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Abstract. In the current experiment, we simulated a military multitasking envi-
ronment and evaluated the effects of RoboLeader on the performance of human 
operators (i.e., vehicle commanders) who had the responsibility of supervising 
the plans/routes for a convoy of three vehicles while maintaining proper 360° 
local security around their own vehicle. We evaluated whether -- and to what 
extent -- operator individual differences (spatial ability, attentional control, and 
video gaming experience) impacted the operator’s performance. In two out of 
three mission scenarios, the participants had access to the assistance of an intel-
ligent agent, RoboLeader. Results showed that RoboLeader’s level of autonomy 
had a significant impact on participants’ concurrent target detection task per-
formance and perceived workload. Those participants who played action video 
games frequently had significant better situation awareness of the mission envi-
ronment. Those participants with lower spatial ability had increasingly better 
situation awareness as RoboLeader’s level of autonomy increased; however, 
those with higher spatial ability did not exhibit the same trend.  
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1 Introduction 

Robots are increasingly utilized in military operations, and the types of tasks they are 
being used for are evolving in complexity [1][2]. In the future battlefield, Soldiers 
may be given multiple tasks to perform concurrently, such as navigating a robot while 
conducting surveillance, maintaining local security and situation awareness (SA), and 
communicating with fellow team members. In recent years, several research efforts 
have developed intelligent software agents that can assist human operators in manag-
ing multiple robots in military tasking environments [3]-[5]. Indeed, a recent report on 
the Role of Autonomy in U.S. Department of Defense Systems recommended that 
“increased autonomy can enable humans to delegate those tasks that are more  
effectively done by computer, including synchronizing activities between multiple 
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unmanned systems, software agents and warfighters—thus freeing humans to focus 
on more complex decision making” (p. 1) [6]. Such a robotic surrogate agent, Robo-
Leader, was developed under the U.S. Army Research Laboratory’s Director’s Re-
search Initiative Program to support mixed-initiative decision making [3][7][8]. In 
typical mission situations, RoboLeader would recommend route revisions when en-
countering environmental events that require robots to be rerouted. The human opera-
tors, in turn, can accept the plan revisions or modify them as appropriate.  

In the current experiment, we simulated a multitasking environment and evaluated 
the effects of RoboLeader on the performance of human operators (i.e., vehicle com-
manders) who had the responsibility of supervising the plans/routes for a convoy of 
three vehicles (their own manned ground vehicle [MGV], an unmanned aerial system 
[UAS], and an unmanned ground vehicle [UGV]) while maintaining proper 360° local 
security around their MGV (Fig. 1). The U.S. Army is currently developing 360° 
indirect-vision display capabilities to enable vehicle commanders to see their imme-
diate environment via streaming video sent from cameras mounted outside the MGV. 
In the current experiment, the three simulated vehicles traveled in an urban environ-
ment as a convoy and the participants had to decide whether and how the routes for 
the convoy had to change based on environmental events (e.g., threats present, envi-
ronmental hazards/obstacles) and/or intelligence reports. The paradigm followed 
Chen and Barnes [3][7] and there were three levels of autonomy (LOAs): the partici-
pants either performed the plan revisions manually (Manual condition) or with the 
assistance from RoboLeader (Semi-Auto condition: maintaining vehicle dis-
tance/separation only; Full Auto condition: vehicle separation + route planning). 
Concurrently, the participants monitored an indirect-vision display where the envi-
ronment surrounding the MGV was visible. They were required to report any threats 
present in their immediate environment (i.e., target detection task). 

 

 

Fig. 1. User interface of the convoy and 360 tasking environment 
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In the current study, we also sought to evaluate whether -- and to what extent -- oper-
ator individual differences in spatial ability, attentional control, and video gaming expe-
rience might impact the operator’s performance. Significant individual differences in 
cognitive task performance and interaction with automation have been repeatedly do-
cumented in literature [3][9]-[11]. Szalma [12] suggests that individual differences 
should be considered more frequently in user interface designs and training intervention 
developments. In fact, based on empirical data, it has been observed that effects due to 
individual differences in cognitive abilities can sometimes be even greater than effects 
due to interface design manipulations [13]. Manzey et al. [14] observed significant indi-
vidual differences in susceptibility to automation bias effects in the multitasking  
environments they simulated, although the authors did not identify what individual dif-
ferences factors contributed to the observed behaviors. Previous research has shown that 
some individuals show more performance decrements than others when multitasking 
and these decrements may be related to their poorer abilities to control and allocate 
attention [15]-[17]. These results suggest that individual differences in attentional con-
trol seem to play a critical role in determining an operator’s overall multitasking per-
formance. Research also shows that individual differences in spatial ability and gaming 
experience play important roles in determining operators’ SA in multi-robot tasking 
environments [3][7]. 

2 Method 

2.1 Participants 

Thirty individuals (21 males and 9 females, mean age 25 yrs) from the Orlando, FL 
area participated in the study. They were compensated $15/hr for their time. 

2.2 Apparatus 

A modified version of the Mixed Initiative Experimental (MIX) Testbed was used as 
the simulator for this experiment [18]. The RoboLeader algorithm was implemented 
on the MIX testbed and it had the capability of collecting information from subordi-
nate robots with limited autonomy (e.g., collision avoidance and self-guidance to 
reach target locations), making tactical decisions and coordinating the robots by is-
suing commands and waypoints etc. [8]. The MGV 360° indirect-vision display emu-
lated the capability currently developed by the U.S. Army Technology Objective 
(ATO) Improved Mobility and Operational Performance through Autonomous Tech-
nologies (IMOPAT). The capabilities of the UGV and the small UAS as well as the 
behavior of the convoy (e.g., the formation of and the distances among the three ve-
hicles) were simulated based on the concept of the ATO Safe Unmanned Operations 
in Urban Operations (SOURCE).  

A demographics questionnaire was administered at the beginning of the training 
session. An Ishihara Color Vision Test (with 9 test plates) was administered via Po-
werPoint presentation. Since the RoboLeader OCU employed several colors to dis-
play the plans for the robots, normal color vision was required to effectively interact 



276 J.Y.C. Chen  et al. 

with the system. A questionnaire on Attentional Control [19] was used to evaluate 
participants’ perceived attentional control. The Attentional Control survey consists of 
21 items and measures attention focus and shifting. The scale has been shown to have 
good internal reliability (α = .88). The Cube Comparison Test [20] and the Spatial 
Orientation Test [21] were used to assess participants’ spatial ability. The Cube Com-
parison Test requires participants to compare, in 3-minutes, 21 pairs of 6-sided cubes 
and determine if the rotated cubes are the same or different. The Spatial Orientation 
Test, modeled after the cardinal direction test developed by Gugerty and his col-
leagues [21], is a computerized test consisting of a brief training segment and 32 test 
questions. Both accuracy and response time were automatically captured by the pro-
gram. Participants’ perceived workload was evaluated with the computerized version 
of the NASA-TLX questionnaire, which used a pairwise comparison weighting pro-
cedure [22].  

2.3 Procedure 

Before the training session, the participants completed the preliminary tests (color 
vision and spatial) and surveys (demographic and perceived attentional control). 
Training, lasting about one hour, was self-paced and was delivered by PowerPoint® 
slides showing the elements of the operator control unit (OCU), steps for completing 
various tasks, several mini-exercises for practicing the steps, and exercises for per-
forming the experimental tasks. The participants had to demonstrate that they could 
recall all the steps for performing the tasks without any help. The experimental ses-
sion immediately followed the training session and consisted of three scenarios, each 
lasting approximately 30 minutes. During the scenarios, participants tried to get a 
convoy of three vehicles (his/her own MGV, a small UAS, and a UGV) from point A 
to point B. The participants were instructed to maintain certain distances among the 
three vehicles. In each scenario, there were initial waypoint plans for each vehicle 
when the scenario started, and the participants’ task was to modify the plans based on 
environmental/intel “events” (described later) or based on hostile targets detected by 
the participants themselves. Simultaneously, the participants had to maintain 360° 
local security surrounding his/her own MGV by monitoring the 360° indirect-vision 
display and try to detect targets in the immediate environments. Once a hostile target 
was detected, the participants “lazed” the target by clicking on the target using the 
mouse. The “lazed” insurgent would then be displayed on the map. There were civi-
lians and friendly dismounted soldiers in the simulated environment to increase the 
visual noise present in the target detection tasks. The order of scenarios was counter-
balanced across participants.  

During the scenarios, there were several events (e.g., intelligence that the human 
operator received from the intel network or environmental hazards such as fire or road 
blockages) that would require revisions to the plans for the manned and unmanned 
vehicles. Once an event transpired, the participants must notice and acknowledge that 
the event had occurred. In the Full-Auto condition, RoboLeader would recommend 
plan revisions for the events (by presenting the new waypoints on the map), which the 
operator could accept, or reject and modify as deemed necessary. In the Semi-Auto 
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condition, the participants modified the waypoints for the lead vehicle (the UAS) 
when the convoy’s route needed to be changed. In the Manual condition, the operator 
made the revisions manually. In the Semi-Auto and Full-Auto conditions, the distance 
separations among the vehicles was maintained automatically based on the vehicles’ 
own leader-follower algorithms.  

Each scenario contained five SA queries, which were triggered based on time pro-
gression (e.g., 3 minutes into the scenario). The SA queries included questions such as 
“Use the provided paper to identify which areas have encountered the most Insur-
gents” etc. When an SA query was triggered, the OCU screen went blank, the simula-
tion paused, and the SA query was displayed on the screen. Participants wrote their 
response to the query on an answer sheet. After participants responded to the SA 
query, it was removed from the OCU screen and the simulation resumed. There was a 
two-minute break between the experimental scenarios. Participants assessed their 
workload using the NASA-TLX immediately after each experimental scenario.  

3 Results 

A mixed-model ANOVA (within-subject: LOA; between-subject: participants’ spatial 
ability [SpA]) on Target Detection revealed a significant effect of LOA, F(2, 27) = 12, 
p < .0005, η2p = .47. Post-hoc (LSD) comparisons show a significant increase in Tar-
get Detection scores between both Manual and Semi-Auto conditions and Manual and 
Full Auto conditions (p’s < .05). There was no significant difference between Semi-
Auto and Full Auto conditions.  

A mixed-model ANOVA on Situation Awareness (SA) revealed a significant inte-
raction of LOA and SpA, F(2, 27) = 3.6, p = .04, η2p = .21. Participants with lower 
SpA had increasingly higher SA as the LOA increased; however, those with higher 
SpA exhibited the opposite trend. Participants who played action games frequently 
(daily or weekly) had significantly better SA than those who did not, F(1, 28) = 4.5,  
p = .04, η2p = .14 (Figure 2). 

 

 
Fig. 2. Effects of gaming experience on situation awareness 
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A mixed-model ANOVA revealed that there was a significant main effect of LOA 
on Perceived Workload (NASA-TLX), F(2, 27) = 24.8, p < .0005, η2p = .65. Post-hoc 
(LSD) comparisons showed that the differences between each pair were all significant 
(p’s < .05), with Manual being the highest and RoboLeader being the lowest. All three 
major dependent measures (target detection, SA, and workload) are graphically sum-
marized in Figure 3. 

 

Fig. 3. Major dependent measures 

4 Conclusions 

In the current experiment, we simulated a military multitasking environment and eva-
luated the effects of RoboLeader on the performance of human operators (i.e., vehicle 
commanders) who had the responsibility of supervising the plans/routes for a convoy 
of three vehicles (their own MGV, a UAS, and a UGV) while maintaining proper 
360° local security around their MGV. Results showed that RoboLeader (either semi- 
or full-auto) enhanced participants’ concurrent target detection task performance 
while reducing their perceived workload (Figure 3). Those participants with lower 
spatial ability had increasingly better situation awareness as RoboLeader’s level of 
autonomy increased; however, those with higher spatial ability did not exhibit the 
same trend. Frequent action gamers had significantly better SA of the mission envi-
ronment than those who did not play action games frequently. This result is consistent 
with previous findings [3][7][23], suggesting that video game play is associated with 
greater visual short-term memory and faster information processing, which in turn, 
may have contributed to game playing participants’ superior SA in the current study. 
These results also support the conclusion of a U.S. Air Force study [24] based on 
interviews of UAV pilots that gamers’ superior SA may be able to translate into supe-
rior robotics management performance. These results may have important implica-
tions for system design and personnel selection for future military programs [24]-[26]. 
Future research can investigate training interventions (e.g. attention management) 
and/or user interface designs (e.g. multimodal cueing displays) to enhance robot  
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operator performance in challenging tasking environments [1][27][28]. Future efforts 
will also examine the feasibility of implementing RoboLeader-like agent in other 
military multi-robot missions such as building-mapping and clearing and swarm  
control. 
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