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Abstract. PETSc’s [1] robustness, scalability and portability makes it
the foundation of various parallel implementations of numerical simula-
tion codes1. We formulate a least squares problem using a PETSc imple-
mentation as the model function and rely on adjoint mode Algorithmic
Differentiation (AD) [2] for the accumulation of the derivative informa-
tion. Various AD tools exist that apply the adjoint model to a given
C/C++ code, while none is able to differentiate MPI [3] enabled code.
We solved this by combining dco/c++ and the Adjoint MPI library, lead-
ing to a fully discrete adjoint implementation of PETSc. We want to un-
derline that this work differs from accumulating derivative information
through AD for PETSc algorithms (see e.g. [4]). We compute derivative
information of PETSc itself opening up the possibility of an enclosing
optimization problem (as needed, e.g., by [5]).

1 Motivation

Our case study is the two-dimensional Bratu equation,

∇2u = −λ exp(u), (1)

describing a solid fuel ignition with the parameter 0 < λ < 6 and boundary
conditions

u = bi for x = 0, x = 1, y = 0, y = 1

at the borders of the two dimensional square. For a 4x4 grid, b is of size 12 while
there are only 4 inner points. The Bratu equation is part of the MINPACK-2
test suite [6] as well as an example code of the non-linear solver SNES in PETSc.
It serves as a code base for our least squares problem.

� This work was supported by the Fond National de la Recherche of Luxembourg
under grant PHD-09-145.
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The differential equation in (1) is solved by discretization using finite differ-
ence on a two-dimensional grid. We do not take a detailed look at the actual
implementation in PETSc, but rather take a black box perspective of the code.
We now formulate an optimization problem over the original solution to the
Bratu equation.

We distinguish the following grid points:

– the inner computed grid points u
– the n boundary grid points b used in the boundary condition
– and a subset us of m observation points of the inner grid points u, for which

additional observed values uob are assumed to be provided.

The computed values us are a subset of the inner points u dependent on the
boundary conditions. Additionally, we have observed values uob that allow us to
rate the correctness of our model. This fact may be formulated as a least squares
problem where we want to minimize the difference between the computed and
observed values by adapting the approximated or guessed boundary conditions.

S =
1

2

m∑

i=1

(us
i − uob

i )2,

The computation of the cost functional S depending on the boundary conditions

S = F (b) : Rn → R

is implemented in PETSc using its non-linear solver SNES for the computation
of u. We used the code found in example 5 of the SNES tutorials. The addi-
tional implementation of the cost functional S for the least squares problem is
straightforward.

We now describe step by step how we generated an implementation of the
gradient ∇F of PETSc that enables us to feed a gradient based solution method.

In Sect. 2 we present Algorithmic Differentiation (AD) as our method of
choice for the gradient computation. Additionally, we provide a brief overview
of PETSc’s code structure and where challenges arise. In Sect. 3 we provide a
technical description of our AD overloading tool dco/c++. It is used to generate
the adjoint code of PETSc. However, PETSc relies on the BLAS 2 and LAPACK
3 library for the sequential computation. We provide a methodical description
of how we achieved adjoints of these library. Sect. 4 covers the adjoining of the
MPI communication using our in-house developed AMPI library.

2 Background

We resort to a Steepest Descent or Gradient Descent algorithm as a proof of
concept in order to minimize the residual S. As the name hints, it relies on the

2 http://www.netlib.org/blas/
3 http://www.netlib.org/lapack/
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gradient to iteratively compute a better fit of the computed observation point
values us to the actual observations uob by adapting the boundary conditions
according to

bn+1 = bn + α∇F (bn),

where ∇F is the gradient of the aforementioned residual S with respect to the
boundary conditions b. In order to acquire first-order gradient information by
finite difference, one would have to perturb each of the n inputs bi, 0 < i ≤ n.
This requires n + 1 runs of F . Once for each perturbation and once for the
original computation. For n � 1 the gradient accumulation potentially becomes
computationally infeasible.

2.1 Algorithmic Differentiation

AD is the chain rule of differential calculus applied symbolically to each state-
ment of a given code. This can be done automatically by resorting to a compiler
or by overloading the mathematical operations in a source code.

For a multivariate scalar function (e.g. calculation of cost function S) y =
F (x), Rn → R the chain rule may be used in two ways. First, the straightforward
application leading to the tangent-linear model ẏ = ∇F (x) · ẋ, where ẏ is the
directional derivative of the output y with respect to inputs x in direction ẋ.
Notice that in order to accumulate the entire gradient we have to iteratively set
ẋ to each of the n Cartesian basis vector in R

n leading to a runtime cost of
O(n) · cost(F ).

Second, the adjoint model based on the associativity of the chain rule:

x̄ = x̄+∇F (x)
ᵀ · ȳ. (2)

x̄ are called the adjoints of the inputs x, whereas ȳ is the adjoint of the output
y. Notice that the computation of the adjoints is in reverse order of the compu-
tation of the values, thus requiring a complete data flow reversal of a program.
The forward section consists of the computation of the values, whereas the re-
verse section computes the adjoints while using the values saved in the forward
section. Furthermore, it is essential to understand that with one output, the gra-
dient accumulation is achieved by one adjoint computation of the corresponding
adjoint code reducing the runtime complexity to O(1) · cost(F ). Of course, the
constant factor may still be considerable. However, given the independence of
the runtime from the input size n, the adjoint model may end up as the only
feasible solution. All the other options for a gradient accumulation, finite dif-
ference and tangent-linear model, will become computationally too expensive at
some input size n � 1.

The discrete approach with the tangent-linear and adjoint model may be
applied through handwritten code, where the original code is transformed
statement-wise into the derivative code. This work is very tedious and error
prone. AD tools do this mechanical work semi-automatically. Source transfor-
mation tools are similar to the handwritten transformation, whereas operator
overloading tools achieve the same goal by overloading every intrinsic operation.
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Compared to the numerical method of finite difference, there are two advan-
tages. One, we are able to extract exact derivatives with up to machine precision,
whereas the precision of finite difference is largely dependent on the spacing fac-
tor h. Second, a similar method to the adjoint model is not available while using
finite difference. It shifts the complexity from O(n) · cost(F ) to O(m) · cost(F ),
with n and m being the inputs and outputs, respectively. This unique feature
makes the adjoint model crucial for optimizations where the cost function is
scalar, while being influenced by a large number of parameters.

2.2 PETSc

As mentioned above, we use a tutorial example as a test case in PETSc. We chose
tutorial 5 of the SNES solver. It implements a solution of the Bratu differential
equation (1). We had to make a few amendments to the code which will be
explained later in this paper. The source code is available on our website 4.

The parameter λ is set to 6. We used a value of 1.0 in order to have a more sta-
ble system. The other changes are only related to dco/c++ and will be explained
in the next section.

We compiled PETSc with the default options, although we provide a custom
BLAS and LAPACK library described in Sect. 3.1 and 3.2. The MPI calls in
PETSc involving data of type PetscReal and PetscScalar are all replaced by
adjoint MPI calls. The aforementioned MPI calls may be separated in two types.
For one there are several collective invocations of Allreduce. The other one is
the persistent MPI communication in src/vec/vec/utils/vpscat.c. Both will be
dealt with in Sect. 4.

3 Adjoint Model Generation Using dco/c++

dco/c++ is implementing AD by overloading in C++. The range of capabilities
covered by dco/c++ is driven by various applications and research subjects.
Current projects are in the area of financial engineering, atmospheric physics, or
fluid mechanics. dco/c++ is also used in research on the generation of discrete
adjoints using parallel environments, in particular OpenMP and MPI as, e.g.,
used in PETSc.

The objective is to provide an efficient and robust tool for the computation of
projections of derivatives of arbitrary order of a function given as an implementa-
tion in C/C++, while focusing on the adjoint mode. Additionally, the capability
of coupling the robust overloading technique with optimized computer generated
or hand-written external computations of adjoint projections is provided. This
is used extensively for the adjoining of BLAS.

During various collaborative research and development projects, we were able
to compute fast adjoints for real world applications. In some cases [7] we achieved
a factor of roughly 3.5 for the ratio

R =
Run time of one adjoint computation

Run time of one function evaluation
.

4 https://www.stce.rwth-aachen.de/trac/petsc
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For being able to achieve such a factor, we make heavy use of the C++ template
engine and we exploit algorithmical and mathematical insight, e.g., statement-
level preaccumulation.

A standard run for computing adjoints using dco/c++ consists of a so called
forward run being the forward section and generating a tape followed by exactly
one reverse run being the reverse section in case of a scalar cost function. This
structure follows from the requirement of making all computed values available in
reverse order (data flow reversal). The forward run saves all required information
in the tape used during the reverse run. This structure is also applied to the
part of PETSc, which is to be differentiated. As PETSc is using BLAS as well
as LAPACK library routines for numerical methods, we have to deal with those
libraries, too. The treatment is sketched in the following subsections.

3.1 BLAS

BLAS (Basic Linear Algebra Subprograms) [8] is used by PETSc for non-parallel
tasks and is a set of basic routines operating on scalars, vectors and matrices
of type ’double’ including, e.g., scaling of a vector by a scalar, or matrix vector
products. The implementation of those basic operations is typically optimized
for performance by manufacturers for the specific hardware that is running the
computation. It is therefore desirable to stick to the supported BLAS implemen-
tation – at least during the forward run of the overloaded program execution. We
therefore do not overload the original routines to avoid killing cache performance.
Due to the reasonable amount of different routines, we provide hand-written ad-
joint routines of the BLAS routines used in PETSc, which rely on the original
BLAS implementation whenever possible. This includes the computation of the
function values during the forward run. We expect this to produce at least bi-
nary identical results to the non-overloaded function run, which is desirable for
verification purposes. Additionally we expect a better runtime compared to a
reimplementation of the BLAS routines.

3.2 LAPACK

LAPACK (Linear Algebra PACKage) [9] is also used by PETSc for non-parallel
tasks. In contrast to BLAS this library implements algorithms for general linear
algebra problems like linear systems (called, e.g., by PETSc’s SNES) or eigenvalue
problems. The implementation of LAPACK includes calls to BLAS routines for all
basic vector and matrix operations. Because LAPACK comes with a large num-
ber of different specialized functions (in total ca. 1600 routines) we chose this time
to differentiate those routines in a black box way; change the datatypes in LA-
PACK to our dco/c++ datatype. Again, hand-written and optimized derivative
code would yield better performing code. We therefore aim to provide those opti-
mized adjoint routines of LAPACK step by step in a project-driven fashion. As in
BLAS, those hand-written routines should of course reuse the original LAPACK
ones. This is useful for efficiency reasons as well as for keeping the code up-to-date
with the current LAPACK implementation. This will include also the possibility
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of switching to GPU-enabled LAPACK (see e.g. MAGMA [10]) or other LAPACK
implementations.

4 Adjoint MPI and PETSc

The reversal of MPI [11] communication in AD is directly related to the implied
data flow reversal. The adjoint MPI library is specifically designed to reverse
the MPI communication. It is separated from the actual AD tool involved (here
dco/c++) and therefore only traces the communication itself. The actual data
(values and adjoints) is stored through an AMPI interface in the data structures
of the AD tool.

Tracing communications amounts to tracing data dependence in between
the processes’ address space. As a formalism, we apply the PGAS (Partitioned
Global Address Space) notation to the MPI communication.

Table 1. Adjoint communication of an MPI Send and MPI Recv between two pro-
cesses P1 and P2

MPI MPI Send(x,P2), MPI Recv(x,P1)

PGAS P2.x=P1.x

Adjoint PGAS P1.x̄+=P2.x̄; P2.x̄=0

Adjoint MPI MPI Recv(x̄,P2), MPI Send(x̄,P1)

Sending and receiving data are actual assignments in PGAS that need to be
adjoined according to the incremental adjoint model (2). Every communication
is transformed into an incremental communication. The adjoint MPI library
itself as well as the consequences of the incremental communication and the
data flow reversal have been subject to various papers covering blocking, non-
blocking, collective [12] and one-sided communication [13]. The MPI calls in our
PETSc implementation were tracked using a custom MPI header in order to
pinpoint the MPI calls that need to be adjoined. In summary, there were two
types of MPI communication. First, persistent communication consisting of an
MPI Send/Recv init, MPI Start, MPI Wait and MPI Request free. And second
collective communication in the shape of a MPI Allreduce.

4.1 Persistent Communication

The reversal of non-blocking communication has already been subject of several
publications [14,15]. They cover the reversal of Isend/Wait and Irecv/Wait pairs.
In a nutshell, the reversal logic of the blocking send and receive is preserved. The
send becomes a receive and the receive becomes a send. However, the ordering
of the communication pairs Isend/Wait, Irecv/Wait is reversed. In the reverse
section the Wait becomes either an Isend or Irecv whereas the Isend and Irecv
both become a Wait. There are other effects which will not be discussed in this
paper.
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In our PETSc code we do not have pairs of non-blocking Isend/Wait
and Irecv/Wait, but triplets of persistent Recv init/Start/Wait and
Send init/Start/Wait calls. Persistent communication is similar in logic to the
non-blocking pairs. As stated by the MPI standard the purpose of persistent
communication is:

Often a communication with the same argument list is repeatedly exe-
cuted within the inner loop of a parallel computation. In such a situation,
it may be possible to optimize the communication by binding the list of
communication arguments to a persistent communication request once
and, then, repeatedly using the request to initiate and complete mes-
sages.

Thus, an MPI Start may be called several times upon the same initialization us-
ing MPI Send/Recv init. MPI predicts a potential reduction of the communica-
tion overhead due to the persistent request. The requests need to be deallocated
explicitly using MPI Request free as opposed to an implicit deallocation at the
MPI Wait using non-blocking communication. That logic should be preserved
in adjoint MPI. In particular, we want to correctly and efficiently adjoin the
multiple MPI Start calls.

Init(Send or Receive)

Start

Wait

Request free

(a) Forward Communication

Request free

Wait

Start

Init(Receive or Send)

(b) Reverse Communication

Fig. 1. Adjoint communication of a Init, Start, Wait and Request free

As mentioned in the previous section, the core principle of AD by overloading
is that we tape each step of the forward section in order to generate a correct
adjoint section. The same holds for adjoint MPI. We trace each of the involved
routines in the forward section along with its arguments. We now go step by step
through the reverse section for each routine and look at what has to be stored
in the forward section:

Request free. The deallocation of the requests marks the end of the persistent
communication instance. Therefore, in the adjoint section this marks the begin-
ning of the adjoint persistent communication. We allocate the adjoint buffer here
and call MPI Send/Recv init depending on the opcode (Send or Recv) that was
saved during the forward section.
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Wait. The Wait marked the end of a particular communication where the buffer
was either received or sent. That way we will start here the adjoint communi-
cation with interchanged source and target. All this information was saved in
the forward section, conveyed to the MPI Wait through additional information
stored in the request (see non-blocking communication) at the MPI Start.

Start. MPI Start marked the start of actual data communication. In the adjoint
case this amounts to a Wait. We have to make sure, that the adjoints have arrived
at that point, since they may be read from now on.

Init. By symmetry, the MPI Send/Recv init marks the end of the the adjoint
communication. We may release the requests with an MPI Request free.

4.2 Collective Communication

For the reduction of residuals and certain simulation parameters, several re-
duction operations are involved in PETSc. They are all of the Allreduce kind
where the result is accessible on all the processes. The operations are limited to
MPI MAX, MPI SUM.

Maximum Operation

Value Adjoint

(y,m) =
p

max
i=1

xi, x̄m = ȳ; ȳ = 0

with xm = y

For the maximum operation we need to save the process rank m of the element
that is the maximum. Only this element has a non zero partial derivative with
respect to the output. Hence, in the reverse section the adjoint of the result on
all processes is summed up and only sent to the process that had the maximum
value.

Sum Operation

Value Adjoint

y =
p∑

i=1

xi x̄i+ = ȳ; ȳ = 0

In case of a sum, the adjoint has to be propagated to all processes involved. The
adjoint communication amounts to a broadcast.

5 Results

As has been mentioned before, this paper is meant as a proof of concept that
fully discrete adjoints of PETSc are possible with the available tools. However, a
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conclusion on the performance of discrete adjoint must be dismissed at this time.
To understand why, we provide the following benchmarks made on the RWTH
Aachen University cluster. All tests were conducted on the MPI nodes of the
Bull HPC-Cluster. They are 2-socket systems equipped with Intel Westmere EP
processors with 24GB memory each.

Memory Usage Original RT (s) Adjoint Mode RT (s)
1 Process 16GB 0.22 3.8

2 Processes 8GB 0.14 3.45

4 Processes 4GB 0.09 2.3

With a grid of only 128x128 we reach a memory usage of 16GB in adjoint
mode. The time it takes to trace the forward section as well as the adjoint
computation is 3.8s. The problem size is a hard limit. However, with a runtime
of only 3.8s seconds we are far from any real world application. Increasing the
number of processes for the 128x128 to more than 4 is not reasonable either,
since the overhead due the communication takes its toll. Therefore we are quite
limited in the possible benchmarks. In the end they should prove that there is
some speedup and that our method is on the right track.

To remedy the situation, one has two choices. Either apply a checkpointing
scheme [16] or replace the computationally most expensive part, namely the linear
solver. Replacing the linear solver with a continuous computation of the adjoints
similar to the BLAS routines in this paper will considerably reduce the memory
hit. This is the next step outlined in the coming outlook

6 Summary

We proved that the combination of dco/c++ and Adjoint MPI is robust enough
to compute semi-automatic discrete adjoints of PETSc. Four distinct steps were
necessary. First, dco/c++ had to be applied to PETSc by overloading all vari-
ables of type PetscReal and PetscScalar. Second, BLAS had to be continuously
adjoined by writing adjoint BLAS functions by hand. Third, the LAPACK rou-
tines were adjoined using again dco/c++. Finally, the adjoint MPI library was
used to adjoin all the MPI communication.

7 Outlook

While relying on AD tools, discrete adjoints are the straightforward way of ad-
joining a given code. However, they do not always match the desired derivative
information of the simulated phenomenon. They only represent a differentiated
algorithm that models a given phenomenon. Hence, applying for example a con-
tinuously differentiated linear solver in PETSc might yield different results and
runtime behaviour. However these results may better fit the actual simulated
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phenomenon. This requires formulating the adjoint linear system that computes
the adjoints of the original linear system. Unfortunately, this requires consider-
able changes to the PETSc code base, but definitely worth further investigations.
For the time being only the BLAS routines are adjoined continuously.

The current case study should be superseded by a real world application
in the future. The driving application behind this project are discrete adjoints
of PADGE, an adaptive discontinuous Galerkin solver for 3D turbulent flow
developed by the German Aerospace Center (DLR).
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