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Abstract. Music is a highly subjective domain, which makes it a chal-
lenging research area for recommender systems. In this paper, we present
our TRecS (Track Recommender System) prototype, a hybrid recom-
mender that blends three different recommender techniques into one
score. Since traceability is an important issue for the acceptance of
recommender systems by users, we have implemented a detailed ex-
planation feature that supports transparency about the contribution of
each sub-recommender for the overall result. To avoid overspecialization,
TRecS peppers the result list with recommendations that are based on a
serendipity metric. This way, users can benefit from both recommenda-
tions aligned with their current taste while gaining some diversification.

1 Introduction

While e-commerce has embraced the benefits of using recommender systems
early on, the music domain has long been influenced by offline radio stations,
where static playlists based on track popularity and expert preselections are
broadcast to every listener. With the advent of music streaming platforms, such
as Last.fm1 or Spotify2, the balance has shifted and users can now create their
own private radio stations. As a downside, users now have to curate their own
playlists and are less likely to discover new music. For this, a music recommender
system is an elegant supplement, which can make use of both the wisdom of the
crowds and the user’s past listening history.

In this paper, we present our TRecS prototype that combines multiple metrics
into one comprehensive prediction score: the similarity of tracks is computed
based on the listening history of Last.fm users (track similarity), the tags that
are associated with tracks (tag similarity), and the temporal listening profile of
individual tracks (time similarity). While these metrics assure recommendations
that share characteristics with music a user has liked so far, we have additionally
implemented a serendipity measure [1] that includes complementary music to
the list of recommended tracks. TRecS is a weighted hybrid recommender [2],
where the weights for each metric are adjustable, and the system supports an

1 http://www.last.fm
2 http://www.spotify.com
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explanation for each recommended track with respect to the contribution of
each sub-recommender to the overall prediction score. A study with over 140
participants has shown that the perceived quality of recommendations gradually
improves with the number of rated recommendation lists.

2 TRecS Architecture and Design

TRecS relies on one collaborative metric and two content-based metrics (cf. Sec-
tion 2.1) [3]. The overall architecture of the system is shown in Figure 1. Our
crawled data set from Last.fm is first preprocessed (e.g. data cleansing and dis-
ambiguation) and reduced to 50, 000 tracks while maintaining key characteristics
of the original data set. Afterwards, for each metric the similarity between all
songs is precomputed and stored in the knowledge base. At runtime, when a
user requests a new recommendation list, the user’s context, i.e. the tracks rated
so far, is used to compute the next recommendations based on a weighted score
of the three sub-recommenders. Before the result list is returned, it is peppered
with additional serendipitous tracks (cf. Section 2.4).

The TRecS prototype is available online with an introductory tutorial at:

http://trecs.informatik.uni-freiburg.de
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Fig. 1. TRecS system architecture

For computing similarities, each track is represented as a vector of features.
The similarity between each track can now be determined with some distance
metric between these vectors. Thus, it is sufficient to describe for each recom-
mender how features are represented for each track and which distance metric is
used.

http://trecs.informatik.uni-freiburg.de
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2.1 Similarity Metrics

TRecS puts three different recommender systems to use, each based on its own
similarity metric:

1. Track similarity. Each track is represented as a vector αi = (c1, . . . , cn),
where cj represents the number of times the user j ∈ U has listened to this
track, and |U | = n is the number of all users. The similarity is determined
by the Pearson product-moment correlation (see, e.g., [4]).

2. Tag similarity. With tag similarity, each track is represented as a vector
βi = (l1, . . . , lm), where lj ∈ [0, 100] represents the score to what extent
the tag lj ∈ L “describes” this track, where |L| = m is the number of all
used tags. Since for tags we do not need to care for user-specific scales, the
similarity is determined by the cosine similarity measure [4].

3. Time similarity. Every season has its music, e.g. there are typical songs
for Valentine’s day or Christmas. To capture this behavior, each track is
represented as a vector γi = (w1, . . . , w52), where wj is the number of times
the track has been listened to in the jth week of the year, accumulated over
all users. Similar to tag similarity, the cosine similarity is computed.

Every recommender generates a track-track similarity matrix Ak, k ∈ {1, 2, 3}.
These are used for generating predictions for the active user.

2.2 Comparing Recommenders

In order to see how close the similarity estimates of all three recommenders are
to each other, we implemented the following approach: First we iterated through
every matrix Ak, k ∈ {1, 2, 3}, and created a new matrix Bk, where the entries
of Bk, i.e., bki,j , are defined as z-scores:

bki,j =
aki,j − ak

σk
, (1)

where σk is the standard deviation over all entries of matrix Ak, and ak is the
mean over all its entries. Now we build all three pairs of matrices {Bx, By},
where x, y ∈ {1, 2, 3} and x �= y, and calculate the matrix Cxy for each, where
cxyi,j = |bxi,j − byi,j |. For each matrix Cxy we now calculate one scalar value, which
is the mean over all its entries. We denote this scalar by cxy and it gives us an
indication how close the similarity matrices produced by recommender x versus
y are. The lower the value, the closer they are to each other.

The results show that the track and tag recommender are closest to each
other (c12 = 0.93), while the time recommender produces more deviating results
from both the track (c13 = 1.33) and the tag recommender (c23 = 1.67). This
well aligns with our conjectures before conducting this test.
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2.3 Prediction Generation

The prediction score p(u, tnew) of a track tnew, which user u has so far not rated
yet, is computed based on a linear combination of the similarity scores of the
three recommenders, denoted as sim(tnew, t):

p(u, tnew) =

∑

t∈Tracks

sim(tnew, t) · r(u, t)
∑

t∈Tracks

sim(tnew, t)
(2)

The so far rated songs of a user are considered by r(u, t), reflecting a rating of
user u for track t. If a user has only rated tracks of a few different artists so far,
the majority of the recommendations might be from only one artist. To alleviate
this undesirable behavior, for each artist at most two tracks are recommended
to the user, working as a simple diversification means [5].

The weights of the three recommenders can be adjusted in the prototype and
are set to equal weighting by default.

2.4 Adding Serendipity

For recommending serendipitous tracks, the last five positively rated tracks of
the user are investigated. For each of these tracks, the last five users having
listened to this track are selected, yielding (at most) 25 candidate users Ucand.
The intersection of tracks the users in Ucand have listened to is computed and
the tracks with the highest overlap are chosen.

If there are tracks with the same overlap, the number of times the track has
been listened to by all users gives the final rank. The tracks are inserted in the
result list, with the constraint that the serendipity ranking’s order is preserved.

The ratio of serendipitous to similarity-based tracks is set to 30% vs. 70% by
default.
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