
Adaptive and Multilevel Approach

for Constraint Solving

Claudio León de la Barra1, Broderick Crawford1,2, Ricardo Soto1,3,
and Eric Monfroy4

1 Pontificia Universidad Católica de Valparáıso, Chile
2 Universidad Finis Terrae, Chile

3 Universidad Autónoma de Chile, Chile
4 CNRS, LINA, Université de Nantes, France

{claudio.leondelabarra,broderick.crawford,ricardo.soto}@ucv.cl,
eric.monfroy@univ-nantes.fr

Abstract. For many real world problems, modeled as Constraint Satis-
faction Problems, there are no known efficient algorithms to solve them.
The specialized literature offers a variety of solvers, which have shown
satisfactory performance. Nevertheless, despite the efforts of the scientific
community in developing new strategies, there is no algorithm that is the
best for all possible situations. Then, several approaches have emerged
to deal with the Algorithm Selection Problem. Here, we sketch the use a
Choice Function for guiding a Constraint Programming solver exploiting
search process features to dynamically adapt it in order to more effi-
ciently solve Constraint Satisfaction Problems. To determine the best
set of parameters of the choice function, an upper-level metaheuristic
is used. The main novelty of our approach is that we reconfigure the
search based solely on performance data gathered while solving the cur-
rent problem.

Keywords: Algorithm Selection Problem, Constraint Solving,
Constraint Satisfacion Problems, Autonomous Search.

1 Introduction

Optimization problems can be solved by different algorithms, with varied per-
formance for different problem characteristics. Although some algorithms are
better than others on average, there is not the best algorithm for all the possible
instances of a given problem. To address this concern, recent work has focused
on creating algorithm portfolios, which contain a selection of state of the art
algorithms. To solve a particular problem with this portfolio, a pre-processing
step is run where the suitability of each algorithm for the problem at hand is
assessed. It is the same in Constraint Programming (CP), where the selection of
an enumeration strategy is crucial for the performance of the resolution process,
a correct selection can dramatically reduce the computational cost of finding a
solution. However, it is well-known that deciding a priori the correct heuristic

C. Stephanidis (Ed.): Posters, Part I, HCII 2013, CCIS 373, pp. 650–654, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adaptive and Multilevel Approach for Constraint Solving 651

is quite difficult, as the effects of the strategy can be unpredictable. In recent
years, different efforts have been done to determine good strategies based on the
information generated through the resolution process. However, deciding what
information must be measured and how to redirect the search is an ongoing
investigation [1].

Here, we propose a hyperheuristic approach to manage a portfolio of enu-
meration strategies. A hyperheuristic is a heuristic that operates at a higher
level of abstraction than the solver. The hyperheuristic has no problem-specific
knowledge, at any given time the hyperheuristic must choose which enumera-
tion strategy to call. To allow the hyperheuristic to operate, we define a choice
function which adaptively ranks the enumeration strategies monitoring indica-
tors of the search process. An analogy can be done with the well-known work
methodology called Balanced Scorecard (BSC) [12]. Such a business approach
aims at helping organizations to translate the strategy in terms of measures. In
that way, the behavior and performance of the organization is driven towards
the achievement of the strategic objectives. BSC involves concepts such as in-
dicators, measures, strategic objectives and introduces the concept of “means”,
which refers to actions and initiatives that must be carried out for achieving
the organization objectives. Such concepts can be seen as the inspiration of this
research, and they are closely related to the actions to follow once we decide to
replace the strategy in the CP solver.

2 Constraint Programming

Constraint Programming is a powerful software technology devoted to the effi-
cient resolution of constraint-based problems. It smartly interbreeds ideas from
different domains such as Operations Research, Artificial Intelligence, Graph
Theory and Programming Languages. Currently, CP is largely used in differ-
ent application domains. The principle behind CP is simple: the user states the
problem and the system solves it.

The solving process demands two main phases: modeling and search. In the
modeling phase, the user expresses the problem as a Constraint Satisfaction
Problem (CSP), which in general terms corresponds to a sequence of variables
lying in a domain and a set of constraints. In the search phase, the CSP is
launched in a solving engine, commonly called solver, which is a black box com-
posed of a set of powerful search algorithms. Such algorithms are responsible for
finding a solution, that is, a variable-value assignment that satisfies the complete
set of constraints.

Both phases are essential for an efficient CSP resolution. From a modeling
standpoint, a main element is the language. It provides the expressiveness and
the semantics for modeling the problems. From a search point of view, the effi-
ciency of search algorithms is the key. The idea is to build a tree data structure
holding the potential solutions and to perform a search process by interleaving
two phases: constraint propagation and enumeration.

Constraint propagation can be seen as a filtering mechanism. It is able to
prune the search tree by deleting those values that do not lead to any solution.

652 C.L. de la Barra et al.

The enumeration, also called labeling, is responsible for creating the branches of
the tree by assigning a value to a variable from its domain. The common idea
is to generate one branch for each variable-value assignment until a complete
solution is reached. However, if a partial solution violates a constraint, the pro-
cess backtracks, i.e., it returns to the most recently instantiated variable that
still has chance to reach a solution. This phase requires selecting the variable to
be enumerated and then the value to be assigned; we refer to these steps as the
variable and value selection heuristics.

3 The Enumeration Strategy Challenge

Jointly, a variable selection heuristic and a value selection heuristic constitute
what is known as the enumeration strategy [1]. Such a pair of decisions is cru-
cial in the performance of the resolution process, where a correct selection can
dramatically reduce the computational cost of finding a solution. For instance,
consider the simple case of choosing the right value on the first try for each
variable: a solution could be found without performing backtracks.

For a simple CSP problem, a good enumeration strategy goes directly to a
solution performing a few enumerations without backtracking. However, a bad
strategy can perform a lot of backtracks before reaching a solution. Obviously
strategies have drastically different efficiencies, often several orders of magnitude,
and thus it is crucial to select a good one that unfortunately cannot be predicted
in the general case. We are interested in making good choices for enumeration,
i.e., selection of a variable and a value.

There exist various studies about enumeration strategies [3–5], some centered
in defining general criteria, e.g., the smallest domain for variable selection, and
its minimum, maximum, or a random value for value selection. As opposed to this
idea, some research works have proposed strategies for a given class of problems,
e.g., for job shop scheduling [14, 15], as well as for configuration design [6]. We
can also find research focused on determining the best strategy based in some
static criterion [2, 3, 16], i.e., the selection heuristic is determined only once
before starting the resolution process, remaining unchangeable during the whole
process. However, deciding a priori the correct heuristics is quite hard, as the
effects of the strategy can be unpredictable.

We proposed techniques allowing the identification and measurement of indi-
cators for the resolution process. The main goal is to make possible the classifica-
tion of the execution process state, considered as the resolution progress, and in
that way be able to determine if the current strategy exhibits a poor performance
and whether it is necessary to replace it with a better one. Such an evaluation
procedure is not carried out for improving the resolution of a single problem. We
address our approach to efficiently find solutions for different problems. This can
be done by exploiting search process features to dynamically adapt a CP solver
changing the enumeration strategy in use when the other strategy looks more
promising in order to solve the CSP at hand. The main novelty of our approach
is that we reconfigure the searching based solely on performance data gathered

Adaptive and Multilevel Approach for Constraint Solving 653

while solving the current problem performing a general, correct, and opportune
indicator-based detection. Becoming our solver in an Autonomous Search (AS)
system [11].

4 Adaptive and Multilevel Approach for Constraint
Solving

As mentioned above, this work addresses dynamic selection of enumeration
strategies for solving constraint satisfaction problems. We focus our research in
reacting on the fly, allowing an early replacement of bad performance strategies
without waiting the entire solution process or an exhaustive analysis of a given
class of problems. We make profit of indicators that gather performance data
during the resolution process. Regarding this issue, we use AS mechanisms where
a choice function adaptively ranks the enumeration strategies and the problem
of determining the best set of parameters of the choice function is tackled using
a metaheuristic (Genetic algorithm, Particle swarm ...).

Our solver is able to detect inefficiencies and, as a result, replace the enumer-
ation strategy with a better one. To achieve this goal, we perform an indicator
based observation during the solving process. The main purpose of indicators
is to proportion the relevant information about the behavior of the resolution
process. They must reflect the real state of progress in the problem resolution.
In this way, we are able to elaborate a correct judgment about the search per-
formance. To this end, we define simple and quantitative indicators, which can
be used different times as well as percentage combinations of them depending
on the used techniques and/or the problem to solve.

Our research focuses on developing solvers for CSPs. We are concerned with
the design of hybrid resolution approaches including constraint programming
and metaheuristics. We have been working on that area during the last years,
exploring the different issues –from software engineering and optimization– in-
volved in algorithm design, implementation, tuning and experimental evaluation.
The details of our related work are in [7–10, 13].

5 Conclusions

Among the main contributions of our work we can state the design and imple-
mentation of a solver that is able to measure the search process (using some
basic indicators) in order to perform an on the fly replacement of enumeration
strategies (using a portfolio of basic enumeration strategies). The solver is based
on enumeration strategies of different natures (based on the size of variable do-
mains, on the number of occurrences of the variables in the constraints) and
some indicators on the resolution progress (backtracks, visited nodes, variables
fixed, shallow backtracks, deep of the search tree,). In our approach the re-
placement of the enumeration strategies is performed depending on a quality
rank (priority), which is computed by means of a choice function fine-tuned by
a metaheuristic.

654 C.L. de la Barra et al.

References

1. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press
(2003)

2. Beck, J.C., Prosser, P., Wallace, R.J.: Trying again to fail-first. In: Faltings, B.V.,
Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419,
pp. 41–55. Springer, Heidelberg (2005)

3. Beck, J.C., Prosser, P., Wallace, R.J.: Variable ordering heuristics show promise.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 711–715. Springer, Heidelberg
(2004)

4. Christopher Beck, J., Prosser, P., Wallace, R.J.: Toward understanding variable or-
dering heuristics for constraint satisfaction problems. In: Fourteenth Irish Artificial
Intelligence and Cognitive Science Conference (AICS), pp. 11–16 (2003)

5. Castro, C., Monfroy, E., Figueroa, C., Meneses, R.: An Approach for Dynamic Split
Strategies in Constraint Solving. In: Gelbukh, A., de Albornoz, Á., Terashima-
Maŕın, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 162–174. Springer,
Heidelberg (2005)

6. Chenouard, R., Granvilliers, L., Sebastian, P.: Search heuristics for constraint-aided
embodiment design. AI EDAM 23(2), 175–195 (2009)

7. Crawford, B., Castro, C., Monfroy, E.: Integration of Constraint Programming
and Metaheuristics. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI),
vol. 4612, pp. 397–398. Springer, Heidelberg (2007)

8. Crawford, B., Castro, C., Monfroy, E., Soto, R., Palma, W., Paredes, F.: A Hyper-
heuristic Approach for Guiding Enumeration in Constraint Solving. In: Schütze, O.,
Coello Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand,
P. (eds.) EVOLVE - A Bridge Between Probability, Set Oriented Numerics, and
Evolutionary Computation II. AISC, vol. 175, pp. 171–188. Springer, Heidelberg
(2012)

9. Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter
tuning of a choice-function based hyperheuristic using particle swarm optimization.
Expert Syst. Appl. 40(5), 1690–1695 (2013)

10. de la Barra, C.L., Crawford, B.: Fostering Creativity Thinking in Agile Software
Development. In: Holzinger, A. (ed.) USAB 2007. LNCS, vol. 4799, pp. 415–426.
Springer, Heidelberg (2007)

11. Hamadi, Y., Monfroy, E., Saubion, F.: What is autonomous search? Technical
Report MSR-TR-2008-80, Microsoft Research (2008)

12. Kaplan, R.S.: Conceptual Foundations of the Balanced Scorecard. SSRN eLibrary
(2010)

13. Monfroy, E., Castro, C., Crawford, B.: Adaptive enumeration strategies and
metabacktracks for constraint solving. In: Yakhno, T., Neuhold, E.J. (eds.) ADVIS
2006. LNCS, vol. 4243, pp. 354–363. Springer, Heidelberg (2006)

14. Sadeh, N.M., Fox, M.S.: Variable and value ordering heuristics for the job shop
scheduling constraint satisfaction problem. Artif. Intell. 86(1), 1–41 (1996)

15. Smith, S.F., Cheng, C.: Slack-based heuristics for constraint satisfaction schedul-
ing. In: AAAI, pp. 139–144 (1993)

16. Sturdy, P.: Learning Good Variable Orderings. In: Rossi, F. (ed.) CP 2003. LNCS,
vol. 2833, p. 997. Springer, Heidelberg (2003)

	Adaptive and Multilevel Approach
for Constraint Solving

	1 Introduction
	2 Constraint Programming
	3 The Enumeration Strategy Challenge
	4 Adaptive and Multilevel Approach for Constraint Solving
	5 Conclusions
	References

