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Abstract. Researchers have suggested that the use of technology may be 
effective during the instruction of a variety of academic and communication 
skills for individuals with disabilities [1, 2]. Also, the design of affect-sensitive 
interactions between humans and technology, a research area known as 
affective computing, is an increasingly important discipline in the human-
computer interaction (HCI) and human-robot interaction (HRI) communities. 
Physiological signals could be used to determine which affective states are 
involved in HCI and HRI for a broad section of the population but may have 
increased utility for individuals with social or intellectual impairments. 
Therefore, employing affect-sensitive technologies in intervention sessions may 
provide a means to make strides in appropriate social interaction skills and 
other deficits, but further research is necessary to understand why these 
methods are successful and what applications are most useful for different 
individuals.  
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1 Introduction  

Since the recognition of emotion and affective expressions plays a critical role in 
decision-making, learning, and other cognitive functions; human interaction with 
technology will likely improve if those interactions also involve systems that facilitate 
affect recognition. Affect-sensitive systems may be useful for individuals with autism 
spectrum disorders (ASD) and other developmental disorders, who often exhibit 
deficits in emotion comprehension. For individuals with intellectual disabilities (ID), 
an often underserved population, affective computing could allow for similar 
instruction benefits on social communication training and increasing the presentation 
rate of skills. These systems could potentially serve to ameliorate deficits in emotional 
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understanding by augmenting this impaired skill area during a variety of instructional 
interactions. In this paper, we will first provide an overview of the benefits of 
monitoring physiological signals during interactive activities followed by a 
description of our preliminary work in this area. Second, we will describe a pilot 
investigation of the use of a robot to teach social media skills. The resulting data from 
these studies serve to provide a foundation for the future development of successful 
affect-sensitive closed-loop interaction.  

Physiological signals can be used to monitor changes in affective responses. These 
signals offer compelling advantages in evaluating affective responses as they are 
continuously available and permit the gathering of rich data in the face of potential 
communicative limitations. Physiology-based affective computing also can aid in 
teaching social interaction skills by monitoring the impact of particular social stimuli 
on an individuals’ physiological signals and subsequently adjusting instruction to 
delivering prompts to facilitate successful interactions. 

2 Background 

A computer that can detect the affective states of a student and interact with him/her 
based on such perception could have a wide range of potential impacts. Complex 
social stimuli, sophisticated teacher-learner interactions, and unpredictable situations 
could be gradually, but automatically, introduced when the computer has the 
knowledge that the student is comfortable or not anxious at a certain level of 
interaction dynamics for a reasonably long period of time. However, the current 
computer-assisted therapeutic tools for children with ASD and/or ID do not possess 
the ability of deciphering the affective cues of the children, which could be critical 
given that affective factors have significant impacts on the intervention practice. 

Computers and robots have been used to teach basic social interaction skills to 
young children with ASD when using turn-taking and imitation games [3]. The origin 
of robotic endeavors in ASD therapy can be traced to the 1970s through a seminal 
work done in Edinburg [4], and computer [5, 6] and robotic [7] approaches to autism 
diagnosis and treatment have continued through present-day research. HRI may work 
well for an initial intervention to remove the difficulties related to direct human 
interaction that is part of typical therapy settings. Robots should not be considered an 
isolating agent, because dyadic communication accomplished between an individual 
and a robot can lead into triadic communication including a therapist, caregiver, or 
peer and in due course potentially accomplish the intervention goals of developing 
social communication skills between the individual and another person [8]. By 
employing affect-sensitive technologies, HCI and HRI therapeutic tools can partially 
automate time-consuming behavioral therapy sessions, allow for an increased number 
of exposures to a teaching item, and may allow intensive intervention to be conducted 
at home. 

However, despite advances, to our knowledge current computer and robotic 
treatments available for children with developmental disorders do not provide 
autonomous capabilities and suffer from a lack of enough adaptation to each user’s 
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(dis)abilities. Since ASD and ID occur across a continuum of severity, interventionists 
are faced with a user group with substantial heterogeneity [9]. Therefore, it is unlikely 
that one system can be used generically to satisfy the needs of all users. Therefore, we 
believe that customizable, adaptable feedback systems capable of eliciting specific 
basic interaction skills are needed. Thus, our final goal is to develop an affect-
sensitive feedback system which adapts with respect to each individual’s needs and 
continuously modifies the interaction based on the user’s performance as well as 
progress. 

The experimental setup for our system is shown in Figure 1. The design allows for 
a student to participate in an interactive session (e.g., session focused on social skills, 
storytelling, etc.) with a NAO robot (aldebaran-robotics.com) while his/her 
physiological data are measured using wearable biofeedback sensors from Biopac 
(biopac.com). Biopac filters and digitizes the physiological signals, and then transfers 
them through an Ethernet link to the main computer. A therapist with experience in 
working with individuals with intellectual disabilities and the participant’s teacher 
also observe the sessions from the view of the video camera and observing how the 
task progressed on separate monitors.  

 

Fig. 1. Experimental setup for the affect-sensitive closed-loop interaction 

2.1 Physiology-Based Affective Modeling for Children with ASD 

In previous pilot work, six adolescents diagnosed with ASD played computer games 
that varied in difficulty to elicit emotional responses while simultaneous clinical 
observation, performance characteristic/evaluation, and physiological data were 
collected. A comprehensive set of relevant physiological features were derived from 
the physiological signals, and physiology-based affective models were developed 
from readily observable behaviors with presumable underlying affective states. A 
Support-vector Machines (SVM) approach was applied to create an affective model 
for recognizing behavioral responses from the HCI data, which yielded reliable 
prediction with approximately 83% success [10]. Such prediction accuracy is 
considered high even among typical adults [11, 12]. A second phase of this research 
employed the affective models during HRI wherein the subjects tossed Nerf balls at a 
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moving robotic arm with a basketball hoop attached to its end-effector. The robot 
learned preferences based on the predicted enjoyment level of children with ASD and 
selected an appropriate movement in real-time. Each participant completed two 
sessions, (1) non-affect sensitive and (2) affect sensitive. Results indicated a highly 
significant difference between conditions, with the affect-sensitive modeling 
improving performance as well as enhancing enjoyment of the task [13]. This work 
suggested observations during HCI could be successfully applied to HRI; thus 
expanding the possible tasks available to develop affective models. This work is the 
first time that the impact of affect-sensitive closed-loop interaction between a robot 
and children with ASD had been demonstrated experimentally. While this previous 
work was restricted to goal-oriented tasks, it demonstrated the feasibility of the design 
for monitoring affective responses in children with ASD in social-communication 
tasks. In the next section we briefly present our latest preliminary work to 
demonstrate the feasibility as well as the likelihood of success of our proposed affect-
sensitive system.   

3 Two Preliminary Investigations 

3.1 Affective Reactions to Social Interactions Set in Virtual Reality for 
Teenagers with ASD and Typically-Developing Matched Peers 

This study (set up and participant characteristics described in [14, 15]) examined 
affective and physiological variation in response to manipulated social parameters 
(i.e., eye gaze and social distance) during social interaction in Virtual Reality (VR) 
for both ASD and Typically–developing (TD) children. Thirteen matched-pairs of 
children with ASD and TD (age 13-17 years) listened and watched virtual human 
characters (i.e., avatars) who displayed different eye gaze patterns and stood at 
different distances while telling a personal story. Physiological responses and ratings 
from clinical observations resulted in significant differences to changes in social 
experimental stimuli. The reported change in affect are similar to observations in 
social anxiety research of typical adults in real-world settings [16, 17, 18] but have 
now been examined with observations and physiological signals for ASD and TD 
children in HCI. Establishing realistic interactions builds a basis for creating more 
complex settings for HCI intervention and will guide design of real-world social 
robots for embodied social communication intervention. 

Both the TD and ASD group’s physiological signals showed significant changes to 
trials rated as eliciting “low anxiety” (LA) versus “high anxiety” (HA) according to 
the clinical observer label (COL). For example, the phasic response rate of skin 
conductance, measured in peaks per minute (ppm), reflected both the ASD and TD 
group had a significant increase between trials rated as LA and HA, for trials in which 
the social distance parameter was set to Invasive for all variations of the eye gaze 
parameter (as shown in Table 1). As anxiety increased in these conditions, the phasic 
response rate significantly increased within the groups; and between the groups the 
ASD group showed more peaks per minute during LA and HA. Therefore, even for 
lower anxiety situations, children with ASD showed a significantly higher affective 
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response. Furthermore, this work highlighted that, although group affective models 
from a small number trials from each participant have been used to evaluate affective 
states of typical adults [19], separate ASD and TD models might be necessary 
considering the significant physiological differences detected between the groups. 

Table 1. Listed are results of phasic response rate from the skin conductance signal compared 
between trials labeled as LA and HA. The trials considered were ones in which the social 
distance parameter was set to Invasive for all variations of the eye gaze parameter. Significant 
difference, *p<0.05. 

COL ASD group 
ppm mean 

TD group 
ppm mean 

Group Differences 

LA 4.43 3.23 p-value 0.0227* 
HA 5.80 4.46 p-value 0.0286* 

t-value -2.18 -2.33  
p-value 0.0311* 0.0211* 

 
Two machine-learning algorithms – SVM and K-nearest neighbor (KNN) – were 

implemented to compare prediction accuracies of the affective models for identifying 
anxiety. The KNN algorithm for best accuracy used 6 neighbors, square euclidean 
distancing, and single nearest neighbor as a tiebreaker. The SVM algorithm used a 
linear kernel function and a least squares method. The accuracy results (shown in 
Table 2) indicate low reliability for either algorithm to predict high vs. low anxiety 
based on the data merged by group. An accuracy above 70% is considered high based 
on previous research on typical adults [12, 19, 20, 21]; however, even the TD group 
did not yield over 70% on this data. Although group models have been used for 
detecting stress situations for typical adults (see Table 3 for comparison work), 
combining ASD subjects as a group may not yield accurate results.  

Table 2. Prediction accuracies for anxiety based on a ASD and TD group models, comparing 
SVM and KNN 

Algorithm ASD group  
Anxiety Accuracy (%)

TD group 
Anxiety Accuracy (%)

Group Differences 

SVM 56.6978 65.1090 p-value 0.0294* 

KNN 54.3478 68.3230 p-value 0.000259* 

p-value 0.5796, ns 0.3588, ns 

 
From the analysis shown in Table 2, changing up the algorithm will likely not gain 

accuracy. Further analysis is needed to determine the accuracies of building a model 
from a smaller set of physiological signals. We need to go for a smaller set of features 
and need to consider an individual-specific approach. Although group analysis would 
allow the models to grow at a faster rate by compounding data collection, unique  
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Table 3. Ref. [19] used group models of TD subjects based on 11 physiological 
features. Ref. [13] and the current VR study used 53 physiological features. This 
comparison might suggest that individual analysis, which has seemed useful in TD 
work [12], may be particularly needed for ASD groups. Also, analysis of smaller sets 
of features might increase the accuracy of predicting affect based on the VR data. 

 
Compa
rison 
Work  

Affect to 
Predict 

Model 
Type  

Subjects Samples Features Algorithm  Accuracy 

[##] Stress Group 
32 TD 
Adults 

192 11 SVM 90.1% 

[##] 

anxiety 

engagement 

Liking 

Individual 

6 

teenager

s with 

ASD 

85 

each 
53 SVM 

Overall 

average 

82.9% 

Curren

t VR 

Study 

Anxiety Group 

13 pairs  

of TD  

and ASD 

teenager

s 

312 

in each 

group 

53 

SVM 
ASD: 56.7% 

TD: 65.1% 

KNN 
ASD: 54.3% 

TD: 68.3% 

 
analysis may prove more beneficial for longitudinal applications. With making 
individual models, the challenge is collecting enough samples. When thinking about 
making an affect-sensitive feedback system to use in an educational setting or 
intervention setting for a long time, the premise is there to collect many samples. 
However, on day one, if you cannot apply an accurate group model, you are starting 
from scratch with each student. Those are some of the challenges we plan to address 
in future work 

Even so, this work is the first time a large set of physiological features have been 
examined for a sizeable group of ASD and TD children during social situations 
presented on a VR platform for elicitation of affective states. So far the results show 
the VR system provokes variations in both affective ratings and physiological signals 
to changes in experiment conditions for both children with autism and typical 
children. This work provides a step towards the development of future interventions 
using affect-sensitive technologies for the ASD population, but additional analysis 
remains to be examined. From these initial results, we will examine possible 
improvements by focusing on a smaller set of features and/or collecting more samples 
for an individual-specific approach. 

3.2 Case Study on Social Media 

In this pilot investigation, we evaluated the effects of robot delivered instruction on 
text messaging responses of a 19-year old male with Down Syndrome. The young 
man attended a public transition classroom for individuals with intellectual disabilities  
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that was housed on a university campus. The student’s teacher sought assistance in 
expanding his texting repertoire as his typical text messages consisted of one or two 
unidirectional statements about a preferred musical artist (e.g., I like Selena Gomez. 
She is cute.). First, we approached a class of undergraduate students in a teacher 
education program, similar in age to the students in the transition program, to identify 
age appropriate texting responses. Students in the class were asked to consider the 
appropriateness of responses that contained three key components; (a) a greeting (e.g., 
hey), (b) a statement about an event in the students life (e.g., went to the movies last 
night), and (c) a closing (e.g., later). After considering the students’ feedback in the 
selection of instructional targets, we designed an instructional protocol that would be 
used to program a humanoid robot to teach the student the new responses.  

The robot used in this study to deliver the instructions is a NAO robot. NAO is a 
knee-size humanoid robot that has a variety of sensors and capabilities including 
digital cameras, speakers, microphone arrays, tactile sensors, text-to-speech, and 
voice recognition as well as face and object detection. At the onset of each teaching 
session, the robot delivered an attention cue (i.e., Look at me), and waited for the 
student to respond. If NAO did not detect the student’s attention response (i.e., face 
oriented towards NAO), it repeated the cue. Once the student emitted the attention 
response, NAO vocally prompted the student to ready his phone for texting and 
indicate preparedness by stating, “Ready”. Following the recognition of the student’s 
response, NAO started instruction on the texting components. 

During instruction, the robot used simultaneous prompting procedures [22]. 
Simultaneous prompting is an errorless teaching procedure that involves the delivery 
of a controlling prompt immediately following a discriminative stimulus (e.g., teacher 
directive) during teaching trials. Additionally, the transfer of stimulus control is 
assessed through the administration of daily probe trials prior to training. First, NAO 
instructed the student to write a greeting, and then immediately provided a prompt 
(e.g., “Write, Hey”). Once the student vocally indicated that he was finished writing, 
NAO nodded its head in approval and directed the student to write about a personal 
event. Again it delivered a prompt (e.g., I played basketball yesterday) and waited for 
the student to respond. The researchers had previously identified accurate prompts 
through interviews with the teacher and her student. Again, NAO waited for the 
student to indicate completion and subsequently directed and prompted the student to 
write a closing (e.g., Later, Goodbye). Upon completion of all three steps, the robot 
delivered vocal praise and offered to perform a song that previously had been 
indicated by the student to be a preference. 

During baseline sessions and immediately prior to treatment sessions, the 
researchers conducted data probes. During the probe, the student’s teacher instructed 
him to text the researcher he was familiar with through interaction in a previous study. 
The teacher informed the student that she could help with spelling only. Upon 
completion of the text, the teacher prompted the student to hit send and wait for the 
researcher’s response. The researcher responded immediately with a general 
statement (e.g., cool, awesome). Data were collected on the number of components 
used in the student’s text responses (i.e., greeting, personal statement, closing).  
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Data suggest that the student met criterion (i.e., including all three components 
across 3 consecutive probes) after seven teaching sessions. During baseline sessions, 
texted responses generally included statements about a musical group (i.e., I like 
Selena Gomez, Katie Croom love her deepest heart and soul). Following intervention, 
the student texted responses that contained all three targeted elements (i.e., Hi We 
won our game last night Good bye; Hi, we have a basketball game on Wednesday 
Good bye).  Since teaching sessions generally lasted for approximately four minutes, 
the student acquired the skills in less than thirty minutes of instruction. Though these 
preliminary data hint at the potential of robot delivered instruction as an effective an 
efficient means of teaching news skills to students with disabilities, it is important to 
note that several changes during instruction severely limit the generalizability of our 
findings. First, on several occasions the research team had to prompt the student to 
speak clearly or repeat their responses. Second, NAO did not provide explicit 
feedback on the students’ texts during instruction. The team refined instructional 
procedures to include a teacher feedback component, whereas the teacher guided the 
student to graph the number of elements used following each probe session.  

One of the goals of our research team is to design NAO’s vocalization and 
movements natural enough so that the user conceives the robot as an animate entity 
rather than a toy. At the same time, the interactions should be as simple as possible in 
order to avoid delivering overwhelming amount of details and information, to ensure 
minimal unexpected interactions, increased anxiety, and session interruption. The 
architecture of our program for NAO, to perform its tasks autonomously and 
desirably, has several layers that work in parallel. One of these layers is responsible 
for deciding and enforcing NAO’s movements during the interaction. This layer 
determines proactive and reactive movements carried out at one time based on the 
type of the instructions being delivered at the time, and the participant’s performance. 
This layer assigns each part of NAO a relevant motion. For example, NAO’s head 
normally track’s the participant face during the whole interaction unless NAO is to 
express confirmation, surprise, etc. by its head. The same process is true for the rest of 
NAO’s body. Several body motions were designed for NAO, using NAO’s 25 degrees 
of freedom, to express different gestures. This layer picks among this library of 
motions based on the interaction statistics. 

The student’s story telling skills have thus far shown mild improvement, but the 
results are preliminary. This case study has served to provide vital information on best 
practices for a longitudinal study on the use of an affective-sensitive feedback system 
utilizing a robot to teach social media skills. The specific instruction focuses on 
teaching appropriate parts of a story, constructed within text messages. We also will 
evaluate as to whether the newly acquired text message skill translates to 
improvements in Facebook status updates. These skills may enhance the quality of 
life and potentially increase social networks for individuals with ASD/ID. 
Furthermore, we believe incorporating affect-sensitivity into such instruction may 
establish instructional technology that more closely reflects human teacher-student 
relationships. Ultimately we seek to provide underserved individuals with a means to 
learn how to interact more fully in the social world.  
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4 Discussion 

The impact of research in the area of robot affective computing has broad potential. 
For example, in the current investigation, we programmed a robot to perform 
instructional tasks that involved assessing the occurrence a student’s attention 
response while delivering instruction on age-appropriate and socially-relevant tasks. 
During final instructional sessions, the student interacted with the robot without 
additional teacher supports. This allowed the classroom teacher to work with other 
students while the targeted student engaged in meaningful instruction with the robot. 
These findings suggest that robots could potentially be programmed to teach a variety 
of discrete and chained tasks, thus reducing student to teacher ratios and increasing 
learning opportunities during teaching sessions.   

These findings also direct us to consider alternate applications for robot-based 
affective computing. Robot instructors could easily be designed to teach employment 
related tasks (e.g., interviewing, talking to coworkers) in less aversive teaching 
contexts. Learners with ASD may benefit from the lack of prosody within digital 
speech and the absence of a requirement to read facial expressions during social 
communication tasks. Our research team is working on developing sophisticated tools 
to increase the responsivity of robot instructors to the needs of persons with ASD. 
Currently, we have proposed the use of autonomic sensors to guide the selection of 
instructional targets by robot instructors. In other words, the robot will change the 
difficulty of instructional tasks in response to changes in students’ physiological 
markers of stress. This research is significant in light of data [23] suggesting that 
students often engage in problem behavior to escape a variety of instructional tasks. 
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