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Abstract. Tracking eye movements to control technical systems is becoming 
increasingly popular; the use of eye movements to direct a cursor in human-
computer interaction (HCI) is particularly convenient and caters for both 
healthy and disabled users alike. However, it is often difficult to find an 
appropriate substitute for the click operation, especially within the context of 
hands-free interaction. The most common approach is the use of dwell-times, 
but this can lead to the so-called “Midas-Touch” problem. This problem is 
defined by the fact that the system incorrectly interprets fixations due to long 
processing times or spontaneous dwellings as a user command. The current 
study explores the event-related potentials (ERPs) that might indicate a user's 
intention to select. Therefore, Electroencephalography (EEG) data was recorded 
from 10 participants during an interaction with a dwell-time system within a 
selection process. The aim was to identify EEG potentials related to the 
intention to interact (i.e. the selection of targets on a screen) and to classify 
these against EEG potentials unrelated to interaction during random fixations 
on the screen. As a result, we found a clear negativity over parietal electrodes 
for the intention of item selection. This negativity did not occur when 
participant fixated an object without intention to select (no specific intention). 
We robustly could classify the underlying brain activity in most of our 
participants with an average accuracy of 81%. The presented study provides 
evidence that the intention to interact evokes EEG activity that can clearly be 
detected by passive BCI technology. This leads to a new type of implicit 
interaction that holds the potential to improve human-machine interaction by 
increasing efficiency and making it more intuitive. 
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1 Introduction 

Imagine a surgeon operating on a patient: both her hands are occupied, but, at the 
same time, she may want to be able to control a computer in order to retrieve 



 A Passive Brain-Computer Interface for Supporting Human-Machine Interaction 663 

information about the patient’s physiological state. In such a situation, a hands-free 
mechanism for computer control, i.e., cursor movement and object selection (similar 
to a mouse click), is desirable. In the early 1990s, Jacob ([1], [2]) has proposed to use 
the human gaze as input channel for human-machine interaction (HMI) in order to 
provide a natural and hands-free way of interaction (see also [3]). With recent 
technical developments that make eye tracking systems more exact and affordable, 
this form of interaction has become popular and first systems have arrived on the 
consumer market.  

An advantage of gaze-based human-machine systems (HMSs) is the fact that it is 
very natural to use the eye for cursor movements. Usually, humans direct their 
attention towards an object by looking at it before pointing at it. Therefore, it is 
convenient to have the cursor position at the user’s gaze location. However, it 
becomes tricky to determine an appropriate substitute for the selection operation as 
the eye does not provide a natural mechanism for this. Blinking and dwell time, i.e., a 
gaze fixation on an object for a particular duration, provide just limited solutions. The 
former has the disadvantage of involuntary blinks leading to a large amount of 
unintended selections. When using the latter, one faces the problems that fixations 
unrelated to the intention to select are interpreted as commands. Unintended 
selections can therefore occur due to spontaneous dwellings at random objects [4]. 
Moreover, it is hard to find an optimal dwell time for all stimulus complexities. The 
stimulus processing time might exceed the dwell time leading to an involuntary 
selection. This problem of unintended selections has been termed Midas-Touch-
Problem because the user tends to feel comparable to the ancient King Midas who had 
the gift that everything he touched, even his food, turned into gold and because of this 
he almost starved to death ([1], [2]). Prolonging the dwell time may be one solution; 
however, in that case experienced users might become annoyed because the speed of 
the system is too slow leading to a speed-accuracy-trade-off.  

Therefore, it may be worthwhile to make use of other hands-free input channels to 
find a more natural way of substituting the selection process. In the last years, brain-
computer interfaces (BCIs) have been proven to be useful as a new communication 
channel independent from standard human output channels ([5], [6]). These systems 
transfer activity of the human brain linked to certain cognitive states as measured with 
electroencephalography (EEG) into commands for the computer. In the context of 
HMI, especially active and passive BCIs seem to bear good prospects to improve 
natural interaction ([7], [8]). For active BCIs, the user has to generate a certain brain 
state or EEG potential (e.g., by imaging an action like moving hands), whereas 
passive BCIs utilize information about the ongoing user state (e.g., situational 
awareness, user intentions, affective state) for an automated adaptation of the system 
[8]. Passive BCIs establish a secondary interaction cycle, next to that of the primary 
interaction the user is involved in. This additional interaction is implicit [23], meaning 
that users do not consciously send commands through the BCI. They might not even 
be aware that they are providing input through the passive BCI. Implicit interaction 
through a Passive BCI opens up BCI-based applications for users without disabilities 
[24] by decoupling them from the transferred information bit rate [24]. Additionally, 
nowadays dry and portable EEG electrode systems became available [9–11], so that 
HMI based on brain activity is more than mere utopia.  
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Recently, a system combining gaze input for cursor movement and an active BCI 
for the selection process was presented ([12], [13]). There, the users had to look at an 
object on the screen and simultaneously imagine a hand movement in order to select 
it. Over different stimulus complexities participants were as successful in using the 
BCI-based selection as in solely gaze-based interaction triggered by dwell times 
optimally chosen for the given stimulus complexity. As the selection based on active 
BCI is independent from stimulus complexities, it outperforms the common dwell 
time selection. Additionally, participants favored this system as they could work in 
their own pace, not disturbed by false selections when resting their eyes. To our 
knowledge this was the first study enhancing gaze-based HMI with the help of BCI 
input that was demonstrated in an online system. As a downside, the imagination 
process loaded some extra workload on the users, so that it may be promising to 
utilize a passive BCI to elicit the selection.  

Based on a pre-study presented in [14]1 we investigate the passive BCI in based 
gaze interaction. Participants were asked to find a target in a set of distractors. In trials 
where the target was present they were asked to select it by dwell time (class 1), in 
trials where no target was among the stimuli they were asked to return their gaze to 
the fixation cross and wait for the experiment to continue (class 2). Participants were 
not informed that the experiment would only continue if they rest their eyes on the 
cross for the same dwell time as during target selection. Hence, participants must 
show a very similar behavior during both classes, but clearly have a different state of 
mind. Our hypothesis is (based on the results from [14]), that we can discriminate the 
difference between these two states of mind (intention to interact / waiting) by a 
passive BCI. Such a passive BCI could then be used as a selection command in a very 
intuitive gaze based interaction. Items you intend to select are selected automatically, 
without the need of sending any additional command, while items you are just 
studying or looking at, will not be selected. 

Here we will validate this hypothesis by an offline analysis of EEG data collected 
in the above-mentioned experimental paradigm. 

2 Methods 

2.1 Experimental Set-Up 

Data sets from 14 participants (6 male; average age of 27 years) were included in the 
analysis. All of them were right-handed and reported being free of neurological 

                                                           
1  The experimental setup of [14] was refined in this study as it included an unintended 

confounder between the two classes. The post-selection behavior was different 
between both classes. As subjects were asked to move their eyes to the center of the 
screen in Class 1, they might prepare for a saccade might have induced a readiness 
potential. As they would not have such an eye movement in Class 2 it is unclear 
what the basis of the signal investigated in [14] was. The experimental setup used in 
this study is corrected for this flaw. 
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disorders. EEG and electrooculogram (EOG) were recorded using 135 impedance-
optimized electrodes (actiChamp, BrainProducts, Gilching, Germany). Eye 
movements were tracked with an IG-30 remote eye-tracker (IntelliGazeTM System, 
alea technologies, Teltow, Germany) module, which was also used for gaze-based 
interaction.  

All participants were given verbal and written instructions and had to calibrate the 
eye tracker and to train how to interact gaze based. Each trial started with the 
presentation of a fixation cross for one second. Then a set of two or four different 
geometric objects containing either no or one target (a triangle or a hexagon) was 
added to the scene, at different locations on the screen (figure 1). In case a target was 
presented (class 1, intent to interact), participants had to selected the target out of 
either one or three distractors by means of dwelling at it for 1s. After successful 
selection of the target, it was replaced by a cross hair starting the next trial and with a 
new set of geometric objects. The cross hair did always appear at the location were 
the fixation of the last trial ended. In trials where no target was present on the screen 
participants were asked to look at the fixation cross until the new trial starts (class 2, 
no specific intention). Participants did not know that a new trial only would start after 
a successful fixation of the cross hair for 1 s. The experimental design ensured 
participants showing the same gaze-based behavior in both classes even though they 
had a different intent.  

2.2 Data Analysis 

Event Related Potentials (ERPs). For the analysis of event-related potentials 
(ERPs), we compared the averaged EEG signal at central electrodes relative to the 
dwell time selection in both classes. Scalp topographies were inspected for spatial 
location of the ERP. All scalp-electrodes were considered for the topographies. 

 

Fig. 1. Trial procedure: target and task combinations 

The experiment consisted of twelve blocks, each containing 20 trials (10 for each 
class). While in six of the blocks 2 items were displayed per trial (condition 1), the 
other blocks contained 4 items each trial (condition 2). All participants completed  
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three blocks of each target and task combination in randomized target and block 
order. Thus, a total of sixty target and sixty non-target trials for each condition was 
recorded. 

Classification. For defining our BCI approach, we used the open-source toolbox 
BCILAB [15]. Features were extracted by the Windowed Means approach [16] and 
classification was done with a Linear Discriminant Analysis (LDA, [17]) 
regularized by Shrinkage [16]. The defined approach is a subsampling of the data 
catching the trend of the signal and resulting in normally distributed features. 
Hence, a LDA is a very well chosen classifier for this decision problem, as it 
provides an optimized decision plane and suffices a very low Vapnik–Chervonenkis 
(VC) dimension [18]. 

The Windowed Means approach was parameterized with a series of non-
overlapping windows of 50 ms length starting at 1050ms and ending 400 ms before 
the item (geometrical or cross) was selected resulting in a 13 (windows) x 128 (EEG 
channels) = 1664 dimensional feature space. Due to volume conduction, features in 
each temporal time slice (each 50 ms window) are spatially correlated [19]. Hence, 
the number of independent features is unknown but should be lower. Nevertheless, 
the ratio between independent dimensionality and the number of trials (240) is very 
bad. 

We defined a classification model along this approach for each subject 
individually, calibrated on the data of both of the sessions (with 1 and with 3 
distractors). An estimate of the online reliability of the defined model was derived 
by a [5,5]-times nested cross-validation [17] with margins of 5 (default by 
BCILAB, [15]). The inner runs of the nested cross-validation were 5-folded and 
served for the selection of the regularization parameter of the Shrinkage. The 
outcomes of the 5-folded outer runs, regularized by the one Shrinkage parameter 
derived in the appropriate inner runs) gave the estimates for the reliability of each 
runs model. The overall reliability was then given by the average of each single 
runs' reliability. The validity of this estimate is supported by the low probability of 
over-fitting of classifiers with low VC dimension [18], by the fact that the bad ratio 
between feature dimensionality and number of trials can be counterbalanced by a 
well-chosen Shrinkage regularization [16] and that we properly applied a nested 
cross-validation. 

3 Results 

Here, we present results from a selection of 10 of the 14 investigated subjects. Data 
from four subjects was skipped as we encountered technical problems with our eye 
tracker (mainly with the calibration) during their sessions. Estimates of classification 
accuracies and the average can be found in Table 1. Average accuracy of the skipped 
subjects was about 51.5%. 
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Table 1. Classification accuracies resulting from offline cross validation in 10 selected subjects 

Subject ID Accuracy Subject ID Accuracy 

1 0.65 6 0.81 

2 0.81 7 0.75 

3 0.82 8 0.75 

4 0.91 9 0.85 

5 0.91 10 0.82 

Average: 0.81

 
Figure 2 shows event-related potentials (ERPs), averages of multiple instances of 

preprocessed EEG signals related to a specific event, in fronto-, central- and parieto-
central electrodes. They show a negativity, starting 1100 ms before the final selection. 
This Negativity is strongest on parietal sites and attenuating while moving to frontal 
sites, as it can be seen in the related topographic plots. Figure 3 shows ERPs for 
channels reflecting eye movements. Here we see clear differences between classes 
from 1200 to 1050ms before selection.   

4 Discussion 

The aim of this study was to identify EEG potentials that occur during gaze-based 
HMI and can be utilized as possible input in a passive BCI system to select target 
objects on the screen. Especially it should show that it is possible to classify eye gaze 
fixations that are related to the intention to interact with objects on the screen against 
spontaneous, selection-unrelated fixations in a relatively natural HMI environment. 

Classification results strongly support our hypothesis. The fact that features evoked 
from eye movements are clearly separable in time from those taken for classification, 
and the fact that the investigated negativity can be found clearly localized at parietal 
sites contribute as well. Taken ?together with the fact of a different topography in 
Class 1, showing only a 5th of the activity present in Class 1, supports a validation that 
the presented passive BCI indeed is based on cortical processes and not on artifact 
activity like eye-movements or muscular activity. This is important as the presented 
passive BCI is intended to work in gaze-based systems in very different 
environmental contexts. We assume that behavior changes easily with such contexts, 
which would lead to changes in eye and muscular activity. This would reduce the 
reliability and robustness of the classification of the passive BCI. As it is very likely 
that this is not be the case for cortical activity related to cognitive processes, we are 
confident that the approach presented here will be stable in different application 
scenarios. 
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Fig. 2. Top: 3 ERP plots from frontal, central and parietal electrodes. Green curves for Class 1, 
blue curves for Class 2, purple curves: Difference Plot. Y-Axis in microvolt, X-Axis in 
milliseconds, 0 is item selection. Bottom: Topographic Plots, left: class 1, intent to interact, 
right: class 2, no specific intention. We see a clear negativity between -1100 and -850 ms in 
Class 1, which is not present in Class 2. Class 2 shows no relevant deviations from the baseline. 

Looking at the conventional EEG analysis reveals a negativity over parietal 
electrodes. It clearly is related to the intended selection of an object of the screen 
(intention to interact) and does not occur in case participants were fixating the cross 
hair without intention to select (no specific intention). It nicely shows that brain 
activity in the beginning of a fixation for a selection is different from EEG activity 
during fixations unrelated to selection and thus may reflect the psychological 
difference. Future studies need to examine the revealed potential in more depth in 
order to determine its neuropsychological background. Therefore, source localization 
of EEG components should be accomplished using independent component analysis 
(ICA) [20]. By this, cortical generators of the potential can be identified leading to its 
better neuropsychological understanding. In addition, it is worthwhile to verify the 
occurrence of this potential in other experiments and real world applications to ensure 
its robustness, which is necessary for building reliable BCI systems. 
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Moreover, we performed an offline BCI analysis of the potential in order to 
provide an estimate for the classification accuracy in a potential online passive BCI 
system. We were able to robustly classify the revealed brain activation in most of our 
participants with an accuracy up to 91% using standardized BCI algorithms (e.g., see 
[21]). This value is well above chance level according to the work of Müller-Putz et 
al. [22]. Such high classification accuracy suggests that using this potential in a 
passive BCI system is well possible. Moreover, it seems likely that more complex 
analysis involving classification on components derived by ICA analysis could even 
improve performance. Additionally, it would assure even more that classification is 
based on neuropsychological reasonable EEG activity and not on eye movement or 
muscle artefacts.  

We had technical problems with the eye-tracker in four participants resulting in 
very low classification accuracies for these participants. This can be explained by the 
fact that poor eye tracking calibration might lead to a delay in the actual selection of 
the target object in certain trials. Variability in the length of the fixation could kind of 
“wash out” the event-related potential as its start may be shifted by up to several 
hundred milliseconds. This in turn affects the features extracted and may thus 
deteriorate BCI classification accuracy. All in all, although improving classification 
accuracy is necessary, it seems that offline BCI classification worked fairly well for 
the revealed potentials. 

 

Fig. 3. ERPs reflecting eye movements. Green curves for Class 1, blue curves for Class 2, 
purple curves: Difference Plot, 0 is item selection. Here, we see a difference in timing between 
classes while the peak amplitude is stable.  
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The presented passive BCI could be applied in gaze-based interaction. In a first 
scenario it could replace dwell times as selection command. The benefit of this 
approach would be that users could interact very intuitively. Only those items would 
be selected which they plan to interact with. A drawback would be the lack of a 
selection command that can be triggered voluntarily. Users might experience this as a 
kind of loss-of-control [25], which could reduce the usability of systems. A second 
scenario would be using this passive BCI in addition to a dwell-time triggered 
selection command. The BCI could be used as a “second guess” improving the 
reliability by eliminating false positive selections. 
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