

M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2013, LNCS 8004, pp. 510–520, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Requirements for a Definition of Generative User
Interface Patterns

Stefan Wendler and Ilka Philippow

Ilmenau University of Technology, Software Systems, Process Informatics Department
Helmholtzplatz 5, 98693 Ilmenau, Germany

{stefan.wendler,ilka.philippow}@tu-ilmenau.de

Abstract. Patterns for visual GUI design propagate the specification of user
interfaces with proven usability and motivate model-based development
processes with increased reuse of GUI component compositions. However, a
common structure, that captures all the reusability and variability demands,
neither has been established for the descriptive form nor the generative kind of
user interface patterns. Dedicated GUI specification languages like UIML and
UsiXML fail to express pattern definitions that can be instantiated in varying
contexts. Thus, model-based processes are required to introduce own media to
store those patterns. With our approach, we review the state of the art for
generative user interface pattern definition and derive requirements which we
refine by a Global Analysis. Finally, we developed a model that accommodates
primary factors and their impacts towards the concept for a more sophisticated
generative user interface pattern definition.

Keywords: HCI patterns, user interface patterns, GUI generation.

1 Introduction

For systems which are intended to provide a direct support for users in their operative
tasks the user interface is of highest importance. The developers of the user interface
have to be aware of three different basic requirements. Firstly, the user interface has
to provide an effective and task-adequate access to the functional layer and data of a
given system. Moreover, the user interface has to be visually designed and
implemented in a way that enables the user to work with the system efficiently.
Lastly, a business information system has to meet the before mentioned requirements
after incremental adaptations to new demands imposed by the changed business
processes and their environment.

Finally, these requirements for user interface systems lead to high efforts in initial
development and the further lifecycle of the system. During the adaptation of a user
interface to user requirements some aspects of the presentation layer essentials may
see a potential for increased reuse. For these aspects, the basic layout of dialog types,
their arrangement and navigation mechanism as well as reoccurring user interface
controls (UI-controls) and their data type processing are considered to see more reuse
in the future. System specific patterns seem to be helpful for the reuse as these aspects

 Requirements for a Definition of Generative User Interface Patterns 511

feature a high variability, e.g. the content data of dialogs as well as the associated UI-
controls and navigation options highly depend on the task to be supported. Finally, a
need has emerged to both decrease the efforts for GUI development or individual
customization and enable a homogenous assembly for of the architecture comprising
the user interface components.

HCI-Patterns. The deployment of patterns for GUI development has been discussed
for more than a decade now [1][2][3]. Besides architectural patterns that can be relied
on for the definition of basic structures for GUI components, various definitions,
approaches and modeling process have emerged from the application of patterns that
provide solutions for the visual and interactive parts of the GUI, which are not
addressed by the basic design patterns. However, no consistent definition for patterns
dedicated to GUI development has been established yet.

In general, as increased reuse is propagated here and by other approaches applying
model-driven processes [4], there is a need for a dedicated pattern definition. The
pattern conception has to ensure that a GUI system will be developed homogenously
along its hierarchy of visual and non-visual components, meaning that architecture
and GUI patterns have to be comprehensive. If the pattern concept was not able to
cover every context of application and thus in need for specialized solutions, the main
problem of GUI development related efforts would persist. We claim that this is an
issue for current research projects that may enable pattern-based solutions for GUI
systems but at some point have to revert to manually refined structures not covered by
mere pattern instantiation.

User Interface Patterns. To begin with, “user interface pattern” (UIP) [5] is used as
a term for the further discussion of GUI specific patterns. UIPs are intended to aid in
adaptation and creation of user interfaces with a similarity in task or data processing,
visual and interaction design. Currently, UIPs are not considered as a strong asset as
architectural or design patterns for enabling reuse of concepts and context aware
instantiation. It is our goal to encourage a basic conceptual view on UIPs that may
pave the way for their assured and unified integration as an artifact in development
environments. Moreover, we strive for the elaboration of a requirement model for
UIPs that should be able to capture all essential aspects and needs for context-specific
application and instantiation of UIPs. GUIs created by generators tend to lack
usability what could be improved by the involvement of established UIPs [6]. In sum,
a process that enables the instantiation of UIPs and their composition to form a user
interface of high usability and adaptability altogether would be of great value.

Objectives. As our objective, we see the review of the state of the art in the area of
implementation related UIP approaches. After a problem analysis concerning the
formalization of abstract UIPs, we formulate requirements that reflect the exploits of
UIPs. During the analysis of requirements, we derive influence factors that are
systematically presented via a Global Analysis.

Our aim is to raise the awareness of expert groups to focus on UIPs and their
abstract pattern nature. The purpose behind UIPs was to act as patterns describing

512 S. Wendler and I. Philippow

user interface commonalities and allowing instantiation. A first step for the
formalization of UIPs required for automated processing is the identification of their
characteristics and traits which embody the reusable aspects of a user interface.

2 State of the Art Review

2.1 UIP Definition and Collections

Stating a UIP definition is not easily done since a standardization of this term has yet
to be reached [7]. What can be assumed is a separation of UIPs between their usage in
specification or generation of software, hence the pattern idea for GUI systems found
its roots in HCI [8] and now evolves towards automated or generative development
[9]. As a result, UIPs have been separated into two types by Vanderdonckt:

Descriptive UIPs. Serving mainly as illustrative examples for GUI specification,
descriptive UIPs are described and interpreted by human-beings and thus act as
inspirations or best-practices for usability proven GUI design.

Generative UIPs. For our objective, the generative type of UIPs is of greater
importance since these patterns have to store all relevant information for the
automated processing by generators. For a set of given generative UIPs a defined set
of design patterns or architectural structures have to be instantiated in source code.
Each type of UIP determines a certain quality of architecture part. The final choice of
UIP instances to be used for a part of GUI system merely determines the quantity of
code structures to be instantiated by the generator. As reuse should be increased, the
manual addition of linking code (glue code) must be omitted.

PLML. The descriptive specification of UIPs already poses an issue which is caused
by the lack of a proper definition for this artifact. There have been attempts to create a
unified description scheme with the introduction of PLML (pattern language markup
language) in 2003 [10]. Engel, Herdin and Märtin conducted an investigation of
common description schemes in [7]. Descriptive UIPs are established as specification
elements and supported by the HCI community. Thus, one could be tempted to
abstract the common structure of UIPs from the existing UIP collections. Following
this course, Engel, Herdin and Märtin have discovered that a full compilation of
necessary elements is difficult, since the patterns are still presented in a rather
unstructured form [7] and missing attributes for technical considerations. In addition,
PLML never was supported by a unified metamodel that satisfies all generative UIP
needs. Several extensions have been proposed but there are still enhancements which
have to be incorporated [7]. Furthermore, implementation aspects and relationships
among UIPs are neither sufficiently nor clearly mentioned by PLML. With this status
quo on the specification level, a proper formalization of UIPs as generative artifacts is
hindered at an early stage.

 Requirements for a Definition of Generative User Interface Patterns 513

UIP-Libraries. To some extent, descriptive UIPs have been filed in UIP-libraries like
[11] and [12]. In contrast to the weaknesses of their content structure, UIP-libraries do
motivate our approach towards a clearer definition of generative UIPs. They drive the
pattern-based application of UIPs by depicting GUI example layouts, that do feature
stereotype visuals and interactions which may be adapted to individual application
contexts. Thus, UIP-libraries inspire the idea to compose individual GUI dialogs by
choosing from the available pattern palette.

2.2 Modeling Processes Involving UIPs

A sophisticated development environment for generative UIPs was created by the
University of Rostock [4]. Their example proves that UIPs can be instantiated to
various application contexts and thus facilitate reuse in GUI development. However,
the used presentation model implicitly defined the UIP to be applied. Consequently, a
selection of a different UIP had to be done via a manual replacement by pre-defined
GUI components (PICs) already resembling certain instances of UIPs. Thus, the
variability was restricted to few applications. Besides, not all types of UIPs were
supported or manual adjustments still were needed. Later on, a vote for the closer
integration of model- and pattern-based processes was raised [13]. This goal
implicitly demands for a mature definition of generative UIPs as there was still
potential to increase reuse and lessen efforts for linking and integration models to be
generated. In this context, UIPs were to be stored in an abstract form so that they
could be instantiated. Finally, options for their formalization had to be considered.

Following this idea, modeling frameworks and processes for GUIs [14][15][16] are
advancing and have already introduced their own notations for generative UIPs.
However, these approaches are difficult to judge, since they are mostly presented as
drafts and miss profound code examples. In fact, there exists no common requirement
model for the common or similar goals they are striving to achieve. Their individual
notations for UIPs are either based on customizations [14][16] of available GUI
specification languages or even own XML language conceptions [15].

2.3 UIP Formalization

GUI Architecture Concerns. To assess the applicability of GUI specification
languages for generative UIPs, feasible criteria have to be sourced. As the
requirements and responsibilities for a component-based GUI system [17] alone are
extensive, the patterns, which are intended to drive the creation of those components
in a generative way, also have to be capable of supporting several concerns at once.
Due to the fact that architectural patterns like MVC, PAC or the Quasar reference
architecture for clients [18] are needed as additional mental models framing the rather
elementary and universal structures of classes and components, the target architecture
is of a complex basis, which rarely has been unified in its details. Without this unity
of a common architectural basis and the dilemma concerning reference architectures
[18], a formal UIP definition faces the problem to be acceptable for different
architectural pattern interpretations and implementations.

514 S. Wendler and I. Philippow

Criteria. To avoid those architecture related issues, we first set up three fundamental
criteria to be met by formal UIPs and came up with a generalized reflection of the
variability concerns of UIPs by referring to a simplified MVC model covering basic
responsibilities needed in most applications [19]. The interrelation of the criteria and
variability demand for UIPs that can be combined freely and integrated in GUI
entities without manual design modeling, as it would be needed for common
architectural and design patterns. Formal UIPs have to enable at least the two criteria
“reusability and variability of stored user interface patterns” and “ability of user
interface patterns to be composed in order to form a hierarchy of GUI components”
out of their pure pattern form. The latter is a main issue when UIP instances have to
be created from their formal XML specifications.

Formal Languages for GUI Specification. In our previous work [5][19], we already
went into the possibilities to express generative UIPs with the means of mature GUI
specification languages UIML (User Interface Markup Language) [20] and UsiXML
(USer Interface eXtensible Markup Language) [21]. Although these XML languages
are focused on platform-independent GUI specification and intended to be machine
processed, our assessment of UIML and UsiXML revealed that both languages failed
in architecture and specification experiments to fully express UIPs with the two
considered criteria. We assume that the languages are sophisticated tools for GUI
specification and may be used as external domain specific languages for GUI
generation, but they are not based on abstract patterns and do lack a conceptual
definition of UIPs. However, developers have to revert to existing GUI specification
languages, as there is still no dedicated language for UIP formalization.

UsiXML. The abstract user interface model (AUI) suggested by UsiXML sounds
promising for storing UIPs. However, the facets and abstract interaction objects [9]
used as elements therein create a model that is way too abstract to express the
elements of specific UIPs, as their general types of UI-controls are mostly known and
thus definable. In contrast, the concrete user interface model (CUI) of UsiXML can
express platform specific instances of the AUI model contents, e.g., how an input or
output facet is structured by certain UI-controls. In this respect, the CUI acts as a
direct instantiation of the AUI and no longer resembles a pattern as the visual
structure and behavior cannot be parameterized or reused for other contexts. Finally,
both models are not suitable for storing UIPs as their abstraction level is not
appropriate.

UIML. The UIML language also offers promising features for UIP formalization.
With the <structure> section a “virtual tree” [20] of UI-controls is arranged. This tree
can be sourced from more than one UIML file at once. In contrast, UsiXML models
are stored in a single file. The UIML “virtual tree” can be modified by sub-sections or
even other UIML files as they may restructure given parts (repeat, delete, replace and
merge sub-trees) of the main tree [20]. Templates and their variables can be applied to
adapt reoccurring UIML tree parts to various GUI descriptions. With those features, it
is possible to assemble a GUI virtual tree by integration of several UIML files under
utilizing most restructuring options. The style of UI-controls can also be governed by

 Requirements for a Definition of Generative User Interface Patterns 515

a global UIML definition to ensure a uniform presentation look. Nevertheless, the
UIML mechanisms always need concrete inputs for the elements to be processed. For
instance, template parameters of UIPs being sourced by other UIPs forming a
composite pattern specification have to be specified with constant data like the
number of elements to be included. As the UIML file is being specified, the developer
has to provide certain input to govern the occurrences of UIML elements or
templates. Therefore, the effect of a pattern featuring structural variability is neglected
for UIP compositions. In addition, UIML provides no facilities to describe behavior
for elements that are abstract and yet to appear when the UIP is instantiated. In the
end, UIML specifications will tend to be too concrete to store the abstract UIPs.

To conclude, the main disadvantage of both languages lies in the incapability to
provide a separation of UIP definition and instantiation. UIPs need to be specified in a
concrete manner in order to be compatible with the schema definitions of the
languages. Invariant UIPs like “Date Selector” [11] or “Input Prompt” [12] can be
specified by the languages as there is no need for variability. Concerning UIML,
elementary UIPs may be expressed by using templates along with parameters, but
nested UIPs pose a problem as included UIPs have to resemble a specific instance.

3 Our Approach

Requirements. A first step towards a more sophisticated UIP model definition was
the elicitation of requirements. To source the appropriate information, we relied on
our previous work [5][19], an industry project in the E-Commerce domain and the
presented state of the art. Since the requirements were scattered across concerns and
could not be mapped easily to artifacts or rationale, we decided to apply the Global
Analysis [22] as a method to create another view on the requirements so that they
could be analyzed concerning their impact, relations and strategies.

Global Analysis. The Global Analysis originally serves as a method to systematically
derive and describe the leading factors for architecture design. With this analysis, the
given set of requirements is assessed concerning the impact of individual
requirements on the system design. Requirements with significant impact are marked
as factors, which are classified to one of three factor types. For a set of factor impacts,
design strategies are elaborated to realize the specific requirements or overcome their
restrictions. The method provides steps to relate requirements to certain decisions and
high level system artifacts that drive the design of multiple system components.
Following this consideration, it is attempted to limit the impact of factors to artifacts
or system structures which can be handled more easily.

In our application of the method, we incorporated some adjustments differing from
the original source. In short, factors may be detailed as they are composed of nested
factors, they may be operationalized by other factors when they cannot be associated
to impacts clearly, and finally, the design rationale is incorporated as an additional
artifact influenced by the design strategies. An overview of the method we applied for
requirement elicitation is provided in Fig. 1, which also serves as a legend.

516 S. Wendler and I. Philippow

custom Global Analysis

Influence factor

Design strategy

Design rationale

Product factor

Organizational factor

Technical factor

Functional requirement

Non-functional requirement

System component
Architectural pattern

Impact

«trace»

operationalized
factor

1..*

nested
factor

1

1..*

inflicts
impact 1..*

«trace»

dependent
strategy

dependent
factor

«trace»

«trace»

dependent
rationale

«trace»

Fig. 1. Metamodel of our customized Global Analysis method

4 Global Analysis Results

The Global Analysis we conducted resulted in the factors presented in Fig. 2. Most
factors were derived from the industry project. Consequently, the essential model [23]
of the E-Commerce software was to be included as an important factor, since the UIPs
should be reused to support existing tasks, functions and objects of that domain. As
the user interface needs to be related to a user model [23] and thereby to the essential
model, UIPs may be promising, as they may replace the need for a dedicated user
model [5]. Hence, UIPs have to be mapped to the essential model. Concerning this
matter, extensive work has been conducted by the University of Rostock [4].

The technical factors are based on our consideration to apply XML languages for
UIPs already instantiated and thus the description of a concrete GUI [19]. Therefore,
the generation of XML code was chosen as an approach which requires a detailed
definition of UIPs as shown in Fig 2.

req Influence factors

UIP
definition

View aspect

Requirements structure of the
domain (essential model)

Artifact
relationships

UIP classification
for the essential
model

Interaction
paradigms

Interaction
aspect

Generation of
GUI system
parts based on
UIP instances

Parameters for visual adaptability

Definition of a hierarchical control flow
for UIP compositions

Mapping of UIP categories to
architecture artifacts

Control aspect

Data- and actionbinding

Configuration of UIP context

Reusability
of UIPs

Variability of UIP
instances

Composition ability of
UIPs to form GUI
component hierarchies

Generation of
UIML or UsiXML
code

Acceptance of
data types

Adaptability to
dialog layout

Combination of
UIPs and their
behavior

UIP
Formalization

Visual element structure definition

Presentation controller states
definition

Rendering of UIML
or UsiXML code

UIML / UsiXML
render tools

UIP aspects

UIP intercommunication events
definition

Style definition

Visual layout defintion

Encapsulation of UIP artifacts

Identification and distinction of UIP
categories

Dialog-control-binding

Fig. 2. Influence factors elaborated for the UIP analysis

 Requirements for a Definition of Generative User Interface Patterns 517

The UIP definition factor was based on our previous work, as we enriched the
three UIP aspects described in [19] with impacts, which provide a more detailed
description of their influence on UIP specification models. Concerning the view
factor, the impacts are mostly apparent. A view structure has to be defined, along with
the layout and style information as the foundation of each UIP. Additionally,
parameters have to be considered for the former to enable the adaptation to various
contexts.

Being determined by user input the interaction aspect demands for the binding of
view structure elements to certain data and presentation actions. The latter may trigger
a change of view structure states, e.g., manipulating single UI-controls or interfering
with multiple UIPs within hierarchical view structures and their lifecycle.

The control aspect poses the most demanding impacts. For each UIP of a certain
class, a corresponding control flow on the same abstraction level has to be defined. In
order to allow both the collaboration of composite UIPs and their versatile
combination, the encapsulation of UIPs is necessary as well as the communication via
defined events. Embedded UIPs are supposed to send events to their controlling UIPs
and the latter require to communicate with the dialog controller, which governs the
application related states and data.

The reusability factor was derived from the two criteria in Section 2.3. Two other
factors, composition ability and variability, were nested in this factor. The former was
mainly operationalized by the control factor which already detailed most of the
necessary impacts. Initially, the primary requirements of the project were of non-
functional kind and have been used to underline the benefits of UIPs. In Fig. 3 the
operationalization of these factors is shown.

req Non-functional product factors

Usability

Efficiency in
customization of GUI
dialgos

Flexible design of GUI
dialogs

User interface
quality
attributes

Vast reusability of
GUI components

Visual design based on
proven UIPs

UIP
definition

View aspect
UIP
aspects

Reusability of UIPs

Variability of UIP
instances

UIP classification for
the essential model

Composition ability of UIPs to form
GUI component hierarchies

Generation of GUI system parts based on UIP instances

Application of proven
interaction designs

Interaction
aspect

Fig. 3. Operationalized non-functional requirements

Actually, the UIPs were introduced to realize the main projects needs. As
considerable HCI specification units, UIPs were supposed to ensure a high degree of
usability. Important and at the same time difficult to master requirements on the left
hand side in Fig. 3 should be realized by the composition of reusable and generative
UIPs.

Design Strategy. The result of the Global Analysis emerged as a solution strategy
which demands for the design of a basic UIP description model. As another

518 S. Wendler and I. Philippow

requirement model closer to a formalization artifact, it should be able to capture all
mandatory characteristics of generative UIPs within a structure. For our objective, we
need a general model that represents the requirements more clearly and structured in
model whose elements and relationships can be transferred to a formal UIP modeling
approach. In this regard, the model has to be independent from GUI specification
language definitions of UIML or UsiXML, hence it should be used to overcome the
limitations of the former concerning UIP expression. Consequently, the primary
concern is to capture the requirements for formal UIPs in a model that may share
structural analogies with future formalizations. Furthermore, generative solutions for
UIPs are rather seldom and cannot be sourced for our objective. Therefore, the
description model should serve as a further enhancement in the assessment of
formalization options for generative UIPs and their properties. Finally, it should prove
to be applicable in different domains rather than just for one specific application
infrastructure.

5 Conclusion and Future Work

With our contribution, a model consisting of influence factors and their impacts
related to UIP instantiation, reuse and variability is presented. In the first place, this
model can be used to judge to capabilities of available formal languages to express
the defined characteristics of a UIP. Besides the judgment, the model can propose
applicable enhancements to used languages and models in an environment based on
UIPs. In this context, the model also may serve for verification.

The remaining problem is embodied by the need to find an abstract formal
representation of generative UIPs. Deploying this form of UIPs, developers will be
able to create instances of the same UIP but for a multitude of applications or
variations. To establish a new representation of generative UIPs, the final outcome of
our Global Analysis suggests to further detail the gathered factors and their impacts
with a structural analysis model. The model should fill a gap, where there has not
been presented a general model, which describes the structure, elements and
relationships of UIPs, yet. So the analysis model will have to consider the following
questions:

• How abstract UIPs and their concrete instances can be separately defined?
• Which instantiation parameters are to be defined in abstract UIP specifications?
• How UIP compositions are to be compiled and interaction events are defined in the

resulting GUI element cascade?

In any case, a new language or extensions for the XML languages are to be sought
after. The new media must facilitate the expression of the generative UIPs, their
variability and composition options. For that purpose, a unified UIP model has to be
established, which holds all information for the definition of generative UIPs in an
abstract form, augmented with parameters allowing for their transformation to single
instances or compositions forming a concrete GUI model. To progress towards this
goal, existing approaches like [14][15][16] have to be analyzed in detail in order to
enhance the presented factor model and discover limitations yet to overcome.

 Requirements for a Definition of Generative User Interface Patterns 519

References

1. Mahemoff, M., Johnston, L.: Principles for a usability-oriented pattern language. In:
OZCHI 1998, Adelaide, Australia, pp. 132–139 (1998)

2. Todd, E., Kemp, E., Phillips, C.: What makes a good User Interface pattern language? In:
AUIC 2004, Dunedin, New Zealand, pp. 91–100 (2004)

3. Dearden, A., Finlay, J.: Pattern Languages in HCI: A critical Review. In: Human-
Computer Interaction, vol. 21(1), pp. 49–102 (2006)

4. Wolff, A., Forbrig, P., Dittmar, A., Reichart, D.: Tool Support for an Evolutionary Design
Process using Patterns. In: Workshop: Multi-Channel Adaptive Context-sensitive Systems:
Building Links Between Research Communities, Glasgow, Scotland, pp. 71–80 (2006)

5. Wendler, S., Ammon, D., Kikova, T., Philippow, I.: Development of Graphical User
Interfaces based on User Interface Patterns. In: Proceedings of the 4th International
Conferences on Pervasive Patterns and Applications, Nice, France. IARIA Proceedings,
pp. 57–66 (2012)

6. Meixner, G., Paterno, F., Vanderdonckt, J.: Past, Present, and Future of Model-Based User
Interface Development. i-com 10(3), 2–11 (2011)

7. Engel, J., Herdin, C., Maertin, C.: Exploiting HCI Pattern Collections for User Interface
Generation. In: Proceedings of the 4th International Conferences on Pervasive Patterns and
Applications, Nice, France. IARIA Proceedings, pp. 36–44 (2012)

8. van Welie, M., van der Veer, G., Eliëns, A.: Patterns as Tools for User Interface Design.
In: Farenc, C., Vanderdonckt, J. (eds.) Tools for Working with Guidelines, pp. 313–324.
Springer, London (2000)

9. Vanderdonckt, J., Simarro, F.M.: Generative pattern-based Design of User Interfaces. In:
Proceedings of the 1st International Workshop on Pattern-Driven Engineering of
Interactive Computing Systems, Berlin, Germany, pp. 12–19 (2010)

10. Fincher, S.: PLML: Pattern Language Markup Language,
http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html

11. van Welie, M.: A pattern library for interaction design, http://www.welie.com
12. Open UI Pattern Library, http://www.patternry.com
13. Radeke, F., Forbrig, P., Seffah, A., Sinnig, D.: PIM Tool: Support for Pattern-driven and

Model-based UI development. In: Coninx, K., Luyten, K., Schneider, K.A. (eds.)
TAMODIA 2006. LNCS, vol. 4385, pp. 82–96. Springer, Heidelberg (2007)

14. Radeke, F., Forbrig, P.: Patterns in Task-based Modeling of User Interfaces. In: Winckler,
M., Johnson, H. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 184–197. Springer,
Heidelberg (2007)

15. Engel, J., Märtin, C.: PaMGIS: A Framework for Pattern-Based Modeling and Generation
of Interactive Systems. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII
2009. LNCS, vol. 5610, pp. 826–835. Springer, Heidelberg (2009)

16. Seissler, M., Breiner, K., Meixner, G.: Towards Pattern-Driven Engineering of Run-Time
Adaptive User Interfaces for Smart Production Environments. In: Jacko, J.A. (ed.) Human-
Computer Interaction, Part I, HCII 2011. LNCS, vol. 6761, pp. 299–308. Springer,
Heidelberg (2011)

17. Haft, M., Olleck, B.: Komponentenbasierte Client-Architektur. Informatik Spektrum 30(3),
143–158 (2007)

18. Haft, M., Humm, B., Siedersleben, J.: The Architect’s Dilemma – Will Reference
Architectures Help? In: Reussner, R., Mayer, J., Stafford, J.A., Overhage, S., Becker, S.,
Schroeder, P.J. (eds.) QoSA 2005 and SOQUA 2005. LNCS, vol. 3712, pp. 106–122.
Springer, Heidelberg (2005)

520 S. Wendler and I. Philippow

19. Ammon, D., Wendler, S., Kikova, T., Philippow, I.: Specification of Formalized Software
Patterns for the Development of User Interfaces. In: The 7th International Conference on
Software Engineering Advances, Lisbon, Portugal. IARIA Proceedings, pp. 296–303
(2012)

20. UIML 4.0 specification,
http://docs.oasis-open.org/uiml/v4.0/uiml-4.0.html

21. Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D., Florins, M.:
UsiXML: a User Interface Description Language for Specifying multimodal User
Interfaces. In: WMI 2004, Sophia Antipolis, France, pp. 35–42 (2004)

22. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley,
Boston (2000)

23. Ludolph, M.: Model-based User Interface Design: Successive Transformations of a
Task/Object Model. In: Wood, L.E. (ed.) User Interface Design: Bridging the Gap from
User Requirements to Design, pp. 81–108. CRC Press, Boca Raton (1998)

	Requirements for a Definition of Generative UserInterface Patterns
	1 Introduction
	2 State of the Art Review
	2.1 UIP Definition and Collections
	2.2 Modeling Processes Involving UIPs
	2.3 UIP Formalization

	3 Our Approach
	4 Global Analysis Results
	5 Conclusion and Future Work
	References

