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Abstract. The correspondence between the detailed contents of a person's men-
tal state and human neuroimaging has yet to be fully explored. Previous re-
search reconstructed contrast-defined images using combination of multi-scale 
local image decoders, where contrast for local image bases was predicted from 
fMRI activity by sparse logistic regression (SLR). The present study extends 
this research to probe into accurate and effective reconstruction of images from 
fMRI. First, support vector machine (SVM) was employed to model the rela-
tionship between contrast of local image and fMRI; second, additional 3-pixel 
image bases were considered. Reconstruction results demonstrated that the time 
consumption in modeling the local image decoder was reduced to 1% by SVM 
compared to SLR. Our method also improved the spatial correlation between 
the stimulus and reconstructed image. This finding indicated that our method 
could read out what a subject was viewing and reconstruct simple images from 
brain activity at a high speed. 
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1 Introduction 

Functional magnetic resonance imaging (fMRI) provides a convenient tool for scien-
tists to determine what a person perceives from his/her brain activity [1-6]. Re-
searches about visual information reading decoded brain activity at three levels: clas-
sification, identification and reconstruction. Classification is to predict which category 
the present image belongs to from the brain pattern of activity [8-12]. Beyond classi-
fication, image identification established the computation model to identify the image 
that the subject was viewing out of a set of potential images from brain activity mea-
surements [1, 2]. Kay and colleagues utilized a Gabor wavelet function to capture the 
visual stimuli characteristics related to fMRI activity, and characterized the relation-
ship between visual stimuli and fMRI activity in early visual areas with quantitative 
receptive-field models. Their study showed that these receptive-field models  
make it possible to perform image identification [1]. More recently, researchers have 
moved a more forward step to reconstruct the visual image composed of flickering 



492 Y. Zhan et al. 

 

checkerboard patterns or even more complicated actual natural images that were seen 
or movie experience, rather than simply choosing the image from a known set [4, 5]. 

Thirion et al. build the inverse model of the retinotopy of the visual cortex to infer 
the visual content of real or imaginary scenes from the brain activation patterns [6]. 
Another representative work of image reconstruction was the study of Miyawaki et 
al., they established the method of multi-scale local image decoder to directly model 
the relationship between the image stimulus and fMRI activity at the specific time 
when image was presented to subjects [3]. In their study, reconstructed images were 
modeled by a linear combination of local image bases. Miyawaki fixed the shape and 
size of image bases in his study, and he utilized local image of four scales: 1×1, 1×2, 
2×1, and 2×2 patch areas [3]. These are totally 361 image bases for a 10×10 flickering 
checkerboard patterns. The local decoders based on sparse logistic regression ap-
proach were defined to predict the mean contrast of each local image bases. Each of 
the 361 local decoders was individually trained to classified fMRI data samples into a 
class corresponding to contrast level. After the decoders’ output, a linear combination 
of the 361 image bases was applied to reconstruct the predicted images. 

Miyawaki‘s research stands for the highest level of visual decoding studies that 
have emerged over the years. The spatial correlation between the presented stimulus 
and reconstruction image even came to 0.68 ± 0.16 (mean ± s.d.) for individuals. 
However, the time and space complexity of their method is extremely high because of 
the extremely laborious computation in sparse logistic regression model. 

To further investigate the effective image reconstruction method in visual informa-
tion decoding from brain activities, we are trying to find a method raising the training 
speed with little precision loss. First, the heavy work in training the contrast decoder 
model with SLR for each element image in Miyawaki’s work was reduces by classifi-
ers designed with SVM. As each local decoder consisted of a multi-class classifier, 
Instead of the sparse logistic regression method, we could use an SVM model to clas-
sify fMRI data samples into discrete contrast levels. Second, we will also use the 1×3 
and 3×1 image bases, as well as the fixed image bases used in Miyawaki’s work. Us-
ing Bayesian based canonical correlation analysis (CCA), Fujiwara proposed a me-
thod to automatically find a set of image bases from the fMRI data, and reconstruction 
results illustrated that this set of 3-pixel image bases improved the reconstruction 
performance [7]. 

2 Method 

2.1 Dataset  

We used the same dataset from Miyawaki et al., where fMRI signals were measured 
in two independent sessions. In each session, the subject viewed visual images con-
sisting of contrast-defined 10×10 patches. In the random image session, a total of 440 
flickering checkerboard spatially random pictures were presented, each stimulus 
block was 6 seconds long followed by 6 s rest period. In the figure image session, a 
total of 120 pictures were presented. Each stimulus block was 12 seconds long fol-
lowed by a 12 s rest period. Stimulus pictures were geometric shapes (i.e. “square”,  
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“plus”, “X”) or alphabet letters (“n”, “e”, “u”, “r”, “o”). Each picture had been shown 
to the subject for 4 or 8 times. The Supplemental Data can be found online at 
http://www.neuron.org/supplemental/S0896-6273(08)00958-6. 

2.2 Multi-scale Image Bases 

As with Miyawaki’s research, we assume that an image is represented by a linear 
combination of local image elements of multiple scales. The local image bases used in 
Miyawaki’s work were 1×1, 1×2, 2×1 and 2×2 patch areas. They were placed at every 
location in the image with overlaps. For example, the 1×2 scale bases will cover the 9 
rectangles (1 1)-(1 2), (1 2)-(1 3), … , (1 9)-(1 10) in the first row of the 10×10 image. 
So there are a total of 10×9 image bases of scale 1×2. Similarly, there are respectively 
10×10, 9×10, 9×9 image bases of scale 1×1, 2×1 and 2×2. For each stimuli images, 
we counted the number of flickering grids in an image base, 1×1 scale yields value 0 
for all patches staying gray and 1 for whole element image flicking. For the 2×1 scale 
image bases, there are three values, 0 means no flickering grid, 1 means one flickering 
grid, and 2 means all the 2 grid in image bases are flickering. Similarly, 1×2 yield 
contrast values 0, 1, 2 and 2×2 yields 0, 1, 2, 3, 4. The present study used extra image 
elements of 1×3 and 3×1 patch areas, thus yielded another 160 image bases (10×8 and 
8×10 for 1×3 and 3×1 patch areas respectively). The flickering grids number for 3-
patch image ranges from 0 to 3. The mean contrast value of each local image base 
was defined as the total number of patches in that local image divided by the number 
of flickering patches (represented as white girds). 

2.3 SVM Model 

Instead of applying sparse logistic regression method, we used support vector ma-
chine to predict the mean contrast value for each local element. In this study, we only 
used the fMRI activity of V1 area to build the SVM models. The sample features are 
the activation of voxels in V1 area; the sample label is the mean contrast value in each 
image base. All the local image decoders except those for 1×1 patches, the mean con-
trast level belonged to more than 2 classes, so we used multi-class SVM models. The 
SVM code used here was implemented by Lin Chih-Jen in Taiwan University. The 
source code is available online at http://www.csie.ntu.edu.tw/~cjlin/. Here, linear 
SVM models were trained with samples in the random image session. And we eva-
luated the model with test dataset from the figure image session. 

2.4 Linear Combination 

This procedure makes up the reconstructed image by adding all local image bases 
altogether. In Miyawaki’s work, least square error method was used to obtain the 
coefficient of each image base. In our work, the prediction accuracy on the training 
set are 100% for all 1×1 image bases, all the 1×1 image bases will have coefficients 1. 
To simplify this problem, we assume that all the pixels in the 10×10 image are pre-
dicted by summing up the class labels of correlated image bases, and the coefficients 
of all the image bases are 1. The mainframe of this approach is shown in Fig. 1. 
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Fig. 1. The fMRI signals were measured while subject viewed the stimulus images. The SVM 
models were trained using V1 area data of the random image session. After the SVM assigned 
the class labels to each image base for the figure image session data, the predicted value of a 
specific pixel was calculated by summing up the class labels of all the image bases that covered 
the pixel. 

3 Results 

3.1 Reconstruction Performance 

The stimuli images were reconstructed using the element images, whose contrast 
values predicted by SVM models trained with all block-average data (average of 6s or 
3-volumns fMRI data, TR=2s) in the random image session. Reconstruction was per-
formed on block-averaged data (average of 12s or 6-volumns fMRI data) in the figure 
image session. Although model training used only random images, the reconstructed 
images of test dataset showed obvious similarity between presented images and re-
constructed images for stimulus shapes or letters. Using the combination of 1×1, 1×2, 
2×1 and 2×2 image bases, the spatial correlation was 0.6643 ± 0.1207 (mean ± s.d. 
data not shown). By adding the 1×3 and 3×1 image bases, the spatial correlation in-
creased to 0.6934 ± 0.1165 (mean ± s.d.). Reconstruction images from all trials of the 
figure image session are illustrated in Fig.2. 

3.2 Computational Expenses  

The SVM model training and testing time cost for all 6 scales are listed in Table.1. 
The comparison suggested that the computing complexity using SVM was far lower 
than that of sparse logistic regression. 
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Fig. 2.  Reconstructed visual images of chareacters. The reconstruction results of all the trials 
for the subject are shown with presented images from the figure image session (a total of 120 
images). The 10 stimuli images in the first row repeated 8 times and the 10 stimuli in the 10th 
row repeated 4 times. The reconstructed images are sorted in descending order of the spatial 
correlation. No post processing was applied. 

Table 1. The total time (in seconds) including training and testing for support vector machine 
(SVM) and sparse logistic regression (SLR) under different scales were shown below. System 
Information: Windows 7 SP1(64bit), CPU: Intel(R) Core(TM)2 CPU 6600@ 2.40GHz 
2.39GHz, Ram: 4.00GB. 

Scale 1×1 1×2 2×1 2×2 1×3 3×1 

method       
SVM 85 103 97 106 92 98 
SLR 11831 21661 18739 58229 -- -- 

 

Presented patterns 

Presented patterns 

Reconstructed patterns 

Reconstructed patterns 



496 Y. Zhan et al. 

 

4 Discussion 

4.1 SVM and Over-Fitting 

SVM is a pretty fast classification algorithm, which has its application in many re-
search fields. In our study, more than 1700 voxels are used to train the local decoders. 
Such high dimension of features may probably cause the problem of over-fitting. As 
we know, SVM implements the structural risk minimization principle and it searches 
to minimize an upper bound of generalization error. For this reason, SVM reduces the 
risk of over-fitting and provides a relatively stable classification performance. In this 
research, the output accuracies of SVM are all beyond guess probability. 

4.2 Image Bases 

By intuition, the image bases more closed to the visual recognition of human-beings the 
less the reconstruction error will be. There is no verdict in what shapes of image bases are 
more approximate to our visual system. Our results showed that using extra 3-pixel im-
age bases produces slightly better reconstructed images, consistent with Fujiwara’s con-
clusion that 3-pixel image bases have a high correlation with the visual cortex activities. 

4.3 Least Square Method 

As Miyawaki mentioned in his research, the image bases are not orthogonal which 
means even if all the image base decoders output the right results, we cannot recon-
struct the exact image by adding all the image bases together. To deal with this prob-
lem, he used the least square method to calculate the coefficients of each image bases. 
We found this process is technically not necessary. First, if all the SVM decoders 
output right, the reconstructed images by adding all image bases altogether have an 
average spatial correlation of 0.9551±0.0217 with the original ones. Second, the 
training set, which has only 440 random images, is relatively small for predicting a 
total of 521 least square coefficients. While it is true that using different coefficients 
(not LSM) may yield better performance, little improvement could be achieved. We 
assign unit value to each coefficient and this simple strategy seemed work well. 

5 Conclusions 

The results reported here provide an efficient and accurate method to reconstruct vis-
ual stimulus from fMRI signals. Furthermore, the improved spatial correlation using 
3-pixel image bases suggests that these image bases may provide more supplementary 
visual information. The main features of the stimulus were emerged in the recon-
structed images, which indicated that SVM could exactly map the activation of visual 
cortex (V1 area) to the contrast stimulus patterns. Here we also drew the same conclu-
sion with Miyawaki that the outputs of local decoders in the center of an image are 
more accurate than that in the edges or corners, demonstrating that the visual attention 
is likely to be concentrated in the center of sight. Further research can be applied to 
investigate how to accurately predict these surrounding areas. 
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