microseconds of OpenMP synchronization constructs without nesting (top),
in an inner nested parallel region (middle) and for OpenMP Tasks (bottom) on the Intel Xeon Phi
and on the SNB system for a different number of threads

Intel Xeon Phi SNB system
EPCC syncbench

#threads Parallel for barrier reduction Parallel for barrier reduction
16 13.81 5.83 21.61 3.47 2.05 5.83
32 15.85 8.21 24.80 24.36 31.78 58.90
60 17.71 9.96 29.56

240 27.56 13.37 48.86
Nested Parallel Regions

#threads Parallel for barrier reduction Parallel for barrier reduction
2 * 8 56.67 5.47 57.83 13.89 1.79 16.86

2 * 16 117.17 7.21 130.68 27.61 2.39 32.13
2 * 30 318.93 7.74 336.03
2 * 120 1774.59 13.14 1824.63

OpenMP Tasks
#threads serial-producer parallel-producer serial-producer parallel-producer

16 81.18 1.67 63.25 0.74
32 165.50 1.78 146.41 4.11
60 294.55 3.54

240 1355.90 8.39

The systems differ in the number of cores which makes a one to one comparison
of the overhead difficult. On the SNB system our experiences have shown that most
applications deliver best performance for 16 (1 thread per core) or 32 threads (1 thread
per hyperthread). On the Xeon Phi it takes 60 or 240 Threads, respectively, to utilize all
cores or hyperthreads. We ensured the usage of one core per thread by thread binding
for 16 and 60 threads on the SNB and Xeon Phi, respectively.

Table 1 shows the measurement results for the SNB system and for the Xeon Phi
across different numbers of threads. For the non-nested constructs the overhead of using
hyperthreads is much larger on the SNB system. If all cores start one thread, the SNB
system is 3-5 times better than the Xeon Phi, whereas the time is nearly identical for
the reduction and parallel for, when all hyperthreads are used.

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi 553

For nested parallel regions, the overhead is much larger on the Xeon Phi system,
whereas it is nearly the same (compared to the non-nested regions) on the SNB sys-
tem. A reduction operation with 120 threads in the inner nested region takes 1824 mi-
croseconds, whereas the worst case on the SNB system (16 inner threads) takes only
32 microseconds. This shows that nested parallel regions introduce more overhead on
the Xeon Phi system than on the SNB. For OpenMP tasks on the Xeon Phi, the over-
head for the single-producer pattern is in the same order as for the nested par-
allel regions. Creating one task takes about 1355 microseconds, whereas it only takes
146 microseconds on the SNB system. However, creating tasks in parallel with the
parallel-producer pattern works much better, here one task creation takes about
8 microseconds, which is only 2x more than on the SNB and much less than for the
serial-producer pattern. The reason is that the tasks can be created in separate
task queues with this pattern, whereas the single-producer pattern requires lock-
ing of the task queue when all threads steal tasks out of this queue.

We conclude that the OpenMP runtime on the Phi as SMP system on a single chip
can handle thread and task creation without introducing much more overhead than
on the SNB system although the number of threads is much larger on the Xeon Phi.
If nested parallelism is needed to utilize the large number of threads available, the
parallel-producer pattern with tasks seems to be an appropriate way to express
this parallelism and it should be preferred over nested parallel regions if possible. Gen-
erally, if in a producer-consumer scenario only one thread is responsible for creating
tasks to be executed by the other threads, increasing the core count while decreasing
the single core performance (i.e. clock speed) as on the Xeon Phi may lead to the cre-
ator becoming a bottleneck.

4.3 Sparse-Matrix-Vector-Multiplication in a CG Method

To evaluate the performance of a real-world compute kernel, we use a CG solver [11].
The runtime of the algorithm is dominated by the Sparse-Matrix-Vector-Multiplication
(SpMV), so we concentrate our analysis on this operation. Depending on the sparsity
pattern of the matrix an adequate load balancing is needed. In the case of the CG-
method the optimal load balancing can be reached by using a pre-calculated number of
rows for each thread depending on the number of nonzero values per row, instead of
using a static schedule of an OpenMP work sharing construct. If this is not possible for
some problem class, OpenMP also offers some means for load balancing: The first is
to use a dynamic schedule with an appropriated chunk size for work sharing construct,
the second is to use OpenMP Tasks.

On ccNUMA machines, correct data and thread placement is essential [5]. For that
reason we initialize the data in parallel in the pre-calculated version to distribute the
pages over the sockets and bind the threads to the cores to avoid thread migration.
For the two alternative implementations, an optimal data placement is not possible
because of the dynamic scheduling, so that we use a static schedule for the data ini-
tialization. However, in [16] and [17] we have shown that at least for the tasking ap-
proach the Intel OpenMP runtime works quite well for the parallel-producer
multiple-executors pattern. Since the two test systems differ in amount and
efficient usability of hardware threads, we use different binding strategies, which are

554 D. Schmidl et al.

0

5

10

15

20

1 2 4 8 16 32 64 128 256

G
FL

O
PS

Threads

Xeon Phi, pre-calc. SNB, pre-calc.
Xeon Phi, tasks SNB, tasks
Xeon Phi, dynamic SNB, dynamic

Fig. 4. SpMV performance (1000 CG iterations) on the SNB and the Intel Xeon Phi system

optimal for this kernel and the corresponding hardware. The matrix represents a com-
putational fluid dynamics problem (Fluorem/HV15R) and is taken from the University
of Florida Sparse Matrix Collection [8]. The matrix is stored in compressed row storage
(CRS) format. The matrix dimension is N = 2, 017, 169 and the number of non-zero
elements is nnz = 283, 073, 458, which results in a memory footprint of approximately
3.2 GB. Hence, the data set does not fit into the caches.

Fig. 4 shows the performance results for the three implementations of the SpMV (1000
CG iterations) on both systems. The version using the pre-calculated distribution of the
non-zeros reaches the same performance and scalability as the tasking version on the
two-socket SNB system because both have been optimized for big shared-memory sys-
tems. The measurements show that the corresponding two unmodified, cross-compiled
Intel Xeon Phi implementation variants also end up at roughly the same performance. In
contrast to the SNB system, the worksharing version using a dynamic schedule works
even better on the Intel Xeon Phi. The reason for the different behavior of the two sys-
tems is that an optimal data distribution cannot be achieved with a dynamic schedule
on ccNUMA machines, which is not an issue on the Xeon Phi. The direct comparison
between the two SMP systems shows that the Xeon Phi can profit from the higher mem-
ory bandwidth for this kernel and reaches a 1.7x better performance than the two Sandy
Bridges. While the peak is reached at about 11 GFLOPS on the SNB system with us-
ing only one hardware thread per core, the maximum performance on the Xeon Phi is at
about 18.8 GFLOPS with 120 threads (2 hardware threads per core). In [7] we showed
with the help of the Roofline Model [21] that this performance is close to the theoretical
maximum taking the memory-bound character of this kernel into account.

The results show that for this kernel benchmark OpenMP tasking, as well as OpenMP
worksharing with different scheduling strategies, run fine on the Intel Xeon Phi without
any special tuning for the architecture.

5 NAS Parallel Benchmarks

The NAS Parallel Benchmarks [1] are a set of benchmarks designed to evaluate the par-
allel performance of parallel computers. We ran the reference implementation without
any code change. On both systems we enabled compiler optimization and used version
13.0 of the Intel Compiler.

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi 555

Table 2. Runtime (in seconds) and speedup of the NAS parallel benchmarks on the Xeon Phi and
the SNB system

SNB Xeon Phi
Benchmark 1 Thread 32 Threads Speedup 1 Thread 240 Threads Speedup
IS 23.12 1.38 16.75 192.49 2.46 78.25
EP 186.81 8.11 23.03 1518.42 13.34 113.82
MG 64.04 8.03 7.98 498.94 9.63 51.81
FT 306.11 19.19 15.95 2393.01 53.97 44.34
BT 1241.63 82.61 15.03 9433.52 132.29 71.31
SP 826.25 137.69 6.00 12264.29 164.59 74.51
LU 1109.76 62.23 17.83 9835.09 163.33 60.22

Table 2 shows the runtimes for problem size C of all benchmarks on both systems
with one thread and with best effort performance, which was when all threads were
used. The speedup on the SNB system is between 6 and 24, on the Xeon Phi system
between 44 and 114. This shows that the benchmarks scale well on both systems and
that the Xeon Phi system can deliver a good scalability for standard kinds of applica-
tions. But the serial performance on the Xeon Phi is much lower compared to the SNB
system. With one thread the benchmarks run between 7.5 and 15 times slower on the
Xeon Phi. Given that the theoretical peak performance of one phyiscal core is nearly the
same for both, this is a surprising result. Although the speedup on the Xeon Phi system
is quite impressive with up to 114 on 60 cores, the Xeon Phi system is in total slower
for every benchmark, when all resources are used.

6 Application Case Studies

After studying the performance of kernels and benchmark codes, we investigated the
performance of four real-world codes of the RWTH Aachen University, namely:

iMOOSE: The innovative Modern Object Oriented Solver Environment (iMOOSE) is
a finite elements package developed by the Institute of Electrical Machines1 at RWTH
Aachen University. The native compilation of this heavy C++ code (∼ 300, 000 lines
of code) parallelized with OpenMP worked without any problems using the Intel Com-
piler. In our measurements we investigate a three-dimensional model of permanent-
magnet excited synchronous machine. We only look at the solving process which uses
a CG-solver and dominates the total serial run time on the host system (up to 90 %).

FIRE: The Flexible Image Retrieval Engine (FIRE) [9], developed at the Human Lan-
guage Technology and Pattern Recognition Group of RWTH Aachen University, takes
a set of query images and for each query image it returns a number of similar images
from an image database.

NestedCP: NestedCP [10] is developed from the Virtual Reality Group of the RWTH
Aachen University and is used to extract critical points in unsteady flow field datasets.

1 http://www.iem.rwth-aachen.de

http://www.iem.rwth-aachen.de

556 D. Schmidl et al.

Table 3. Elapsed time for the applications on Intel Sandy Bridge (SNB) and Intel Xeon Phi
Coprocessor

SNB Xeon Phi
Application 1 Thread best (#threads) Speedup 1 Thread best (#threads) Speedup
iMOOSE 104.68 12.20 (16) 8.58 1243.54 15.59 (240) 79.74
FIRE 284.60 16.68 (32) 17.06 2672.71 38.25 (234) 98.02
NestedCP Nested 46.99 3.21 (32) 14.62 845.14 35.58 (240) 23.76
NestedCP Tasking 47.34 2.43 (32) 19.47 848.34 11.14 (240) 76.16
NINA 470.06 61.16 (16) 7.68 1381.94 27.29 (177) 50.64

Critical points are essential parts of the velocity field topologies and extracting them
helps to interactively visualize the data in virtual environments. Two versions of the
code were investigated, first a version parallelized with nested parallel regions and sec-
ond, a version using OpenMP tasks to express the parallelism on the same levels.

NINA: The software package for the solution of Neuromagnetic INverse lArge-scale
problems (NINA) was developed by Bücker, Beucker and Rupp [3] and deals with the
reconstruction of focal activity in the human brain. It includes computations of matrix-
vector products using a matrix of dimensions 128×512000. Here, we use an established
C framework in a simplified version that mimics the original MATLAB approach.

Table 3 shows the runtime of the example applications on the SNB system and the
Xeon Phi. Noticeable is that nearly all applications gain a good speedup on the Xeon Phi
system of 50 to 80. The only exception is the NestedCP version parallelized with nested
parallel regions, the tasking version instead delivers a speedup of 76. This confirms our
assumption from Sect. 4.2 that tasking is a more appropriate way to express multi-
level parallelism on the Xeon Phi system. However, although the scalability is good for
all codes on both systems, the total runtime is higher on the Xeon Phi except for one
code. The reason again is the serial runtime of the Xeon Phi cores. iMOOSE, FIRE
and NestedCP are slower by a factor of 10 to 18 compared to one SNB core. NINA
is only slower by a factor of three with one thread and because of the good scalability
on the Xeon Phi, the system outperforms the SNB system by a factor of 2.2. A profile
for the NINA code showed that roughly 95 % of the kernel execution time is spent
in a dense matrix-vector multiplication which is performed very often. This memory
access pattern and floating point operations of this operation is very similar to the stream
benchmark, where two vectors are multiplied. Since all matrix elements are needed only
once, the operation is memory bandwidth bound and since the accesses are consecutive
in the matrix and the vector, latency is not important. The stream benchmark has shown
that the Xeon Phi can reach a about 2.5 times higher memory bandwidth compared to
the SNB system, this is why the NINA code performs well here. All the other codes do
not have one single hotspot and they do not use dense linear algebra. Our assumption
is that they profit much more from the out-of-order execution capabilities of the SNB
cores and thus the SNB system outperforms the Xeon Phi for all these codes.

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi 557

7 Conclusion

We investigated the performance of Intel’s new Xeon Phi coprocessor, if it is used as a
standalone SMP system. There are two basic differences between the Xeon Phi and the
Sandy Bridge system we used for comparison. First, the Xeon Phi offers many more
cores (60) and hardware threads (240) than the SNB system (16 cores / 32 hardware
threads). Second, the design of the Xeon Phi cores is simpler and uses in-order execu-
tion, whereas the Sandy Bridge cores can do out-of-order execution. We find that the
memory bandwidth of the Xeon Phi is about 2.5x higher than the SNB system, but the
memory latency for large strides is much lower on the SNB system. Furthermore, we
measured the overhead of OpenMP synchronization constructs for single and multi-
level parallelism, as well as the overhead introduced by task regions. Our findings are
that the overhead for these constructs are in the same order of magnitude for both sys-
tems, although a much larger number of threads is needed on the Xeon Phi to utilize
all resources of the chip. Thus, the OpenMP runtime should not prevent applications
from scaling to a large number of threads on the new platform. Indeed, the NAS paral-
lel benchmarks and all user applications investigated (iMOOSE, FIRE, NestedCP and
NINA) have shown a good scalability on the Xeon Phi system between 50 and 113.
However, our results also show that the serial performance of one Xeon Phi core is
outperformed by a SNB core by a factor of 8-12 for many applications. This leads to a
better overall performance on the SNB system for most of these applications. NINA was
the only application that delivered a better overall performance on the Xeon Phi where
it was 2.2 times faster than on the SNB system. The code executed dense matrix vector
multiplications in 95 % of the compute-intensive parts. The other codes have less pre-
dictable memory access patterns. We assume that the high memory latency of the Xeon
Phi is an issue here since the in-order engine cannot hide the latency in contrast to the
out-of-order engine of the SNB. According to our experience, if the Xeon Phi is used
as a stand alone SMP, it does not deliver a performance comparable to a Sandy Bridge
system for many applications, because of the poor single core performance. For some
applications, like the NINA code, the performance is fine, but for most of our codes the
SNB system is the platform of choice. Future work is to investigate which kind of ap-
plications can be tuned to perform well on the Intel Xeon Phi system and which tuning
steps are necessary.

References

1. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Fatoohi, R.A., Freder-
ickson, P.O., Lasinski, T.A., Simon, H.D., Venkatakrishnan, V., Weeratunga, S.K.: The nas
parallel benchmarks. Technical report, NASA Ames Research Center (1991)

2. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In: Proc. of the Conference on High Performance Computing Network-
ing, Storage and Analysis, SC 2009, pp. 18:1–18:11. ACM, New York (2009)

3. Bücker, H.M., Beucker, R., Rupp, A.: Parallel Minimum p-Norm Solution of the Neuromag-
netic Inverse Problem for Realistic Signals Using Exact Hessian-Vector Products. SIAM J.
on Scientific Computing 30(6), 2905–2921 (2008)

4. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: Proc. of
First European Workshop on OpenMP, pp. 99–105 (1999)

558 D. Schmidl et al.

5. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Wagner, M.: Data and Thread Affinity in
OpenMP Programs. In: Proc. of the 2008 Workshop on Memory Access on Future Proces-
sors: A Solved Problem?, MAW 2008, pp. 377–384. ACM (2008)

6. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A performance study of
general-purpose applications on graphics processors using CUDA. J. Parallel Distrib. Com-
put. 68(10), 1370–1380 (2008)

7. Cramer, T., Schmidl, D., Klemm, M., an Mey, D.: OpenMP Programming on Intel Xeon Phi
Coprocessors: An Early Performance Comparison. In: Proc. of the Many-core Applications
Research Community Symposium, pp. 38–44 (November 2012)

8. Davis, T.A.: University of Florida Sparse Matrix Collection. NA Digest 92 (1994)
9. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental comparison.

Information Retrieval 11(2), 77–107 (2008)
10. Gerndt, A., Sarholz, S., Wolter, M., an Mey, D., Bischof, C., Kuhlen, T.: Nested OpenMP

for Efficient Computation of 3D Critical Points in Multi-Block CFD Datasets. In: SC 2006
Conference, Proc. of the ACM/IEEE 2006, p. 46 (November 2006)

11. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems. J.
of Research of the National Bureau of Standards 49(6), 409–436 (1952)

12. McCalpin, J.: STREAM: Sustainable Memory Bandwidth in High Performance Computers
13. McVoy, L., Staelin, C.: lmbench: portable tools for performance analysis. In: Proc. of the

1996 Annual Conference on USENIX, ATEC 1996, p. 23. USENIX Association, Berkeley
(1996)

14. Park, J., Tang, P.T.P., Smelyanskiy, M., Kim, D., Benson, T.: Efficient backprojection-based
synthetic aperture radar computation with many-core processors. In: Proc. of the Int. Con-
ference on High Performance Computing, Networking, Storage and Analysis, SC 2012,
pp. 28:1–28:11. IEEE Computer Society Press, Los Alamitos (2012)

15. Schulz, K.W., Ulerich, R., Malaya, N., Bauman, P.T., Stogner, R., Simmons, C.: Early Expe-
riences Porting Scientific Applications to the Many Integrated Core (MIC) Platform. Tech-
nical report, TACC-Intel Highly Parallel Computing Symposium (April 2012)

16. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Assessing OpenMP Tasking Implemen-
tations on NUMA Architectures. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M.
(eds.) IWOMP 2012. LNCS, vol. 7312, pp. 182–195. Springer, Heidelberg (2012)

17. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Task-Parallel Programming on NUMA
Architectures. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012.
LNCS, vol. 7484, pp. 638–649. Springer, Heidelberg (2012)

18. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In: Proc. of the
2008 ACM/IEEE Conference on Supercomputing, SC 2008 (2008)

19. Wienke, S., Plotnikov, D., an Mey, D., Bischof, C., Hardjosuwito, A., Gorgels, C., Brecher,
C.: Simulation of bevel gear cutting with GPGPUs - performance and productivity. Computer
Science - Research and Development 26, 165–174 (2011)

20. Williams, S., Kalamkar, D.D., Singh, A., Deshpande, A.M., Van Straalen, B., Smelyanskiy,
M., Almgren, A., Dubey, P., Shalf, J., Oliker, L.: Optimization of geometric multigrid for
emerging multi- and manycore processors. In: Proc. of the Int. Conference on HPC, Net-
working, Storage and Analysis, SC 2012 (2012)

21. Williams, S., Waterman, A., Patterson, D.: Roofline: An Insightful Visual Performance
Model for Multicore Architectures. Commun. ACM 52(4), 65–76 (2009)

	Assessing the Performance of OpenMP Programs on the Intel Xeon Phi
	1 Introduction
	2 Related Work
	3 Architecture Comparison
	4 Kernel Benchmarks
	4.1 Memory Benchmarks
	4.2 OpenMP Constructs
	4.3 Sparse-Matrix-Vector-Multiplication in a CG Method

	5 NAS Parallel Benchmarks
	6 Application Case Studies
	7 Conclusion
	References

