
Lazy Abstractions for Timed Automata�

Frédéric Herbreteau1, B. Srivathsan2, and Igor Walukiewicz1

1 Univ. Bordeaux, CNRS, LaBRI, UMR 5800, F-33400 Talence, France
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

Abstract. We consider the reachability problem for timed automata.
A standard solution to this problem involves computing a search tree
whose nodes are abstractions of zones. For efficiency reasons, they are
parametrized by the maximal lower and upper bounds (LU -bounds) oc-
curring in the guards of the automaton. We propose an algorithm that
dynamically updates LU -bounds during exploration of the search tree. In
order to keep them as small as possible, the bounds are refined only when
they enable a transition that is impossible in the unabstracted system.
So our algorithm can be seen as a kind of lazy CEGAR algorithm for
timed automata. We show that on several standard benchmarks, the al-
gorithm is capable of keeping very small LU -bounds, and in consequence
is able to reduce the search space substantially.

1 Introduction

Timed automata are obtained from finite automata by adding clocks that can
be reset and whose values can be compared with constants. The reachability
problem asks if a given target state is reachable from the initial state by an
execution of the automaton. The standard solution to this problem computes
the so-called zone graph of the automaton, and uses abstractions to make the
algorithm both terminating and more efficient.

Most abstractions are based on constants used in comparisons of clock values.
Such abstractions have already been considered in the seminal paper of Alur and
Dill [1]. Behrmann et. al. [4] have proposed abstractions based on LU -bounds,
that are two functions L and U : the L function assigns to every clock a maximal
constant appearing in a lower bound constraint in the automaton; similarly U
associates the maximum constant appearing in an upper bound constraint. In
a recent paper [15] we have shown how to efficiently use the a�LU abstraction
of [4] that is parameterized by LU -bounds. Moreover, a�LU has been proved
to be the biggest abstraction that is sound for all automata with given LU -
bounds. Since a�LU abstraction of a zone can result in a non-convex set, we have
shown in [15] how to use this abstraction without the need to store the result
of the abstraction. This opens new algorithmic possibilities because changing
LU -bounds becomes very cheap as abstractions need not be recalculated. In this
paper we explore these possibilities.

� This work was partially supported by the ANR project Vacsim (ANR-11-INSE-004).

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 990–1005, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Lazy Abstractions for Timed Automata 991

The algorithm we propose works as follows. It constructs a graph with nodes
of the form (q, Z, LU), where q is a state of the automaton, Z is a zone, and
LU are parameters for the abstraction. It starts with the biggest abstraction:
LU bounds are set to −∞ which makes a�LU(Z) to be the set of all valuations
for every nonempty Z. The algorithm explores the zone graph using standard
transition relation on zones, without modifying LU bounds till it encounters
a disabled transition. More concretely, till it reaches a node (q, Z, LU) such
that there is a transition from q that is not possible from (q, Z) because no
valuation in Z allows to take it. At this point we need to adjust LU bounds so
that the transition is not possible from a�LU(Z) either. This adjustment is then
propagated backwards through the already constructed part of the graph.

The real challenge is to limit the propagation of bound updates. For this, if
the bounds have changed in a node (q′, Z ′, L′U ′) then we consider its predecessor
nodes (q, Z, LU) and update its LU bounds as a function of Z, Z ′ and L′U ′. We
give general conditions for correctness of such an update, and a concrete efficient
algorithm implementing it. This requires getting into a careful analysis of the
influence of the transition on the zone Z. As a result we obtain an algorithm
that exhibits exponential gains on some standard benchmarks.

We have analyzed the performance of our algorithm theoretically as well as
empirically. We have compared it with a static analysis algorithm, namely the
state-of-the-art algorithm implemented in UPPAAL, and with an algorithm we
have proposed in [14]. The latter improves on the static analysis algorithm by
considering only the reachable part of the zone graph. For an example borrowed
from [17] we have proved that the algorithm presented here produces a linear size
search graph while for the other two algorithms, the search graph is exponential
in the size of the model. For the classic FDDI benchmark, which has been tested
on just about every algorithm for the reachability problem, our algorithm shows
the rather surprising fact that the time component is almost irrelevant. There
is only one constraint that induces LU bounds, and in consequence the abstract
search graph constructed by our algorithm is linear in the size of the parameter
of FDDI.

Our algorithm can be seen as a kind of CEGAR algorithm similar in spirit
to [13], but then there are also major differences. In the particular setting of
timed automata the information available is much richer, and we need to use
it in order to obtain a competitive algorithm. First, we do not need to wait till
a whole path is constructed to analyze if it is spurious or not. Once we decide
to keep zones in nodes we can immediately detect if an abstraction is too large:
it is when it permits a transition not permitted from the zone itself. Next, the
abstractions we use are highly specialized for the reachability problem. Finally,
the propagation of bound changes gets quite sophisticated because it can profit
from the large amount of useful information in the exploration graph.

Related work. Forward analysis is the main approach for the reachability test-
ing of real-time systems. The use of zone-based abstractions for termination
has been introduced in [10]. The notion of LU -bounds and inference of these
bounds by static analysis of an automaton have been proposed in [3,4]. The a�LU

992 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

approximation has been introduced in [4]. An approximation method based
on LU -bounds, called Extra+

LU , is used in the current implementation of UP-
PAAL [5]. In [15] we have shown how to efficiently use a�LU approximation.
We have also proposed an LU -propagation algorithm [14] that can be seen as
applying the static analysis from [3] on the zone graph instead of the graph of
the automaton; moreover this inference is done on-the-fly during construction of
the zone graph. In the present paper we do much finer inference and propagation
of LU -bounds.

Approximation schemes for the analysis of timed-automata have been con-
sidered almost immediately after the introduction of the concept of timed au-
tomata, as for example in [2,22,12] or [20]. All these papers share the same idea
to abstract the region graph by not considering all the constraints involved in
the definition of a region. When a spurious counterexample is discovered a new
constraint is added. So in the worst case the whole region graph will be con-
structed. Our algorithm in the worst case constructs an a�LU-abstracted zone
graph with LU -bounds obtained by static analysis. This is as good as the state-
of-the-art method used in UPPAAL. Another slightly related paper is [7] where
the CEGAR approach is used to handle diagonal constraints.

Let us mention that abstractions are not needed in the backward exploration
of timed systems. Nevertheless, any feasible backward analysis approach needs
to simplify constraints. For example [19] does not use approximations and relies
on an SMT solver instead. This approach, or the approach of RED [21], are very
difficult to compare with the forward analysis approach we study here.

Organization of the paper. In the preliminaries section we introduce all stan-
dard notions we will need, and a�LU abstraction in particular. Section 3 gives
a definition of adaptive simulation graph (ASG). Such a graph represents the
search space of a forward reachability testing algorithm that will search for an
abstract run with respect to a�LU abstraction, while changing LU -bounds dy-
namically during exploration. Section 4 gives an algorithm for constructing an
ASG with small LU -bounds. Section 5 presents the two crucial functions used in
the algorithm: the one updating the bounds due to disabled edges, and the one
propagating the change of bounds. Section 6 explains some advantages of our
algorithm on variations of an example borrowed from [17]. The experiments sec-
tion compares our prototype tool with UPPAAL, and our algorithm from [14].
The conclusions section gives some justification for our choice of concentrating
on LU -bounds. The proofs are presented in the full version of the paper [16].

2 Preliminaries

2.1 Timed Automata, Zones, and the Reachability Problem

Let X be a set of clocks, i.e., variables that range over R≥0, the set of non-
negative real numbers. A guard is a conjunction of constraints x#c for x ∈ X ,
∈ {<,≤,=,≥, >} and c ∈ N, e.g. (x ≤ 3∧ y > 0). Let Φ(X) denote the set of
clock constraints over clock variables X . A clock valuation over X is a function

Lazy Abstractions for Timed Automata 993

v : X → R≥0. We denote by 0 the valuation that associates 0 to every clock in
X . We write v � φ when v satisfies the guard φ. For δ ∈ R≥0, let v + δ be the
valuation that associates v(x) + δ to every clock x. For R ⊆ X , let v[R] be the
valuation that sets x to 0 if x ∈ R, and that sets x to v(x) otherwise.

A timed automaton (TA) is a tuple A = (Q, q0, X, T,Acc) where Q is a finite
set of states, q0 ∈ Q is the initial state, X is a finite set of clocks, Acc ⊆ Q is a
set of accepting states, and T ⊆ Q×Φ(X)× 2X ×Q is a finite set of transitions
(q, g, R, q′) where g is a guard, and R is the set of clocks that are reset on the
transition.

A configuration of A is a pair (q, v) ∈ Q × R
X
≥0 and (q0,0) is the initial

configuration. We have two kinds of transitions:

Delay: (q, v) →δ (q, v + δ) for some δ ∈ R≥0;

Action: (q, v) →t (q, v[R]) for a transition t = (q, g, R, q′) ∈ T such that v � g.
A run of A is a finite sequence of transitions starting from the initial con-

figuration (q0,0). A run is accepting if it ends in a configuration (qn, vn) with
qn ∈ Acc.

Definition 1 (Reachability problem). The reachability problem for timed
automata is to decide whether there exists an accepting run of a given automaton.

This problem is known to be Pspace-complete [1,9]. The class of TA we consider
is usually known as diagonal-free TA since clock comparisons like x− y ≤ 1 are
disallowed. Notice that if we are interested in state reachability, considering
timed automata without state invariants does not entail any loss of generality
as the invariants can be added to the guards. For state reachability, we can also
consider automata without transition labels.

Rather than working with valuations we will work with sets of valuations and
symbolic transitions. So we will consider configurations of the form (q,W) where
q is a state of the automaton and W a set of valuations.

Definition 2 (Symbolic transition ⇒). Let A be a timed automaton. For
every transition t of A and every set of valuations W , we define:

(q,W) ⇒t (q′,W ′) where W ′ = {v′ | ∃v ∈ W, ∃δ ∈ R≥0. (q, v) →t→δ (q′, v′)}
We will sometimes write Postt(W) for W ′. The transition relation ⇒ is the
union of all ⇒t.

Observe that symbolic transitions always yield sets closed under time-successors.
Such sets are called time-elapsed. Let W0 be the set of valuations reachable from
the the initial valuation 0 by a time elapse: W0 = {0+ δ | δ ∈ R≥0}.

A symbolic run is a sequence of symbolic transitions:

(q0,W0) ⇒ (q1,W1) ⇒ . . .

It has been noticed that the sets W appearing in a symbolic run can be described
by some simple constraints involving only the difference between clocks [6]. This
has motivated the definition of zones, which are sets of valuations defined by
difference constraints.

994 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Definition 3 (Zones [6]). A zone is a set of valuations defined by a conjunction
of two kinds of clock constraints: x ∼ c and x − y ∼ c for x, y ∈ X, c ∈ Z, and
∼∈ {≤, <,=, >,≥}.
Observe thatW0 is a zone: it is given by the constraints

∧
x,y∈X (x ≥ 0 ∧ x−y =

0). Then every W appearing in a symbolic run is a zone too. It is well-known
that an automaton has an accepting run if and only if it has a symbolic run
reaching an accepting state and non-empty zone. As the number of zones that
can appear in a symbolic run is not bounded, the next simplification step is to
consider abstractions of zones.

2.2 LU-bounds and LU-abstractions

The most common parameter taken for defining abstractions are LU -bounds.

Definition 4 (LU-bounds). The L bound for an automaton A is the function
assigning to every clock x a maximal constant that appears in a lower bound
guard for x in A, that is, the maximum over guards of the form x > c or
x ≥ c. Similarly U is the function assigning to every clock x a maximal constant
appearing in an upper bound guard for x in A, that is, the maximum over guards
of the form x < c or x ≤ c. If there is no guard in question then the value of
L(x) or U(x) is −∞.

The paper introducing LU-bounds [4] also introduced an abstraction operator
a�LU that uses LU-bounds as parameters. We begin by recalling the definition
of an LU-preorder defined in [4]. We use a different but equivalent formulation.

Definition 5 (LU-preorder and a�LU-abstraction [4]). Let L,U : X →
N ∪ {−∞} be two bound functions. For a pair of valuations we set v �LU v′ if
for every clock x:

– if v′(x) < v(x) then v′(x) > Lx, and
– if v′(x) > v(x) then v(x) > Ux.

For a set of valuations W we define:

a�LU(W) = {v | ∃v′ ∈ W. v �LU v′}.
An efficient algorithm to use the a�LU abstraction for reachability was proposed
in [15]. Moreover in op. cit. it was shown that over time-elapsed zones, a�LU

abstraction is optimal when the only information about the analyzed automaton
are its LU -bounds. Informally speaking, for a fixed LU , the a�LU abstraction is
the biggest abstraction that is sound and complete for all automata using guards
within LU -bounds.

Since the abstraction a�LU is optimal, the next improvement is to try to get
as good LU -bounds as possible since tighter bounds give coarser abstractions,
and in consequence induce a smaller search space.

It has been proposed in [3] that instead of considering one LU -bound for all
states in an automaton, one can use different bound functions for each state. For

Lazy Abstractions for Timed Automata 995

every state q and every clock x, constants Lx(q) and Ux(q) are determined by the
least solution of the following set of inequalities. For each transition (q, g, R, q′)
in the automaton, we have:

{
Lx(q) ≥ c if x ≥ c or x > c is a constraint in g

Lx(q) ≥ Lx(q
′) if x ∈ R

(1)

Similar inequalities are written for U , now considering x ≤ c and x < c. It has
been shown in [3] that such an assignment of constants is sound and complete
for state reachability. Experimental results have shown that this method, that
performs a static analysis on the automaton, often gives very big gains.

3 Adaptive Simulation Graph

In this paper we improve on the idea of static analysis that computes LU -
bounds for each state q. We will compute LU -bounds on-the-fly for each node
(q, Z) of the zone graph, while simultaneously searching for an accepting run.
The key difference is that the bounds will depend not only on the state but
also on the set of valuations. This will immediately allow us to ignore guards
from unreachable parts of the automaton. However, the real freedom given by
an adaptive simulation graph and Theorem 1 presented below is that when
calculating the LU -bounds, they will allow to ignore some guards of transitions
even from the reachable part. As we will see in the experiments section, this can
result in significant gains.

We will construct a forward reachability algorithm that will search for an
abstract run with respect to a�LU abstraction, where the LU -bounds change
dynamically during exploration. The intuition of a search space of such an algo-
rithm is formalized in a notion of an adaptive simulation graph (ASG). Such a
graph permits to change LU -bounds from node to node, provided some consis-
tency conditions are satisfied. This is important as LU -bounds are used to stop
exploring successors of a node. So our goal will be to find as small LU -bounds
as possible in order to stop developing the graph as soon as possible.

Definition 6 (Adaptive simulation graph (ASG)). Fix an automaton A.
An ASG has nodes of the form (q, Z, LU) where q is the state of A, Z is a zone,
and LU are bound functions. Some nodes are declared to be tentative. The graph
is required to satisfy three conditions:

G1 For the initial state q0 and initial zone Z0, a node (q0, Z0, LU) should appear
in the graph for some LU .

G2 If a node (q, Z, LU) is not tentative then for every transition (q, Z) ⇒t

(q′, Z ′) the node should have a successor labeled (q′, Z ′, L′U ′) for some L′U ′.
G3 If a node (q, Z, LU) is tentative then there should be a non-tentative node

(q′, Z ′, L′U ′) such that q = q′ and Z ⊆ a�L′U′(Z ′). Node (q′, Z ′, L′U ′) is
called covering node.

996 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

We will also require that the following invariants are satisfied:

I1 If a transition ⇒t is disabled from (q, Z), and (q, Z, LU) is a node of the
ASG then ⇒t should be disabled from a�LU(Z) too;

I2 Postt(a�LU(Z)) ⊆ a�L′U′(Z ′), for every edge (q, Z, LU) ⇒t (q
′, Z ′, L′U ′) of

the ASG.
I3 L2U2 ≤ L1U1, for every tentative node (q, Z1, L1U1) and the corresponding

covering node (q, Z2, L2U2).

In the above L2U2 ≤ L1U1 says that for all clocks x, L2(x) ≤ L1(x) and U2(x) ≤
U1(x). The conditions G1, G2, G3 express the expected requirements for a graph
to cover all reachable configurations. In particular, the condition G3 allows to
stop the exploration if there is already a “better” node in the graph. The three
invariants are more subtle. They imply that LU -bounds should be big enough
for the reachability information to be preserved. (cf. Theorem 1).

Remark: While the idea is to work with nodes of the form (q,W) with W being
a result of a�LU abstraction, we do not want to store W directly, as we have no
efficient way of representing and manipulating such potentially non-convex sets.
Instead we represent each W as a�LU(Z). So we store Z and LU . This choice is
algorithmically cheap since testing the inclusion Z ′ ⊆ a�LU(Z) is practically as
easy as testing Z ′ ⊆ Z [15]. This approach has another big advantage: when we
change the LU bound in a node, we do not need to recalculate a�LU(Z).

Remark: It is important to observe that for every A there exists a finite ASG.
For this it is sufficient to take static LU -bounds as described by (1). It means
that we can take the ASG whose nodes are (q, Z, L(q)U(q)) with bound functions
given by static analysis [3]. It is easy to see that such a choice makes all three
invariants hold.

The next theorem tells us that any ASG is good enough to determine the
existence of an accepting run. Our objective in the following section will be to
construct an ASG as small as possible.

Theorem 1. Let G be an ASG for an automaton A. An accepting state is reach-
able by a run of A iff a node containing an accepting state of A and a non-empty
zone is reachable from the initial node of G.

4 Algorithm

In this section, we present an algorithm that computes an ASG satisfying condi-
tions G1, G2, G3 and maintaining invariants I1, I2, I3 of Definition 6. The basic
algorithm is the same as in [14]. The LU -bounds are calculated dynamically
while constructing the ASG. The main difference lies in the way LU -bounds are
calculated so that the ASG is small, but still maintains the invariants.

The algorithm constructs the ASG in a form of a tree with cross edges from
tentative nodes. The nodes v in this tree consist of four components: v.q is a
state of A, v.Z is a zone, and v.L, v.U are LU bound functions. Each node v
has a successor vt for every transition t of A that results in a non-empty zone

Lazy Abstractions for Timed Automata 997

from v.Z. Some nodes will be marked tentative and not explored further. After
an exploration phase, tentative nodes will be reexamined and some of them will
be put on the stack for further exploration. At every point the leaves of the tree
constructed by the algorithm will be of three kinds: tentative nodes, nodes on
the stack, nodes having no transition to be explored.

The exploration proceeds by a standard depth-first search. When a node v is
called for exploration, we assume that the values v.q and v.Z are set. Moreover,
v.Z must be non-empty. The initial values of v.L and v.U are set to −∞. We
also assume that the constructed tree satisfies the invariants I1, I2, I3, except
for the node v and the nodes on the stack. If the state v.q is accepting then
we have found an accepting run and the algorithm terminates reporting “not
empty”. Otherwise, the procedure needs to explore the successors of v and restore
invariants, if needed. For this, it is first checked if there exists a non-tentative
node v′ in the tree such that v.Z ⊆ a�v′.LU(v

′.Z). If it is true, then v is marked
tentative wrt v′ and v.LU is set to v′.LU in order to maintain I3. The node v is
not explored further. If such a non-tentative node cannot be found in the tree,
the successors of v are computed and put on the stack. To ensure I1, a function
disabled is called that gives new bounds for v.LU . We explain this function in
the next section.

When LU -bounds in some node v are changed, the invariant I2 should be
restored for its ancestors. For this, the modified bounds are propagated upward
along the tree. The parent vp of v is taken and the transition from vp to v is
examined. A function newbounds is called on vp. This function calculates new LU
bounds for a node given the changes in its successor, so that I2 is ensured. This
function is the core of our algorithm and is the subject of the next section. If the
bounds of vp indeed change then they should be copied to all nodes tentative
w.r.t. vp. This is necessary to satisfy the invariant I3. Finally the bounds are
propagated to the predecessor of vp to restore invariant I2.

An exploration phase stops if there are no more nodes in the stack. During the
course of the exploration, the LU bounds of tentative nodes might have changed.
A procedure resolve is called to check for the consistency of tentative nodes. If
v is tentative w.r.t. v′ but v.Z ⊆ a�v′.LU(v

′.Z) is not true anymore, v needs to
be explored. Hence it is viewed as a new node, marked non-tentative, and put
on the stack for further exploration.

The algorithm terminates when either it finds an accepting state, or there are
no nodes to be explored and all tentative nodes remain tentative. In the second
case we can conclude that the constructed tree represents an ASG, and hence no
accepting state is reachable. Note that the overall algorithm should terminate
as the bounds can only increase and bounds in a node (q, Z) are not bigger
than the bounds obtained for q by static analysis (cf. Remark on page 996). The
correctness of the algorithm then follows from Proposition 1.

Proposition 1. The algorithm always terminates. If for a given A the result
is “not empty” then A has an accepting run. Otherwise the algorithm returns
empty after constructing ASG for A and not seeing an accepting state.

998 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

5 Controlling LU -bounds

In the previous section, we described the basic algorithm to construct an ASG
with LU -bounds at each node. We had not addressed the issue of how to calculate
these LU -bounds. In this section we describe the two functions used by the
algorithm to calculate LU -bounds: disabled and newbounds.

The notion of adaptive simulation graph (Definition 6) gives necessary condi-
tions for the values of LU bounds in every node. The invariant I1 tells that LU
bounds in a node should take into account the edges disabled from the node. The
invariant I2 gives a lower bound on LU with respect to the LU -bounds in succes-
sors of the node. Finally, I3 tells us that LU bounds in a covered node should not
be smaller than in the covering node. The task of the functions disabled and
newbounds is precisely to maintain the three invariants without increasing the
bounds unnecessarily. The pseudo-code of these functions is presented in [16].

Proviso: For simplicity, we assume a special form of transitions of timed au-
tomata. A transition can have either only upper bound constraints, or only lower

bound constraints and no resets. Observe that a transition q1
g;R−−→ q2 is equiv-

alent to q1
gL−→ q′1

gU ;R−−−→ q2; where gL is the conjunction of the lower bound
guards from g and gU is the conjunction of the upper bound guards from g. So
in order to satisfy our proviso we may need to double the number of states of
an automaton.

The disabled function is quite simple. Its task is to restore the invariant I1.
For this the function chooses from every disabled transition an atomic guard
that makes it disabled. Recall that we have assumed that every guard contains
either only lower bound constraints or only upper bound constraints. A transition
with only lower bound constraints cannot be disabled from a time elapsed zone.
Hence a guard on a disabled transition must be a conjunction of upper bound
constraints. It can be shown that if such a guard is not satisfied in a zone then
there is one atomic constraint of the guard that is not satisfied in a zone. Now
it suffices to use Definition 5 and observe that if a constraint x ≤ d or x < d is
not satisfied in Z then it is not satisfied in a�LU(Z) when U(x) ≥ d.

In the rest of this section we describe the function newbounds(v, v′, X ′
L, X

′
U).

This function calculates new LU -bounds for v, given that the bounds in v′ have
changed. As an additional information we use the sets of clocks X ′

L and X ′
U that

have changed their L-bound, and U -bound respectively, in v′. This information
makes the newbounds function more efficient since the new bounds depend only
on the clocks in X ′

L and X ′
U . The aim is to give bounds that are as small as

possible and at the same time satisfy invariant I2 from Definition 6.
For space reasons we will consider only the case when a guard is a single

constraint and there is no reset. The extension to a conjunction of constraints
does not pose particular problems. Treating reset is easy. We treat transitions
having guard and reset at the same time as a combination of purely guard and
purely reset transitions. We refer the reader to the full paper for details [16].

Lazy Abstractions for Timed Automata 999

We consider a transition (q, Z, LU) ⇒g (q′, Z ′, L′U ′), that is a transition with
a guard but no reset. Suppose that we have updated L′U ′ and now we want our
newbounds function to compute LnewUnew. In the constant propagation algo-
rithm of [14], we would have set LnewUnew to be the maximum over LU , L′U ′,
and the constant present in the guard. This is sufficient to maintain Invariant
2. However, it is not necessary to always take the guard g into consideration for
the propagation.

Let LgUg be the bound function induced by the guard g. In our case, as there
is only one constraint, there is only one constant associated to a single clock by
LgUg. It can be shown that in order to maintain Invariant 2, it suffices to take

LnewUnew =

⎧
⎪⎨

⎪⎩

max(LU,L′U ′) if [[g]] ⊆ a�L′U′(Z ′) or
if Z ⊆ a�L′U′(Z ′)

max(LU,L′U ′, LgUg) otherwise

(2)

Since bound propagation is called often in the main algorithm, we need an effi-
cient test for the inclusions in formula (2). The formula requires us to test inclu-
sion w.r.t. a�LU between Z and Z ′ each time we want to calculate LnewUnew.
Although this seems complicated at the first glance, note that Z ′ is a zone ob-
tained by a successor computation from Z. When we have only a guard in the

transition, we have Z ′ =
−−−→
Z ∧ g: in words, zone Z ′ is obtained by first intersect-

ing Z with g and letting time elapse from the resulting set of valuations. This
relation between Z and Z ′ makes the inclusion test a lot more simpler. We will
also see that it is not necessary to consider the inclusion [[g]] ⊆ a�L′U′(Z ′).

Before proceeding, we are obliged to look closer at how zones are represented.
Instead of difference bound matrices (DBMs) [11], we will prefer an equivalent
representation in terms of distance graphs.

A distance graph has clocks as vertices, with an additional special clock x0

representing the constant 0. For readability, we will often write 0 instead of x0.
Between every two vertices there is an edge with a weight of the form (�, c)

where c ∈ Z and � is either ≤ or <; or (�, c) equals (<,∞). An edge x
�c−→ y

represents a constraint y−x�c: or in words, the distance from x to y is bounded
by c. A distance graph is in canonical form if the weight of the edge from x to y
is the lower bound of the weights of paths from x to y. A zone Z can be identified
with the distance graph in the canonical form representing the constraints in Z.
For two clocks x, y we write Zxy for the weight of the edge from x to y in this
graph. A special case is when x or y is 0, so for example Z0y denotes the weight
of the edge from 0 to y.

We recall a theorem from [15] that yields an efficient test for: Z ⊆ a�L′U′(Z ′).

Theorem 2. Let Z, Z ′ be two non-empty zones. Then Z ⊆ a�L′U′(Z ′) iff there
exist two clocks x, y such that:

Zx0 ≥ (≤,−U ′
x) and Z ′

xy < Zxy and Z ′
xy + (<,−L′

y) < Zx0 (3)

We are ready to proceed with our analysis.

1000 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Lower bound guard: When the guard on the transition is w�d, the diagonals, that
is Zxy with both x, y variables other than zero, do not change during intersection
and time-elapse. Hence we have Z ′

xy = Zxy for such x and y. This shows that
(3) cannot be true when both x and y are non-zero as the second condition is
false. Yet again, when x is 0, the second condition cannot be true since both
Z0y = Z ′

0y = (<,∞), as after time-elapse there is no constraint of the form y� c
where c ∈ Z. It remains to consider the single case when y is 0. It boils down to
checking if there exists a clock x such that Zx0 ≥ (≤,−U ′

x) and Z ′
x0 < Zx0. In

words, the test asks if there exists a clock x whose label of the edge x
�−c−−−→ 0

in Z has reduced in Z ′ and additionally the edge weight (�,−c) in Z satisfies
either c < U ′

x or (�, c) = (≤, U ′
x). It can be checked that if Z ⊆ a�L′U′(Z ′),

then [[g]] ⊆ a�L′U′(Z ′) too. So in this case Formula (3) simplifies to the following
formula with the additional observation that Z ′

x0 can be only lesser than or equal
to Zx0.

LnewUnew =

{
max(LU,L′U ′, LgUg) if ∃x. (Zx0 ≥ (≤,−U ′

x)
) ∧ (

(Z ′
x0 < Zx0)

)

max(LU,L′U ′) otherwise

Note that this test can be easily extended to an incremental procedure: whenever
we modify the U ′ value of a clock, we need to check only this clock. The above
definition also suggests that whenever only L′ is modified we don’t have to check
anything and just propagate the new values of L′.

Upper bound guard: When we have an upper bound guard, the diagonals might
change. However no edge 0 −→ x or x −→ 0 changes. Therefore we need to check
(3) for two non-zero variables x and y.

In other words, among clocks x that have a finite U ′ constant and clocks y
that have a finite L′ constant, we check if there is a diagonal x −→ y that has
strictly reduced in Z ′ and additionally satisfies Z ′

xy + (<,Ly) < Zx0. Yet again,
it can be checked that if Z ⊆ a�L′U′(Z ′), then [[g]] ⊆ a�L′U′(Z ′). Therefore it is
sufficient to check (3) for non zero variables x and y. This gives the following
formula function:

LnewUnew =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(LU,L′U ′, LgUg) if ∃x, y. such that
(
Zx0 ≥ (≤,−U ′

x)
) ∧ (

Z ′
xy < Zxy) ∧(

Z ′
xy + (<,−L′

y) < Zx0

)

max(LU,L′U ′) otherwise

(4)

This test can also be done incrementally. Each time we propagate, we need to
perform extra checks only when a new clock has got a finite value for either L′

or U ′.
Other types of transitions with upper bound guard and resets, and multiple

guards are treated in the full version of the paper [16]. The pseudocode of the
newbounds function implementing the obtained tests is presented in the full

Lazy Abstractions for Timed Automata 1001

version too. Here, we just state the theorem expressing the correctness of the
construction.

Theorem 3. Let v′ be a node of ASG and v be its parent. Let (v.q, v.Z) ⇒t

(v′.q, v′.Z ′) be a transition. Given bound functions v′.LU , the functions
LnewUnew as computed by newbounds(v, v′, X ′

L, X
′
U) satisfy invariant I2, namely:

Postt(a�LnewUnew(Z)) ⊆ a�v′.LU(Z
′).

6 Examples

In this section we will analyze the behavior of our algorithm on some examples
in order to explain some of the sources of the gains reported in the experiments
of the next section.

The invariants in the definition of adaptive simulation graph (Definition 6)
sometimes allow for much smaller LU -bounds than that obtained by static anal-
ysis. A very basic example is when during exploration the algorithm does not
encounter a node with a disabled edge. In this case all LU -bounds are simply
−∞, since propagation does not change such bounds. If LU bounds are −∞, and
Z is nonempty then a�LU(Z) is the set of all valuations. So in this case the ASG
is just a subgraph of the automaton. We will now see an example where such
a situation occurs and yields exponential gain over the static analysis method
used by UPPAAL, and the on-the-fly constant propagation algorithm from [14].

Consider the automaton Dn shown in Figure 1. This is a slightly modified ex-
ample from [17]. We have changed all guards to check for an equality. Automaton
Dn is a parallel composition of three components. The first two components re-
spectively reset the x-clocks and y-clocks. The third component can be fired
only after the first two have reached their an states. The reachable states of
the product automaton Dn are of the form (ai, aj, b0) and (an, an, bk) where
i, j, k ∈ {0, . . . , n}. Let us assume that no state is accepting so that any forward
exploration algorithm should explore the entire search space.

Clearly, all the transitions can be fired if no time elapses in the states (ai, aj , b0)
for i, j ∈ 1, . . . , n− 1, and exactly one time unit elapses in (an, an, b0). There-
fore, an ASG for Dn will have no edges disabled which implies that in each node
the LU -constants given by our algorithm are −∞. The number of uncovered
nodes in the ASG constructed by our algorithm will be the same as the number
of states.

However, the static analysis procedure would give L = U = 1 for every clock.
It can be proved that this would yield a zone graph with at least 2n nodes. As
all the edges are enabled, the constant propagation algorithm from [14] would
explore a path up to (an, an, bn). This would therefore give L = U = 1 for each
clock, similar to static analysis. So in this case too there would be at least 2n

uncovered nodes in the reachability tree obtained.
Let us now see an example when there is a disabled edge. Consider the au-

tomaton A2 in Figure 1. One can see that the last transition with the upper
bound is not fireable, and that the reason is the guard x ≥ 5. Our algorithm

1002 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

would say that at q0 the relevant constants are: L0(x) = 5 and U0(x) = 1 and the
rest are −∞. The static analysis algorithm or the constant propagation would
give additionally L(y) = 5 and L(z) = 100, which is unnecessary. We will now
see that this pruning can sometimes lead to an exponential gain.

Fig. 1. Automata A2 and Dn

Consider automaton D′
n obtained from Dn in Figure 1 by changing every

constraint involving the y-clock to y = 2. If the algorithm is “fortunate” to
choose the right order of resets, it can reach node (an, an, bn) without seeing a
disabled edge. Due to this it will construct an ASG with the number of uncovered
nodes equal to number of states of the automaton.

If it is not the case, then it reaches the state (an, an, b0) with a zone where
there is an i such that yi ≤ xi and for all j < i, xi ≤ yi. From such a zone, the
path can be taken till bi−1 after which the transition gets disabled because we
check for yi ≥ 2 and xi ≤ 1. The disabled edge gives the constant U(xi) = 1 and
the propagation algorithm additionally generates L(yi) = 2. But it generates
no bounds for other clocks. In the result, the reached node will cover any other
node ((an, an, b0), Z

′, L′U ′) with Z ′ satisfying xi ≤ yi. So there will be at most
n uncovered nodes with the state (an, an, b0) and hence the total number of
uncovered nodes will be at most quadratic in n. In fact, it will be linear but for
this a more careful analysis is needed.

The static analysis procedure would give L = U = 2 for all y-clocks and
L = U = 1 for all x-clocks. It can be shown that this would result in at least 2n

uncovered nodes with state (an, an, b0).
The on-the-fly propagation algorithm [14] could work slightly differently from

the previous case. The constants generated depend on the first path. If the first
path leads up to (an, an, bn) then there are constants generated for all clocks.
Then, the zone cannot cover any of the future zones that appear at (an, an, bn).
A depth-first search algorithm would clearly then be exponential. Otherwise, if
the path gets cut at bk−1 constants are generated for all clocks x1, y1, . . . , xk, yk.
In this case, at least 2k nodes at (an, an, b0) need to be distinguished.

7 Experiments

We report experiments in Table 1 for classical benchmarks from the literature.
The first two columns compare UPPAAL 4.1.13 with our own implementation

Lazy Abstractions for Timed Automata 1003

Table 1. Comparison of reachability algorithms: number of visited nodes and running
time. For each model and each algorithm, we kept the best of depth-first search and
breadth-first search. Experiments done on a MacBook with 2.4GHz Intel Core Duo
processor and 2GB of memory running MacOS X 10.6.8. Missing numbers are due to
time out (150s) or memory out (1Gb).

Model nb. of UPPAAL (-C) Extra+
LU ,sa a�LU ,otf a�LU ,disabled

clocks nodes sec. nodes sec. nodes sec. nodes sec.
D′′

7 14 18654 11.6 18654 8.1 213 0.0 72 0.0
D′′

8 16 274 0.0 90 0.0
D′′

70 140 5112 1.9
CSMA/CD 10 11 120845 1.9 120844 6.3 78604 6.1 51210 4.0
CSMA/CD 11 12 311310 5.4 311309 16.8 198669 16.1 123915 10.2
CSMA/CD 12 13 786447 14.8 786446 44.0 493582 41.8 294924 25.2

FDDI 50 151 12605 52.9 12606 29.4 5448 14.7 401 0.8
FDDI 70 211 561 2.7
FDDI 140 421 1121 40.6
Fischer 9 9 135485 2.4 135485 8.9 135485 11.4 135485 14.8
Fischer 10 10 447598 10.1 447598 34.0 447598 42.8 447598 56.8
Fischer 11 11 1464971 40.4 1464971 126.8
Stari 2 7 7870 0.1 6993 0.4 5779 0.4 4305 0.4
Stari 3 10 136632 1.7 113958 9.4 82182 8.2 43269 4.5
Stari 4 13 1323193 26.2 983593 109.0 602762 84.9 296982 41.5

of UPPAAL’s algorithm (Extra+
LU ,sa). We have taken particular care to ensure

that the two implementations deal with the same model and explore it in the
same way. However, on the last example (Stari), we did not manage to force the
same search order in the two tools.

The last two algorithms are using bounds propagation. In the third column
(a�LU ,otf), we report results for the algorithm in [14] that propagates the bounds
from every transition (enabled or disabled) that is encountered during the ex-
ploration of the zone graph. Since this algorithm only considers the bounds that
are reachable in the zone graph, it generally visits less nodes than UPPAAL’s
algorithm. The last column (a�LU ,disabled) corresponds to the algorithm in-
troduced in this paper. It propagates the bounds that come from the disabled
transitions only. As a result it generally outperforms the other algorithms. The
actual implementation of our algorithm is slightly more sophisticated than the
one presented in Section 4. Like UPPAAL, it uses a Passed/Waiting list instead
of a stack. The implemented algorithm is presented in the Appendix of [16].

The results show a huge gain on two examples: D′′ and FDDI. D′′
n corresponds

to the automaton Dn in Fig. 1 where the tests xk = 1, yk = 1 have been replaced
by (0 < xk ≤ 1), (1 < yk ≤ 2). While it was easier in Section 6 to analyze the
example with equality tests, we wanted here to show that the same performance
gain occurs also when static L bounds are different from static U bounds. The
number of nodes visited by algorithm a�LU ,disabled exactly corresponds to the
number of states in the timed automaton. The situation with the FDDI example
is similar: it has only one disabled transition. The other three algorithms take
useless clock bounds into account. As a result they quickly face a combinatorial
explosion in the number of visited nodes. We managed to analyze D′′

n up to
n = 70 and FDDI up to size 140 despite the huge number of clocks.

1004 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Fischer example represents the worst case scenario for our algorithm. Dynamic
bounds calculated by algorithms a�LU ,otf and a�LU ,disabled turn out to be the
same LU -bounds given by static analysis.

The remaining two models, CSMA/CD and Stari [8] show the average situa-
tion. The interest of Stari is that it is a very complex example with both a big
discrete part and a big continuous part. The model is exactly the one presented
in op. cit. but for a fixed initial state. Algorithm a�LU ,disabled discards many
clock bounds by considering disabled transitions only. This leads to a significant
gain in the number of visited nodes at a reasonable cost.

8 Conclusions

We have pursued an idea of adapting abstractions while searching through the
reachability space of a timed automaton. Our objective has been to obtain as low
LU -bounds as possible without sacrificing practicability of the approach. In the
end, the experimental results show that algorithm a�LU ,disabled improves sub-
stantially the state-of-the art forward exploration algorithms for the reachability
problem in timed automata.

At first sight, a more refined approach would be to work with constraints them-
selves instead of LU -abstractions. Following the pattern presented here, when en-
countering a disabled transition, one could take a constraint that makes it dis-
abled, and then propagate this constraint backwards using, say, weakest precon-
dition operation. A major obstacle in implementing this approach is the covering
condition, like G3 in our case. When a node is covered, a loop is formed in the ab-
stract system. To ensure soundness, the abstraction in a covered node should be
an invariant of this loop. A way out of this problem can be to consider a different
covering condition as proposed by McMillan [18], but then this condition requires
to develop the abstract model much more than we do. So from this perspective we
can see that LU -bounds are a very interesting tool to get a loop invariant cheaply,
and offer a good balance between expressivity and algorithmic effectiveness.

We do not make any claim about optimality of our backward propagation
algorithm. For example, one can see that it gives different results depending on
the order of treating the constraints. Even for a single constraint, our algorithm
is not optimal in a sense that there are examples when we could obtain smaller
LU -bounds. At present we do not know if it is possible to compute optimal
LU -bounds efficiently. In our opinion though, it will be even more interesting to
look at ways of cleverly rearranging transitions of an automaton to limit bounds
propagation even further. Another promising improvement is to introduce some
partial order techniques, like parallelized interleaving from [19]. We think that
the propagation mechanisms presented here are well adapted to such methods.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Alur, R., Itai, A., Kurshan, R.P., Yannakakis, M.: Timing verification by successive

approximation. Inf. Comput. 118(1), 142–157 (1995)

Lazy Abstractions for Timed Automata 1005

3. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 254–270. Springer, Heidelberg (2003)

4. Behrmann, G., Bouyer, P., Larsen, K.G., Pelanek, R.: Lower and upper bounds
in zone-based abstractions of timed automata. Int. Journal on Software Tools for
Technology Transfer 8(3), 204–215 (2006)

5. Behrmann, G., David, A., Larsen, K.G., Haakansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society (2006)

6. Bengtsson, J.E., Yi, W.: Timed automata: Semantics, algorithms and tools.
In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098,
pp. 87–124. Springer, Heidelberg (2004)

7. Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed automata:
Forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS
2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005)

8. Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using
dense and discrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999.
LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)

9. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Form. Methods Syst. Des. 1(4), 385–415 (1992)

10. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998)

11. Dill, D.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

12. Dill, D.L., Wong-Toi, H.: Verification of real-time systems by successive over and
under approximation. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 409–422.
Springer, Heidelberg (1995)

13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

14. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex ap-
proximations for efficient analysis of timed automata. In: FSTTCS. LIPIcs, vol. 13,
pp. 78–89 (2011)

15. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed au-
tomata. In: LICS, pp. 375–384 (2012)

16. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed au-
tomata. arXiv:1301.3127, Extended version with proofs (2013)

17. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock
explosion problem of timed automata. TCS 345(1), 27–59 (2005)

18. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

19. Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed au-
tomata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 616–632. Springer, Heidelberg (2011)

20. Sorea, M.: Lazy approximation for dense real-time systems. In: Lakhnech,
Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253,
pp. 363–378. Springer, Heidelberg (2004)

21. Wang, F.: Efficient verification of timed automata with BDD-like data structures.
Int. J. Softw. Tools Technol. Transf. 6(1), 77–97 (2004)

22. Wong-Toi, H.: Symbolic Approximations of Verifying Real-Time Systems. PhD
thesis, Stanford University (March 1995)

	Lazy Abstractions for Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata, Zones, and the Reachability Problem
	2.2 LU-bounds and LU-abstractions

	3 Adaptive Simulation Graph
	4 Algorithm
	5 Controlling LU-bounds
	6 Examples
	7 Experiments
	8 Conclusions
	References

