Chapter 8

Understanding the Impact of Face Mask
Usage Through Epidemic Simulation of Large
Social Networks

Susan M. Mniszewski, Sara Y. Del Valle, Reid Priedhorsky,
James M. Hyman and Kyle S. Hickman

Abstract Evidence from the 2003 SARS epidemic and 2009 HIN1 pandemic shows
that face masks can be an effective non-pharmaceutical intervention in minimizing
the spread of airborne viruses. Recent studies have shown that using face masks is
correlated to an individual’s age and gender, where females and older adults are more
likely to wear a mask than males or youths. There are only a few studies quantifying
the impact of using face masks to slow the spread of an epidemic at the population
level, and even fewer studies that model their impact in a population where the use
of face masks depends upon the age and gender of the population. We use a state-
of-the-art agent-based simulation to model the use of face masks and quantify their
impact on three levels of an influenza epidemic and compare different mitigation
scenarios. These scenarios involve changing the demographics of mask usage, the
adoption of mask usage in relation to a perceived threat level, and the combination of
masks with other non-pharmaceutical interventions such as hand washing and social
distancing. Our results shows that face masks alone have limited impact on the spread
of influenza. However, when face masks are combined with other interventions such
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as hand sanitizer, they can be more effective. We also observe that monitoring social
internet systems can be a useful technique to measure compliance. We conclude that
educating the public on the effectiveness of masks to increase compliance can reduce
morbidity and mortality.

1 Introduction

Pharmaceutical interventions such as vaccines and antiviral medication are the best
defense in reducing morbidity and mortality during an influenza pandemic. How-
ever, current egg-based vaccine production process can take up to 6 months for the
development and availability of a strain-specific vaccine and antiviral supplies may
be limited. Fortunately, alternative strategies such as non-pharmaceutical interven-
tions can reduce the spread of influenza until a vaccine becomes available. Face
masks have been used to combat airborne viruses such as the 1918-1919 pandemic
influenza [4, 29], the 2003 SARS outbreak [7, 38], and the most recent 2009 HIN1
pandemic [12]. These studies indicate that if face masks are readily available, then
they may be more cost-effective than other non-pharmaceutical interventions such
as school and/or business closures [13].

We focus on the use of surgical face masks and N95 respirators (also referred to
as face masks). A surgical mask is a loose-fitting, disposable device that prevents
the release of potential contaminants from the user into their immediate environment
[8, 40]. They are designed primarily to prevent disease transmission to others, but
can also be used to prevent the wearer from becoming infected. If worn properly,
a surgical mask can help block large-particle droplets, splashes, sprays, or splatter
that may contain germs (viruses and bacteria), and may also help reduce exposure
of saliva and respiratory secretions to others. By design, they do not filter or block
very small particles in the air that may be transmitted by coughs or sneezes.

An NO5 respirator is a protective face mask designed to achieve a very close facial
fit and efficient filtration of airborne particles [40]. N95 respirators are designed to
reduce an individual’s exposure to airborne contaminants, such as infectious viral and
bacterial particles, but they are also used to prevent disease transmission when worn
by a sick individual [20]. Typically, they are not as comfortable to use as a surgical
face mask, and some health care workers have found them difficult to tolerate [23].
NOS5 respirators are designed for adults, not for children, and this limits their use in
the general population.

Surgical masks and N95 respirators have been found to be equally effective in
preventing the spread of influenza in a laboratory setting [20] as well as for health
care workers [24]. In addition to reducing the direct flow of an airborne pathogen
into the respiratory system the masks act as a barrier between a person’s hands and
face, which can reduce direct transmission.

A survey paper by Bish and Michie [5] on demographic determinants of protective
behavior showed that compliance to using face masks is tied to age and gender.
They observed that females and older adults were more likely to accept protective
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behaviors than other population groups. Supporting these ideas, usage of face masks
was consistently higher among females than male metro passengers in Mexico City
during the 2009 Influenza A (HIN1) pandemic [12]. Limited studies suggest that
there is more social stigmatization associated with wearing face masks in Western
Countries than in Asia. For example, people rarely wear face masks in public in
the United States, compared with their use in Japan and China [17]. An article
published in 2009 by New York Times Health reported that “masks scare people
away from one another” resulting in an unintentional social distancing measure [30]
or “stay away” factor. Pang et al. showed that during the 2003 SARS outbreak, non-
pharmaceutical interventions where implemented followed the epidemic curve [33].
That is, as the perception of SARS increased, more measures were implemented,
and as the incidence declined, several measures were relaxed.

Based on these studies, we investigate the impact of face mask usage on the spread
of influenza under several assumptions, including: (1) that females and older people
will be more likely to wear them, (2) face mask wearers may follow the epidemic
(e.g., the number of people wearing face masks depends on the incidence), and (3)
face masks scare people away.

In order to transfer our results to the real world, it will be important to measure
compliance. In the case of interventions such as face mask use, where individuals
often choose to comply or not comply in the privacy of their daily lives, traditional
methods of measuring compliance may be ineffective. Accordingly, we turn to social
internet systems, specifically Twitter, where users share short text messages called
tweets. These messages are directed to varying audiences but are generally avail-
able to the public regardless; they are used to share feelings, interests, observations,
desires, concerns, and the general chatter of daily life. While other researchers have
used Twitter to measure public interest in various health topics, including face masks
as an influenza intervention [35], we carry out a brief experiment to explore the fea-
sibility of using tweets to measure behavior.

The goal of this study is to understand the effectiveness of face mask usage for
influenza epidemics of varying strengths (high, medium, low). A high level epidemic
would be similar to the 1918-1919 HIN1 “Spanish flu” outbreak with large morbidity
and mortality [32, 34, 42], a medium level would be similar to the 1957-1958
H2N2 Asian flu [15, 18], and a low level would be similar to the more recent 2009
Novel HINT1 flu [6, 10, 19]. We simulate face mask usage behavior through detailed
large-scale agent-based simulations of social networks. These simulations have been
performed using the Epidemic Simulation System (EpiSimS) [27, 28, 37] described
in the next section.
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2 Methods

2.1 Agent-Based Model Description

EpiSimS is an agent-based model that combines three different sets of information
to simulate disease spread within a city:

e population (e.g., demographics),
e locations (e.g., building type and location), and
e movement of individuals between locations (e.g., itineraries).

We simulated the spread of an influenza epidemic in southern California with a
synthetic population constructed to statistically match the 2000 population demo-
graphics of southern California at the census tract level. The synthetic population
consists of 20 million individuals living in 6 million households, with an additional 1
million locations representing actual schools, businesses, shops, or social recreation
addresses. The synthetic population of southern California represents only individu-
als reported as household residents in the 2000 U.S. Census; therefore, the simulation
ignores visiting tourists and does not explicitly treat guests in hotels or travelers in
airports.

We use the National Household Transportation Survey (NHTS) [44] to assign a
schedule of activities to each individual in the simulation. Each individual’s schedule
specifies the starting and ending time, the type, and the location of each assigned
activity. Information about the time, duration, and location of activities is obtained
from the NHTS. There are five types of activities: home, work, shopping, social
recreation, and school, plus a sixth activity designated other. The time, duration, and
location of activities determines which individuals are together at the same location
at the same time, which is relevant for airborne transmission.

Each location is geographically-located using the Dun and Bradstreet commercial
database and each building is subdivided based on the number of activities available
at that location. Each building is further subdivided into rooms or mixing places.
Schools have classrooms, work places have workrooms, and shopping malls have
shops. Typical room sizes can be specified; for example, for workplaces, the mean
workgroup size varies by standard industry classification (SIC) code. The number
of sub-locations at each location is computed by dividing the location’s peak occu-
pancy by the appropriate mixing group size. We used two data sources to estimate
the mean workgroup by SIC, including a study on employment density [45] and a
study on commercial building usage from the Department of Energy [26]. The mean
workgroup size was computed as the average from the two data sources (normalizing
the worker density data) and ranges from 3.1 people for transportation workers to
25.4 for health service workers. The average over all types of work is 15.3 workers
per workgroup. For the analyses presented here, the average mixing group sizes are:
8.5 people at a school, 4.4 at a shop, and 3.5 at a social recreation venue.
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2.2 Disease Progression Model

Airborne diseases spread primarily from person-to-person during close proximity
through contact, sneezing, coughing, or via fomites. In EpiSimS, an interaction
between two individuals is represented only by:

when they begin to occupy a mixing location together,

how long they co-occupy within a mixing place,

a high-level description of the activity they are engaged in, and
the ages of the two individuals.

A location represents a street address, and a room or mixing place represents a
lower-level place where people have face-to-face interactions. When an infectious
person is in a mixing location with a susceptible person for some time, we esti-
mate a probability of disease transmission, which depends on the last three variables
listed above. Details of social interactions such as breathing, ventilation, fomites,
moving around within a sub-location, coughing, sneezing, and conversation are not
included. Disease transmission between patients and medical personnel is not han-
dled explicitly, and no transmission occurs when traveling between activities. Note
that individuals follow a static itinerary, except when they are sick or need to care for
a sick child. In this case, their schedule changes and all activities they were supposed
to undertake are changed to home.

If susceptible person j has a dimensionless susceptibility multiplier S, infectious
person / has an infectious multiplier /; and T is the average transmissibility per unit
time, then, T'S;; will be the mean number of transmission events per unit time
between fully infectious and fully susceptible people. The sum

> TS
j

extends over all infectious persons that co-occupied the room with individual j. For
events that occur randomly in time, the number of occurrences in a period of time of
length 7 obeys a Poisson probability law with parameter.

ZTSJ'I,'Z
J

Thus, the probability of no occurrences in time interval ¢ is

—-> TSIt
e j

and the probability of at least one occurrence is

—ZTSI'I,'I
l—e /
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Using the mean duration 7;; of contacts between a susceptible person j and infectious
person i, we assume that the probability that susceptible individual j gets infected
during an activity is computed as:

7ZTS‘,‘I,'I,'J'
Pi=l-c 7 )

Disease progression is modeled as a Markov chain consisting of five main epidemi-
ological stages: uninfected, latent (non-infectious), incubation (partially infectious),
symptomatic (infectious), and recovered. The incubation and symptomatic stage
sojourn time distributions are described by a half-day histogram, giving respectively
the fraction of cases that incubate for a period of between 0 and 0.5days, 0.5 and
1.0days, etc., before transitioning to the symptomatic or recovered stages, respec-
tively. The average incubation time is 1.9days and average duration of symptoms
is 4.1 [25]. The influenza model assumes that 50 % of adults and seniors, 75 % of
students, and 80 % of pre-schoolers will stay at home soon within 12 hrs of the onset
of influenza symptoms. These people can then transmit disease only to household
members or visitors. In addition, based on previous studies [25], we assume that
33.3 % of infections are subclinical where an infected individual is asymptomatic
and shows no sign of infection. We modeled the subclinical manifestation as only
half as infectious as the symptomatic manifestations. Persons with subclinical man-
ifestations continue their normal activities as if they were not infected. The assumed
hospitalization rate is a percentage of symptomatic individuals dependent on the
strength of the pandemic. To simulate the higher attack rates seen in children, we
assume that the infection rate in children was double that in adults. We analyze mul-
tiple scenarios for the same set of transmission parameters where the population was
initially seeded with 100 people infected, all in the incubation stage.

2.3 Behavior Model

The behavior of each individual (agent) in an EpiSimS simulation is defined based
on distributions for the effectiveness of their face mask usage in preventing infection
to others (given as a distribution), effectiveness to preventing the individual from
becoming infected (given as a distribution), acceptance of using the mask (given as
a distribution), along with applicable age range, gender, and other possible demo-
graphic descriptive information. Effectiveness to others for mask usage is based on
the protection factor of a mask type. It is the protection provided to people in contact
with a sick individual wearing a mask. Effectiveness to self is based on the penetra-
tion level of a mask type. It is the protection provided to a healthy individual when
in close contact with an infectious person. Distributions were used based on mask
testing for the penetration level [2, 9, 21, 31] and protection factor [22]. Examples
of these distributions are shown for N95 respirators in Table 1 and for surgical masks
in Table 2. The effectiveness values drawn from each distribution are used to modify
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Table 1 Effectiveness of N95 respirators in preventing an infected person from infecting
others (protection factor) and the effectiveness of the face mask to prevent the wearer from being
infected (penetration level) are listed along with the percentage of face mask users with this level
of effectiveness from testing

Effectiveness to others NOS5 respirator (%) Effectiveness to self N95 (%)
(protection factor) users (penetration level) users
less than 0.1 0.00 less than 0.5 9.52
0.1 87.88 0.5 9.52
0.5 12.12 0.6 14.29
0.7 14.29
0.8 33.33
0.9 19.05

Table 2 Effectiveness of surgical masks in preventing an infected person from infecting others
(protection factor) and the effectiveness of the face mask to prevent the wearer from being
infected (penetration level) are listed along with the percentage of face mask users with this level
of effectiveness from testing

Effectiveness to others Surgical mask (%) Effectiveness to self Surgical mask (%)
(protection factor) users (penetration level) users
<0.1 91.67 0.1 13.89
0.1 8.33 0.2 8.33
0.3 5.55
0.5 5.55
0.6 11.12
0.7 38.89
0.8 16.67

the infectivity (/;) and susceptibility (S;) between pairs contributing to whether or
not transmission occurs.

As stated previously, age and gender play an important role in determining whether
someone will comply with wearing a mask. The age ranges and compliance or accep-
tance by gender are based on values from a survey of behavior studies [5] and are
shown in Table 3. Simulations that assigned mask usage by age and gender used the
age ranges and acceptance in this table. Simulations that assigned mask usage ran-
domly used constant acceptance values (e.g., 25 % of the population) for adults-only
or all.

We assume that willingness to wear a mask is not influenced by a person being
ill and the masks are only worn in non-home settings. Mask usage is initiated as an
exogenous event, specified for a range of days. Usage can be specified as a fraction
of all possible users (based on age and gender) and the duration can be specified
as a distribution (e.g., constant, normal). Early in the simulations, each individual
determines whether they will wear a mask based on age, gender, and acceptance.
This is the pool of people from which mask users are selected. When we assume that
mask usage will follow the course of an epidemic (e.g., disease perception increases
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Table 3 Face mask

acceptance by gender and Age group Males (%) Females (%)
age. Notice that the 6-15 33 33
willingness to use a face mask 16-24 33 54
increases with age and that 25-34 45 63
women are more willing to 35-44 59 74
use a face mask than men of 45-54 55 68
the same age 55-64 59 71
65-74 63 75
75+ 57 72
Average 57 64

as incidence increases and vice-versa), mask usage ramps up and then down. For this
scenario, mask users change over time and some may use masks for a sequence of
days multiple times.

Scenarios that take into account a stay away factor used higher effectiveness
values based on assumptions regarding the amount of social distancing we expect
a mask wearer to experience (e.g., 30 %). The mechanism we are assuming here is
that, in general, individuals will attempt to limit their contact with a person wearing
a mask. This translates to a larger histogram bin size for the distribution. Scenarios
where both surgical masks and hand sanitizer served as the mitigation strategy, do not
use the protection level and penetration factor values for effectiveness as described
previously, instead an effectiveness value of 50 % is used based on an intervention
trial conducted at the University of Michigan [1].

2.4 The Reproduction Number

In epidemiological models, the effectiveness of mitigation strategies are often mea-
sured by their ability to reduce the effective reproduction number or replacement
number Refr. Refr is the average number of secondary cases produced by a typical
infectious individual during their infectious period [46]. In a completely susceptible
population and in the absence of mitigation strategies, the average number of sec-
ondary cases is referred to as Ro. The magnitude of R determines whether or not
an epidemic will occur and if so, its severity. The number of infections grows when
Ry is greater than one and it dies out when Ry is less than one.

3 Results

‘We compare a base case scenario where no face masks are used for the high, medium,
and low epidemic levels with simulations using only face masks, face masks and hand
sanitizer (M and HS), and face masks coupled with social distancing (M and SD).
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For the base case scenarios, we compare the epidemic parameters related to morbidity
and mortality, including the attack rate, clinical attack rate, hospitalization rate, and
mortality rate.

All of the scenarios that include face mask usage mitigations allow mask base
acceptance by age and gender. Additionally, mask users follow the course of the
epidemic incidence, increasing to the peak and then decreasing, ending 4 weeks after
the peak. In support of this behavior, we present the results of a small experiment,
where we use Twitter to estimate the shape of the compliance curve with respect to
face masks.

Surgical masks and N95 respirators are considered independently in the face mask
only scenarios, while surgical masks are the choice for the hand sanitizer and social
distancing scenarios. N95 respirators can be more effective if both adults and children
would use them, but they have not been designed for children and can be uncom-
fortable even for adults for long-term use. For these scenarios where mitigations are
implemented, we compare the clinical attack rate, effective reproductive number, and
for some cases, we show the the disease prevalence (symptomatic cases), incidence
of mask users (new cases), and the effective reproductive number over time (Reff).

3.1 Base Case Scenario

As described earlier, we used influenza epidemics of varying strengths (high,
medium, low) to compare the impact of face mask usage on controlling the spread.
These different levels share a similar disease progression as described in Sect.2.
The high level epidemic is based on the 1918-1919 HIN1 “Spanish flu” outbreak
and has large morbidity and mortality [32, 34, 42], the medium level is based on
the 1957-1958 H2N2 Asian flu [15, 18], and the low level is based on the more
recent 2009 Novel HIN1 flu [6, 10, 19]. The number of hospitalizations and deaths
were extrapolated from the U.S. population during the represented pandemic year to
the U.S. synthetic population of 280M (based on 2000 census data). The attack rate
(percentage of population infected), clinical attack rate (percentage of population
symptomatic), hospital rate (hospitalizations out of population), and mortality rate
(deaths out of population) are shown for each strength in Table4. Figure 1 shows
each of their respective epidemic curves for the new symptomatic as a function of
time.

Table 4 Epidemic parameters associated with high, medium, and low strengths of epidemic

Epidemic Attack rate Clinical attack Hospital rate Mortality rate
level (%) rate (%) (%) (%)
High 40.0 30.0 0.500 0.300

Medium 30.0 19.7 0.250 0.100

Low 20.0 10.0 0.008 0.015
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Base Case Scenarios
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Fig. 1 Base case simulation results for the three different epidemic strengths, showing the
percentage of the population that becomes symptomatic per day

3.2 Using Twitter to Quantify Face Mask Usage

Our goal in exploring Twitter is to evaluate two conjectures: first, that the level of
face mask wearing follows the disease incidence level, and second, that analysis of
the public tweet stream is a feasible technique to measure compliance with face mask
wearing (and, by implication, other behaviors relevant to infectious disease). To do
so, we analyzed tweets published globally between September 6, 2009 and May 1,
2010, roughly corresponding to the HIN1 pandemic flu season in the United States.

There are 548,893,258 tweets in our dataset, an approximate 10 % sample of total
Twitter traffic during this period. Of these, we selected the 75,946 which contained
the word “mask”; in turn, a small fraction of these keyword matches—we estimate
3,350, or about 4.5 %—actually concern the medical face masks of interest to the
present work (topics also include costume, sports, metaphor, cosmetics, movies, and
others).

In order to identify these relevant tweets, we manually examined a random sample
of 7,602 keyword matches (roughly 10 % of the total), coding them as (a) mentioning
medical face masks (335 tweets), and perhaps additionally (b) sharing a specific
observation that either the speaker or someone else is wearing, or has recently worn,
a face mask (138 tweets).
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Fig. 2 Of each million tweets during the period September 6, 2009 through May 6, 2010, we show
the number in which face masks are mentioned, as well as the subset of mentions which observe
that someone specific is or was recently wearing a mask, whether the speaker himself or someone
else. Also shown is the influenza-like illness rate from the CDC for the same period. The Pearson
correlation between ILI rate and mentions is 0.92, and between ILI rate and observations is 0.90

Our results are shown in Fig.2. As noted above, there are very limited sur-
vey studies that have collected information on mask use, especially from Western
Countries [5]; accordingly, we compare our Twitter mention and observation counts
against influenza-like illness (ILI) data published by the Centers for Disease Control
(CDCQC) [11]. The correlation is excellent: 0.92 for mentions and 0.90 for observations.

These results have two implications. They provide empirical support for our
assumption that face mask use is disease-dependent; that is, as disease incidence
increases, face mask use increases, and as incidence decreases, so does mask use.
Also, they suggest more broadly that social internet systems such as Twitter can, in
fact, be used to measure disease-relevant behavior in the real world.

Challenges remain, however. First, we point out the severe signal-to-noise of these
data: we identified just 20 out of every million tweets as relevant, even at the peak
of the epidemic. Accordingly, analysis focusing on specific locales or demographic
groups is not possible with this approach. Second, our manual coding approach
clearly does not scale. Finally, we strongly suspect that information relevant to our
specific questions (e.g., How many people are using face masks? Who are they?
Where are they?) is contained in the vast number of tweets our coarse, preliminary
approach discards as irrelevant. Our future work in measuring real-world behavior
will go beyond simple keyword searches to leverage more sophisticated data mining
algorithms.
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Table 5 Attack rate parameters associated with high, medium, and low strengths of epidemic for
face mask only scenarios starting when 0.01 % of the population is symptomatic

Epidemic Mask Attack rate Overall Mask users
level scenario (%) Clinical attack Clinical attack
rate (%) rate (%)

High Surgical mask 34.22 25.66 14.24
NO5 respirator adults 35.03 26.27 12.74
NO95 respirator all 32.26 24.20 12.09
Medium Surgical mask 24.51 16.35 7.40
NO5 respirator adults 25.55 17.04 7.03
NO95 respirator all 23.40 15.60 5.89
Low Surgical Mask 16.35 8.18 2.88
NO5 Respirator Adults 17.69 8.85 2.80
N95 Respirator All 16.96 8.49 1.73

3.3 Comparison of Intervention Strategies

Face mask only mitigation strategies were considered for surgical masks and N95
respirators separately. All scenarios began when 0.01 or 1.0 % of the population
was symptomatic. Usage was based on age and gender and followed the course of
the epidemic. Surgical masks were available to all age groups and N95 respirators
to adults only and all age groups. Since N95 respirators were not designed for use
by children, the adults only scenario is more realistic; however the all age groups
scenario allows us to understand the importance of children wearing masks and the
use of a more protective mask.

Scenarios with face mask usage starting when 1.0 % of the population was symp-
tomatic resulted in higher attack rates and clinical attack rates than that for 0.01 %
and will not be considered further here. Those starting at 0.01 % slowed the epidemic,
allowing less burden to the public health system.

Table 5 shows the overall clinical attack rates for the epidemic as well as just
for the mask users for all scenarios and epidemic strengths. Overall, only a small
improvement is seen over the base case. The maximum mask users for all scenarios is
45-50 % of the population. Considering only the mask users, the clinical attack rates
are much improved, with significant reductions for all three scenarios. The largest
improvement is seen for N95 respirator where use is not limited to adults. This shows
the importance of involving children in a face mask mitigation. Of the more realistic
scenarios, surgical mask and N95 respirator adults, surgical mask performs best
overall for all pandemic strengths, though worst when only considering mask users.

We compare the impact of combining face masks with hand sanitizers (M and HS)
or with social distancing (M and SD). As described in Sect. 2.3, M and HS are assumed
to reduce the transmission rate by 50 % and M and SD are assumed to reduced the
transmission rate by 30 %. Figure 3, part A and C shows the epidemic curves when M
and HS are implemented after 1.0 % of the population is symptomatic, and M and SD
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Fig. 3 Results of surgical masks and hand sanitizers (fop) and masks and social distancing (bot-
tom). a Epidemic curves for the base case, when the intervention is implemented after 1.0 % of
the population is symptomatic, and the population that adopts the behavior (M and HS users).
b Clinical attack rates (CAR) for the various pandemic levels and when masks and hand sanitizers
are implemented after 1.0 and 0.01 % of the population is symptomatic. ¢ Epidemic curves for the
base case, when the intervention is implemented after 0.01 % of the population is symptomatic, and
the population that adopts the behavior (M and SD users). d Clinical attack rates (CAR) for the
base case, and two mask and social distancing scenarios for the different pandemic levels

when 0.01 % of the population is symptomatic, respectively. In addition to showing
the overall dynamics of these two interventions, we show the epidemic curve for
individuals who adopted the specified behavior, but who still became infected. Note
that although the clinical attack rate was only reduced by 19 and 21 % for these
two scenarios, the clinical attack rate for M and HS users was only 3.6 or an 81 %
reduction. Similarly, the clinical attack rate for the M and SD users is 4.7 or a 76 %
reduction from the base case. Part B and D, shows the clinical attack rate for various
assumptions of the M and HS and M and SD scenarios and all the different pandemic
levels.

From the results, it is clear that the earlier the interventions are put in place, the
higher the impact they will have on reducing morbidity and mortality. Although
these non-pharmaceutical interventions may not be very effective when compared
to vaccines and antivirals, the overall impact for people that adopt these behaviors is
significantly lower than the epidemic curve for the entire population. Table 6 takes
the new clinical attack rate for the M and HS and M and SD intervention strategies
and computes their difference. Then, this difference is expressed in the table as
a percentage of the base case clinical attack rate for that epidemic strength. This



110 S. M. Mniszewski et al.

Table 6 Difference in clinical attack rate as a percent of base case clinical attack rate when com-

paring M and SD and M and HS intervention strategies
Ro 0.0l Mand HS (%) 1.00 M and HS (%) 1.00 M and HS (%) 0.01 M and HS (%)
0.01 Mand SD (%) 1.00 M and SD (%) 0.01 Mand SD (%) 1.00 M and SD (%)

1.10 3.60 1.00 3.00 0.40
1.38 0.51 4.10 2.60 6.12
1.66 3.00 2.00 1.70 6.70

is meant to demonstrate the difference in the clinical attack rate relative to each
intervention strategy on a scale that is proportional to the base case. If this percent
is small then one could reasonably conclude that there is not much difference in
the intervention strategies at that level. Overall, the scenarios with masks and hand
sanitizer had a difference of less than 10 % of the base case clinical attack rate in
all cases (see Table 7). The case of comparing M and HS implemented when 0.01 %
of the population is symptomatic and M and SD when 1.0 % of the population is
symptomatic is especially interesting at a low epidemic level, since the difference is
less than 5 % even though M and SD has only a 30 % effectiveness compared to M
and HS 50 % effectiveness. This motivates future studies into the difference in the
effectiveness of these two intervention strategies at various epidemic strengths.

To better understand the overall effectiveness of the different intervention strate-
gies we compare the effective reproduction number, Ry, for five different scenarios:

e Surgical mask only (Mask),

NO95 respirators only-adults (N95 Adult),

NO95 respirators only-all (N95 All),

Surgical masks and social distancing (Mask and Social Distancing), and
Surgical masks and hand sanitizer (Mask and Hand Sanitizer).

All scenarios assume that the intervention begins when 0.01 % of the population
is symptomatic, follows the course of the epidemic (ramping up to the peak and
then down), and lasts 4 weeks after the peak. The likelihood of use of a non-
pharmaceutical intervention, in each scenario, was dependent on age and gender
as discussed previously.

Table 7 Percent reduction in clinical attack rate from base case at different epidemic strengths for
M and HS or M and SD implemented at different epidemic levels

Ry M and HS M and SD

0.01 (%) 1.00 (%) 0.01 (%) 1.00 (%)
1.10 16.40 17.00 20.00 16.00
1.38 20.90 18.90 21.40 14.80
1.66 21.30 16.70 18.30 14.67

Note that at low epidemic levels, if implemented early, social distancing is competitive with hand
sanitizing as an intervention strategy
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Interventions starting at 0.01%, (RO =1.38)
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Fig.4 R.f over time as the epidemic progresses. For five different scenarios (shown starting from
day 40), the dynamic behavior of Regr is different. Intervention strategies cause the initial Refr to
be smaller than the base case, and then take longer to decrease below Refr = 1. (The N95 Adult
case has an initially higher Ref than the other scenarios, presumably since children did not have
intervention in this case.)

Figure4 shows the change in the effective reproduction number, R.fr, over the
course of the epidemic for the five scenarios described above during a medium (R
= 1.38) level outbreak. The basic reproduction number, Ry, is the average number
of cases generated by a typical infectious individual in a completely susceptible
population. Similarly, the effective reproduction number is the average number of
cases generated by an infectious individual in a population that is not completely
susceptible. The magnitude of the reproduction number determines whether or not
an epidemic occurs and what its severity will be. When Ry > 1, the number of
infections grow and an epidemic occurs, and when Ry < 1, the epidemic goes
extinct.

We notice (Fig. 4) that for the different intervention strategies, the maximum Reff
is reduced. The exception is for the N95 scenario, N95 Adult, when children do not
wear masks. In this case, Rqfr shows a dramatic decrease but starts out high; this
exception is not present if children wear the respirators as in N95 All.
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4 Discussion

Non-pharmaceutical interventions such as face masks can play an important role in
controlling the spread of airborne viruses. Based on historical observations, it is clear
that some people wear face masks to protect themselves from infection. However, due
to their limited effectiveness (known from filtration performance tests) the impact of
face masks at the population level has not been well studied.

We used an agent-based simulation model to examine the effect that face masks
alone, and in combination with other non-pharmaceutical interventions, has on reduc-
ing the spread of influenza. We analyzed the sensitivity with respect to various para-
meters including pandemic level, type of face mask, timing of intervention(s), and
type of intervention.

Our results show that, in general, face masks have an impact on reducing the
overall incidence and extending the length of the epidemic. Masks alone reduce
the clinical attack rate, on average, by over 10 % for the entire population and 50 %
for the population that wears face masks. Not surprisingly, our results show that
face masks are more effective when coupled with other interventions. Although we
expected that masks and hand sanitizers would have the largest return (given that
we assume to be 50 % effective), social distancing performed almost as well as the
hand sanitizer (even though we assume it was only 30 % effective). These observa-
tions imply that any mitigation that aims at reducing the probability of transmission,
regardless of effectiveness, can contribute in reducing the overall impact of disease.
Furthermore, the results are consistent with other studies concluding that the earlier
interventions are put in place, the higher the impact they have on reducing morbidity
and mortality.

We compare the effective reproduction numbers for various scenarios and show
that intervention strategies cause the initial Reff to be smaller than the base case
and take longer to decrease below R.f = 1. We also noted that the N95 case had
an initially higher Refr than the other scenarios due to the assumption that children
would not wear N95 respirators.

For any intervention, it is important to measure the rate at which the intervention
is actually happening. Non-pharmaceutical interventions such as face mask wearing
presents special problems in this regard, because the decision to comply or not
comply is an individual one which takes place away from observation by health
providers. The intuition in exploring social internet systems such as Twitter to make
these measurements is that the very high volume of observations, perceptions, and
desires can, in aggregate, provide a sufficiently accurate measurement of compliance
in real-world settings. Our preliminary results in analyzing Twitter are consistent
with this intuition: we measured the use of face masks with a simple keyword-based
approach, and both mentions of and observations of wearing face masks correlate
strongly with CDC influenza incidence data. We expect future efforts to deepen this
capability, providing results segmented by locale or demographics.

We conclude that for mathematical models of infectious diseases to be useful in
guiding public health policy, they need to consider the impact of non-pharmaceutical
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interventions. Face masks can be a cost-effective intervention when compared to
closures; therefore, public health campaigns should focus on increasing compliance.
Additionally, measuring the effect of these campaigns should include analysis of
social internet systems and other emerging data sources. The results presented here
are useful in providing estimates of the effects of non-pharmaceutical interventions
on the spread of influenza.

Acknowledgments We would like to acknowledge the Institutional Computing Program at Los
Alamos National Laboratory for use of their HPC cluster resources.We thank Aron Culotta for his
assistance with the Twitter data analysis. We also thank Geoffrey Fairchild for providing some useful
articles.This research has been supported at Los Alamos National Laboratory under the Department
of Energy contract DE-AC52-06NA25396 and a grant from NIH/NIGMS in the Models of Infectious
Disease Agent Study (MIDAS) program (U01-GM097658-01).

References

1. Aiello, A.E., Perez, V., Coulborn, R.M., et al.: Facemasks, hand hygiene, and influenza among
young adults: a randomized intervention trial. PLoS One 7(1), €29744 (2012)

2. Balazy, A., Toivola, M., Adhikari, A. et al.: Do N95 respirators provide 95% protection level
against airborne virus, and how adequate are surgical masks? Am. J. Infect. Control 34(2),
51-57 (2006)

3. Barr, M., Raphael, B., Taylor, M. et al.: Pandemic influenza in Australia: using telephone
surveys to measure perceptions of threat and willingness to comply. BMC Infect. Dis. 8, 117
(2008)

4. Billings, M.: The influenza pandemic of 1918: the public health response. http://virus.stanford.
edu/uda/fluresponse.html (2005). Accessed 26 April 2012

5. Bish, A., Michie, S.: Demographic and attitudinal determinants of protective behaviours during
a pandemic: a review. Br. J. Health Psych. 15, 797-824 (2010)

6. Bronze, M.S.: HIN1 influenza (swine flu). Medscape reference. http://emedicine.medscape.
com/article/1807048-overview (2012). Accessed 27 April 2012

7. Brookes, T., Khan, O.A.: Behind the mask: how the world survived SARS, the first epidemic
of the twenty-first century. American Public Health Association, Washington, DC (2005)

8. Brosseau, L., Ann, R.B.: N95 respirators and surgical masks. http://blogs.cdc.gov/niosh-
science-blog/2009/10/n95/ (2012). Accessed 11 May 2012

9. Centers for Disease Control and Prevention: Laboratory performance evaluation of N95 filtering
respirators, 1996. http://www.cdc.gov/mmwr/preview/mmwrhtml/00055954.htm#00003611.
htm (1998). Accessed 26 April 2012

10. Centers for Disease Control and Prevention: CDC estimates of 2009 HINT1 influenza cases,
hospitalizations and deaths in the United States, April 2009-January 16, 2010. http://www.
cdc.gov/hlnlflu/estimates/April_January_16.htm (2010). Accessed 27 April 2012

11. Centers for Disease Control and Prevention: United States surveillance data: 1997-1998
through 2009-2010 seasons http://www.cdc.gov/flu/weekly/ussurvdata.htm (2010). Accessed
18 June 2012

12. Condon, B.J., Sinha, T.: Who is that masked person: the use of face masks on Mexico City
public transportation during the influenza a (HIN1) outbreak. Health Policy (2009)

13. Del Valle, S.Y., Tellier, R., Settles, G.S., et al.: Can we reduce the spread of influenza in schools
with face masks? Am. J. Infect. Control 2010, 1-2 (2010)

14. Dimitrov, N.B., Goll, S., Hupert, N., et al.: Optimizing tactics for the use of the U. S. antiviral
strategic national stockpile for pandemic influenza. PLoS One 6(1), e16094 (2011)


http://virus.stanford.edu/uda/fluresponse.html
http://virus.stanford.edu/uda/fluresponse.html
http://emedicine.medscape.com/article/1807048-overview
http://emedicine.medscape.com/article/1807048-overview
http://blogs.cdc.gov/niosh-science-blog/2009/10/n95/
http://blogs.cdc.gov/niosh-science-blog/2009/10/n95/
http://www.cdc.gov/mmwr/preview/mmwrhtml/00055954.htm#00003611.htm
http://www.cdc.gov/mmwr/preview/mmwrhtml/00055954.htm#00003611.htm
http://www.cdc.gov/h1n1flu/estimates/April_January_16.htm
http://www.cdc.gov/h1n1flu/estimates/April_January_16.htm
http://www.cdc.gov/flu/weekly/ussurvdata.htm

114

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

S. M. Mniszewski et al.

Gani, R., Highes, H., Fleming, D. et al.: Potential impact of antiviral drug use during influenza
pandemic. Emerg. Infect. Dis. 11(9) (2005)

Greene, V.W., Vesley, D.: Method for evaluating effectiveness of surgical masks. J. Bacteriol.
83, 663-667 (1962)

Hamamura, T., Park, J.H.: Regional differences in pathogen prevalence and defensive reactions
to the "Swine Flu" outbreak among East Asians and Westerners. Evol. Psychol. 8(3), 506-515
(2010)

Hilleman, M.R.: Realities and enigmas of human viral influenza pathogenesis, epidemiology
and control. Vaccine 20(25-26), 3068-3087 (2002)

. Holdren, J.P, Lander, E., Varmus, H.: Report to the president on U. S. preparations for 2009—

HINI1 influenza. http://www.whitehouse.gov/assets/documents/PCAST_HIN1_Report.pdf
(2009). Accessed 27 April 2012

Johnson, D.F,, Druce, J.D., Grayson, M.L.: A quantitative assessment of the efficacy of surgical
and N95 masks to filter influenza virus in patients with acute influenza infection. Clin. Infect.
Dis. 2009(49), 275-277 (2009)

Lee, S.A., Grinshpun, S.A., Reponen, T.: Efficiency of N95 filtering facepiece respirators and
surgical masks against airborne particles of viral size range: tests with human subjects. AIHAce
2005 (2005)

Lee, S.A., Grinshpun, S.A., Reponen, T.: Respiratory performance offered by N95 respirators
and surgical masks: human subject evaluation with NaCl aerosol representing bacterial and
viral particle size range. Ann. Occup. Hyg. 52(3), 177-185 (2008)

Lim, E.C,, Seet, R.C., Lee, K.H., Wilder-Smith, E.P., Chuah, B.Y., Ong, B.K.: Headaches and
the N95 face-mask amongst healthcare providers. Acta. Neurol. Scand. 2006(113), 199-202
(2006)

Loeb, M., Dafoe, N., Mahony, J. et al.: Surgical mask vs N95 respirator for preventing influenza
among health care workers. JAMA 302(17), 1865-1871 (2009)

Longini, .M., Halloran, M.E., Nizam, A., Yang, Y.: Containing pandemic influenza with antivi-
ral agents. Am. J. Epidemiol. 2004(159), 623-633 (2004)

Michaels, J.: Commercial buildings energy consumption survey. http://www.eia.doe.gov/emeu/
cbecs/cbecs2003/detailed_tables_2003/detailed_tables_2003.html (2003). Accessed 12 June
2012

Mniszewski, S.M., Del Valle, S.Y., Stroud, P.D., et al.: Pandemic simulation of antivirals +
school closures: buying time until strain-specific vaccine is available. Comput. Math. Organ.
Theor. 2008(14), 209-221 (2008)

Mniszewski, S.M., Del Valle, S.Y., Stroud, P.D., et al.: EpiSimS simulation of a multi-
component strategy for pandemic influenza. In: Proceedings of SpringSim, 2008

National Archives and Records Administration: The deadly virus: the influenza epidemic of
1918. http://www.archives.gov/exhibits/influenza-epidemic/index.html (2012). Accessed 26
April 2012

New York Times Health: Worry? Relax? Buy face mask? Answers on flu (2009). http:/www.
nytimes.com/2009/05/05/health/05well.html (2009). Accessed 26 April 2012

Oberg, T., Brosseau, L.M.: Surgical mask filter and fit performance. AJIC 36(4), 276282
(2008)

Osterholm, M. T.: Preparing for the next pandemic. N. Engl. J. Med. 352(18), 1839-1842 (2005)
Pang, X.,Zhu,Z., Xu, F., Guo,J., Gong, X., Liu, D., Liu, Z., Chin, D.P., Feikin, D.R.: Evaluation
of control measures implemented in the severe acute respiratory syndrome outbreak in Beijing.
J. Amer. Math. Assoc. 2003;290:3215 (2003).

Schoenbaum, S.C.: The impact of Pandemic Influenza, with Special Reference to 1918. Inter-
national Congress Series 2001(1219), 43-51 (2001)

Signorini, A., Polgreen, P.M., Segre, A.M.: The Use of twitter to track levels of disease activity
and public concern in the U.S. during the influenza A HIN1 Pandemic. PLoS ONE 6(5), e19467
(2011)

Stroud, P.D., Del Valle. S.Y., Mniszewski, S.M. et al.: EpiSimS pandemic influenza sensitivity
analysis, part of the national infrastructure impacts of pandemic influenza phase 2 report. Los
Alamos National Laboratory Unlimited Release LA-UR-07-1989 (2007)


http://www.whitehouse.gov/assets/documents/PCAST_H1N1_Report.pdf
http://www.eia.doe.gov/emeu/cbecs/cbecs2003/detailed_tables_2003/detailed_tables_2003.html
http://www.eia.doe.gov/emeu/cbecs/cbecs2003/detailed_tables_2003/detailed_tables_2003.html
http://www.archives.gov/exhibits/influenza-epidemic/index.html
http://www.nytimes.com/2009/05/05/health/05well.html
http://www.nytimes.com/2009/05/05/health/05well.html

8 Understanding the Impact of Face Mask Usage Through Epidemic Simulation 115

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Stroud, P., Del Valle, S., Sydoriak, S. etal.: Spatial dynamics of pandemic influenza in a massive
artificial society. JASSS 10:;4 9 http://jasss.soc.surrey.ac.uk/10/4/9.html (2007). Accessed 27
April 2012

Syed, Q., Sopwith, W., Regan, M., Bellis, M.A.: Behind the mask. Journey through an epidemic:
some observations of contrasting public health response to SARS. J. Epidemiol. Community
Health 2003(57), 855-856 (2003)

U.S. Bureau of the Census: Historical U.S. population growth by year 1900-1998. Current
population reports, Series P-25, Nos. 311, 917, 1095 http://www.npg.org/facts/us_historical _
pops.htm (1999). Accessed 27 April 2012

U.S. Food and Drug Administration: Masks and NO5 respirators. http://www.fda.gov/
MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/
PersonalProtectiveEquipment/ucm055977.html (2010). Accessed 11 May 2012

U.S. News Staff: U.S. population, 2009: 305 million and counting. http://www.usnews.
com/opinion/articles/2008/12/31/us-population-2009-305-million-and-counting (2012).
Accessed 27 April 2012

U.S. Department of Health and Human Services: The great pandemic: the United States in
1918-1919. http://www.flu.gov/pandemic/history/1918/the_pandemic/index.html. Accessed
27 April 2012

U.S. Department of Homeland Security: Flu pandemic morbidity/mortality. http://www.
globalsecurity.org/security/ops/hsc-scen-3_flu-pandemic-deaths.htm (2011). Accessed 27
April 2012

U.S. Department of Transportation (DOT): Bureau of transportation statistics NHTS 2001
highlights report BTS03-05. (2003)

Yee, D., Bradford, J.: Employment density study. Canadian METRO Council Technical Report
(1999)

Van Den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission. Math. Biosci. 180, 29-48 (2002)


http://jasss.soc.surrey.ac.uk/10/4/9.html
http://www.npg.org/facts/us_historical_pops.htm
http://www.npg.org/facts/us_historical_pops.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/PersonalProtectiveEquipment/ucm055977.html
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/PersonalProtectiveEquipment/ucm055977.html
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/PersonalProtectiveEquipment/ucm055977.html
http://www.usnews.com/opinion/articles/2008/12/31/us-population-2009-305-million-and-counting
http://www.usnews.com/opinion/articles/2008/12/31/us-population-2009-305-million-and-counting
http://www.flu.gov/pandemic/history/1918/the_pandemic/index.html
http://www.globalsecurity.org/security/ops/hsc-scen-3_flu-pandemic-deaths.htm
http://www.globalsecurity.org/security/ops/hsc-scen-3_flu-pandemic-deaths.htm

	8 Understanding the Impact of Face Mask  Usage Through Epidemic Simulation of Large  Social Networks
	1 Introduction
	2 Methods
	2.1 Agent-Based Model Description
	2.2 Disease Progression Model
	2.3 Behavior Model
	2.4 The Reproduction Number

	3 Results
	3.1 Base Case Scenario
	3.2 Using Twitter to Quantify Face Mask Usage
	3.3 Comparison of Intervention Strategies

	4 Discussion
	References


