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Abstract. Drug target is of great importance for designing new drugs
and understanding the molecular mechanism of drug actions. In general,
a drug may bind to multiple proteins, some of which are not related to
disease-treatment or even lead to side effects. Therefore, it is necessary to
discriminate the effect-mediating drug targets, i.e. therapeutic targets,
from other proteins. Although a lot of computational approaches have
been developed to predict drug targets and achieve partial success, few
attention has been paid to predict therapeutic targets. In this work, we
present a new framework to predict drug therapeutic targets based on
the integration of heterogeneous data sources. In particular, we develop
an ensemble classifier, PTEC (Predicting Therapeutic targets with En-
semble Classifier), that can effeciently integrate both drug and protein
properties described from distinct perspectives, thereby improving pre-
diction accuracy. The results on benchmark datasets demonstrate that
our approach outperforms other popular approaches significantly, imply-
ing the effectiveness of our proposed approach. Furthermore, the results
indicate that the integration of different data sources can not only im-
prove the coverage of predicted targets but also the prediction precision.
In other words, distinct data sources indeed complement with each other,
and the integration of these heterogeneous data sources can improve the
prediction accuracy.

1 Introduction

Drug target identification is one of the most important steps in drug develop-
ment, and is the key to understand how the desirable therapeutic effects are
accomplished when the proteins are targeted by drugs [1,2]. Unfortunately, the
targets of a lot of drugs are incomplete or even unknown, which hampers the
discovery of new drugs. Recently, a number of computational approaches have
been proposed to predict drug targets. For example, assuming similar drugs bind
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to similar pockets on the protein surfaces, molecular docking approaches have
been widely used to identify those compounds that can bind to known target
proteins by investigating the chemical similarity between candidate ligands with
known drugs [3]. With the knowledge that drugs with similar therapeutic ef-
fects generally target same proteins, drug therapy information has been used to
predict drug targets [4]. Observing that drugs with similar side effects tend to
target common proteins, Campillos et al proposed a novel approach to predict
drug targets based on side effect similarity [5]. Considering that protein function
is determined by its component domains while ligands generally bind to proteins
to exert their function [6], Wang et al proposed a novel statistical approach to
predict drug targets based on the derived interactions between drugs and pro-
tein domains [7]. To further improve prediction accuracy, different kinds of data
sources have been integrated to predict compound-protein interactions. For ex-
ample, Yamanishi et al have combined chemical structure and genomic sequence
information to predict drug-protein interactions [8], and they later further took
into account the pharmacological information to improve prediction accuracy
[9].

With the knowledge about drug-protein interactions becoming more com-
prehensive, the amount of compound-protein interactions deposited in public
databases, e.g. DrugBank [10] and STITCH [11], increases accordingly. Most re-
cently, it is found that actually 96% of approved drugs have known targets [12].
However, a large number of these drug-protein interactions are found to be either
irrelevant to disease-treatment or related to side effects [13]. In general, a com-
pound may bind to multiple proteins, among which some proteins are off-targets
that may lead to severe undesirable adverse effects. That is, druggable pro-
teins are not necessarily main effect-mediating targets, i.e. therapeutic targets,
that play critical and preferably unsubstitutable roles when treating disease [14].
Therefore, it is necessary to identify those therapeutic targets, and discriminate
them from therapeutically irrelevant or side effect related ones. The therapeu-
tic targets can help design drugs with expected efficacy. Although experimental
techniques, such as high-throughout screening with bioassays, can be used to
detect drug-protein interactions, it is highly expensive and time-consuming to
identify the effect-mediating targets from the large pool of proteins within the
human genome. Despite the partial success achieved by above mentioned compu-
tational approaches, few attention has been paid to predict therapeutic targets
in the bioinformatics community possibly due to the scarceness of therapeutic
target information.

In this paper, we present a novel framework to predict the therapeutic targets
for known drugs based on integration of heterogeneous data sources. To this end,
we investigate various properties of both drugs and proteins, including chemi-
cal structure and therapy information for drugs while primary structure and
functional annotations for proteins. In particular, we develop a novel approach
to integrate these heterogeneous data for both drugs and proteins with an en-
semble classifier, PTEC (Predicting Therapeutic targets with Ensemble Classi-
fier). The integration of different data sources can not only improve prediction
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coverage but also accuracy [15]. That is, distinct data sources can complement
with each other so that better results are expected based on the integration of
these heterogeneous data sources. The results on gold standard datasets demon-
strate that our proposed method outperforms other popular approaches signifi-
cantly, implying the effectiveness of our proposed approach.

The rest of this paper is organized as following. Section 2 presents the ma-
terials used in this work and our proposed methods; Section 3 presents the
experimental results; Finally, conclusions are drawn in Section 4.

2 Materials and Methods

2.1 Data Sources

In this work, 406 therapeutic targets for known drugs were retrieved from [12],
which were curated from the drug-protein interactions from the DrugBank
database [10]. We also downloaded other human drug target proteins and drug
therapy information from DrugBank database (version 3.0). The drug therapy
information described as therapeutic categories in Anatomic Therapeutic Chem-
ical (ATC) classification system was considered here. The chemical structure in-
formation for drugs was obtained from PubChem [16]. As a result, 708 drugs with
both chemical structure and therapy information available were kept for further
analysis, which leads to 1726 interactions between drugs and their corresponding
therapeutic targets.

The amino acid sequences of human proteins were obtained from the Uniprot
database [17]. The functional annotations for these proteins were extracted from
the Gene Ontology (GO) database [18], where all three functional categories were
considered, including cellular component, molecular function and biological pro-
cess. The protein associated pathway information was retrieved from KEGG
database [19]. Furthermore, the expression profiles of protein coding genes gen-
erated for 36 normal human tissues were obtained from [20].

2.2 Drug Similarity

With chemical structure and therapy information available for drugs, we can
define the similarity between two drugs. The chemical similarity between a pair
of drugs was calculated as the two-dimensional Tanimoto score based on their
fingerprints with the help of Chemistry Development Kit (CDK) [21], which is
defined as following.

Cs(d, d
′
) =

∑
i(di ∧ d

′
i)∑

j(dj ∨ d
′
j)

(1)

where Cs(d, d
′
) represents the similarity score of two drugs d and d

′
, di is the ith

bit in the fingerprint of drug d, and ∧ and ∨ respectively denotes bitwise ′and′

and ′or′ operators.
In the Anatomic Therapeutic Chemical (ATC) classification system, each drug

can be described in 5 hierarchical levels and is classified into different therapeutic
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groups according to the organ it acts on and its chemical characteristics. In this
work, the therapeutic similarity between two drugs was defined as their longest
matched prefix between their corresponding ATC codes as described previously
[4].

T (d, d
′
) = max(di,d

′
j)

2 ∗ log(Pr(pre(di, d
′
j)))

log(Pr(di)) + log(Pr(d
′
j))

(2)

where T (d, d
′
) denotes the therapeutic similarity between drugs d and d

′
, di

denotes the ith ATC category for drug d considering each drug may be grouped
into different categories, pre(i, j) denotes the longest matched prefix between
the ATC codes di and d

′
j , Pr(di) denotes the probability of the ATC category

di occurs in drugs, and Pr(pre(di, d
′
j)) denotes the probability of the common

prefix between the two ATC categories di and d
′
j occurs in drugs.

2.3 Protein Similarity

The most straightforward way to measure the similarity between two proteins
is to compare their primary structure identity. In this work, the sequence simi-
larity Ss(p, p

′
) between two proteins (p, p

′
) is defined as the normalized Smith-

Waterman alignment score as described as following.

Ss(p, p
′
) =

SS(p, p
′
)

√
SS(p, p)SS(p′, p′)

(3)

where SS(., .) denotes the original Smith-Waterman alignment score [22].
The pathways associated with drug target proteins can tell the molecular con-

text in which the proteins exert their function, and therefore help to understand
the mechanism of actions of drugs. With pathway annotation for proteins avail-
able, the pathway similarity Sp(p, p

′
) between two proteins can be defined as

below.

Sp(p, p
′
) =

∣
∣
∣S(p) ∩ S(p

′
)
∣
∣
∣

|S(p) ∪ S(p′)| (4)

where S(p) and S(p
′
) respectively denotes the set of pathways in which protein

p and p
′
are located.

Furthermore, with the functional annotations extracted from GO database,
the functional similarity Sg(p, p

′
) between two proteins p and p

′
is defined as the

Jaccard index.

Sg(p, p
′
) =

∑3
k=1

∣
∣
∣tk(p) ∩ tk(p

′
)
∣
∣
∣

∑3
k=1 |tk(p) ∪ tk(p

′)| (5)

where tk(p) is the set of GO terms associated with protein p with respect to
functional category k, k = 1, 2, 3 denotes each of the three functional categories
in GO database, i.e. Molecular Function, Biological Process, and Cellular Com-
ponent.
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In addition, the expression similarity between two genes coding a pair of
proteins was defined as coexpression correlation based on the gene expression
profiles of 36 normal human tissues from [20] as below.

St(p, p
′
)) =

∑n
k=1 (p(k)− p)(p

′
(k)− p′)

∑n
k=1

√

(p(k)− p)
2
(p′(k)− p′)

2
(6)

where St(p, p
′
) is the correlation coefficient between the genes coding proteins p

and p
′
, n is the number of samples, and p is the mean of expression profile of

protein p.

Fig. 1. The flowchart of predicting therapeutic targets based on the integration of
heterogeneous data sources

2.4 Therapeutic Target Prediction

With the drug similarity described above, we assume that drugs with similar
characteristics will target same proteins. Similarly, the proteins with similar
properties will be bound by same drugs. With this in mind, we can construct a
learner based on known drug-protein interactions. In this work, a drug-protein
pair (di, pj) can be represented as a feature vector (Fdi, Fpj), where each ele-
ment in Fdi represents the similarity between drug di and all the drugs while
each element in Fpj represents the similarity between protein pi and all the
proteins. For example, for the combination of chemical structure and protein
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sequence, the elements in Fdi denotes the chemical similarity between drug di
and the rest drugs while the elements in Fpj denotes the sequence similarity
between protein pj and the other proteins. After the feature extraction step, a
classifier will be subsequently trained for each combination of drug and protein
properties, e.g. drug therapy and protein sequence. In this way, we can have
8 different combinations between distinct drug and protein properties, thereby
leading to 8 classifiers. Instead of selecting the best-performing classifier from
the eight ones, we proposed to construct an ensemble classifier, PTEC (Predict-
ing Therapeutic targets with Ensemble Classifier), to integrate these distinct
learners in a weighted way (see Fig 1). The ensemble classifier was adopted here
since it has been found to outperform individual ones and is more robust [23]. In
particular, we first evaluated each classifier on a benchmark dataset, and used
their accuracy as their corresponding weights to construct the ensemble classifier
as following.

Encres =
8∑

i=1

Wi · Li (7)

where Encres is the predicted results by the ensemble classifier, Wi is the weight
for learner ith, and Li is the output of learner ith. Here the weight for each
learner is set to the area under the curve (AUC) score of a reciever operating
characteristic (ROC) curve it obtained on the training set. Therefore, for a given
unknown protein, we can use the Ensemble classifier to predict whether it is a
therapeutic target. The simple but effective k-nearest neighbor algorithm (k-NN)
was used as the learner in this work.

3 Results and Discussion

With the known interactions between drugs and their corresponding therapeutic
targets as positive set, we build a negative set consists of drug-protein interac-
tions from DrugBank except those from the positive set for the drugs involved
in the positive set. As a result, 1094 drug-protein interactions were obtained as
negative set. Note that all the drug-protein interactions in the negative set are
real interactions as reported in DrugBank.

To evaluate the predictive power of different classifiers, one fifth of the samples
were used as the test set while the rest were used as the training set. Firstly, we
evaluated the eight single classifiers based on the training set with 10-fold cross-
validation. Table 1 summarizes the results obtained by distinct classifiers. From
the results, we can see that these eight classifiers perform comparably well with
no one single classifier performs always best. For example, the classifier trained
with therapy information and gene expression achieves the highest true positive
rate, while the one trained on protein sequence performs best with respect to false
negative rate. With the AUC scores obtained by the eight classifiers on the train-
ing set as their corresponding weights, we integrated the eight classifiers into an
ensemble classifier PTEC, which achieves the highest true positive rate and the
best overall result with an AUC score of 0.71 (see Table 1). The ensemble classifier
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Table 1. Performance of distinct classifiers, where the results were obtained with 10-
fold cross-validation on the training set

Ccs Ccp Cct Ccg CAs CAp CAt CAg PTEC

TPR 0.77 0.76 0.80 0.76 0.77 0.79 0.80 0.79 0.81
TPR std 0.02 0.01 0.02 0.02 0.03 0.02 0.01 0.01 0.01
FPR 0.37 0.41 0.46 0.36 0.37 0.43 0.46 0.43 0.39
FPR std 0.02 0.01 0.03 0.02 0.02 0.01 0.02 0.02 0.01
AUC 0.70 0.66 0.68 0.70 0.68 0.67 0.70 0.70 0.71
AUC std 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.01

Ccs - classifier trained on chemical structure and protein sequence; Ccp - classifier trained on
chemical structure and protein pathway; Cct - classifier trained on chemical structure and
transcriptional expression; Ccg - classifier trained on chemical structure and protein GO annotation;
CAs - classifier trained on drug therapy information and protein sequence; CAp - classifier trained
on therapy information and protein pathway; CAt - classifier trained on therapy information
and transcriptional expression; CAg - classifier trained on therapy information and protein GO
annotation;
TPR - true positive rate;
TPR std - standard deviation of true positive rate;
FPR - false positive rate;
FPR std - standard deviation of false positive rate;
AUC - Area under ROC curve;
AUC std - standard deviation of AUC.

Fig. 2. The Venn diagram about the number of drug-protein interactions successfully
predicted by the combination between drug therapy and three protein properties

was adopted here since it can improve prediction coverage considering that the an-
notations for proteins are incomplete. For example, looking into the drug-protein
interactions predicted by different classifiers, Fig. 2 shows the Venn diagramabout
the number of drug-target pairs successfully predicted by the combination of drug
therapy with protein sequence, pathway annotation and functional annotation re-
spectively. It can be seen that among the 138 drug-protein interactions, the three
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Table 2. Performance of distinct classifiers on the test set

Ccs Ccp Cct Ccg CAs CAp CAt CAg PTEC

TPR 0.70 0.78 0.79 0.80 0.76 0.80 0.82 0.82 0.83
FPR 0.26 0.26 0.36 0.29 0.32 0.33 0.38 0.34 0.17
AUC 0.76 0.75 0.71 0.75 0.73 0.74 0.72 0.74 0.83

classifiers get consistent results on most of their predictions 68.12% (94/138),
while the integration of these different data sources can enlarge the number of
predicted therapeutic targets significantly. In other words, distinct data sources
complement with each other and the integration of them can improve both pre-
diction accuracy and coverage.

To further evaluate the predictive power of our proposed PTEC, we applied it
to predict therapeutic targets on the hold-out test set. Moreover, we compared
our results with those eight single classifiers. Table 3 shows the performance of
distinct classifiers on the test set. The results demonstrate that our proposed
ensemble classifier significantly outperforms others with an AUC score of 0.83
and the highest true positive rate, indicating the effectiveness and robustness of
our proposed ensemble classifier.

In addition, we compared our proposed method with a popular approach,
namely nearest profile (NP), which predicts drug targets based on a bipartite
graph. Figure 3 gives the results obtained by both PTEC and NP, where the

Fig. 3. The performance of PTEC and the nearest profile(NP) method
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results by PTEC are based on the test set while those by NP are based on the
whole dataset. From the results, we can clearly see that PTEC is really effective
to predict therapeutic targets, and is able to separate therapeutic targets from
other irrelevant ones. The good performance of PTEC confirm again that the
integration of different data sources indeed can improve prediction accuracy and
also the predictive power of our proposed approach.

In our predictions, some of them are not found in the positive dataset, which
does not necessarily mean they are false positives. For example, we predict pro-
tein AchE that is involved in lipid transportation and metabolism as the ther-
apeutic target of drug Physostol, a cholinesterase inhibitor that can be applied
topically to the conjunctiva. In the positive set, AchE is not the therapeutic
target of Physostol, whereas we found that AchE is reported as the therapeutic
target of Physostol in the Therapeutic Target Database (TTD)[24]. The drug
Metubine iodide is a benzylisoquinolinium competitive nondepolarizing neuro-
muscular blocking agent, which was predicted to bind to CHRNA2 by our pro-
posed PTEC, and this interaction is also verified in TTD. The verification of our
prediction results by other public databases demonstrates the predictive power
of our proposed method.

4 Concluding Remarks

Therapeutic target is the key to design the drugs with expected efficiency and
understand how the drugs work. In this paper, we present a new framework to
predict drug therapeutic targets by integrating heterogeneous data sources for
both drugs and proteins. Specifically, we proposed a novel ensemble classifier to
integrate the learners trained on distinct data sources. The results on benchmark
dataset demonstrate the effectiveness and robustness of our proposed approach.
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