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Abstract. Gait cycle phase detection provides useful information to diagnose 
possible problems on walking. The work reported here proposes the analysis of 
gait kinematic signals, extracted from videos, through fuzzy logic to automati-
cally determine the different phases in the human gait cycle. The function of the 
fuzzy system is to detect the gait phases, loading response, mid-stance, terminal 
stance, pre-swing, initial swing, mid-swing, and terminal swing, using 2D  
information from a sagittal plane. The system was tested with normal and  
non-normal gait cycles. Experimental findings proved that the fuzzy detection 
system is able to correctly locate the phases using only 2D information. The 
maximum phase timing shift error generated was 2%.  Thus, it may be con-
cluded that the proposed system can be used to analyses gait kinematic and 
detect gait phases in normal cycle and absences of them in non-normal cycles. 
This information can be considered for gait anomaly detection and therapeutic 
purposes. 
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1 Introduction 

Nowadays, it is well known that vision systems have increased their contribution in 
areas related to human motion analysis. One of these areas is human gait analysis 
which is related to the style or characteristics involved in a person’s walking [1]. Gait 
analysis has proved to be relevant to several fields, including biomechanics, robotics, 
sport analysis, rehabilitation engineering, etc. [2-5]. In the medical field gait analysis 
has been oriented to medical diagnosis where different types of application have been 
developed [6]. A specific area in medical application is human movement analysis, 
where systems are designed to perceive and analyze human movement of upper and 
lower limbs for the purpose of providing diagnosis and/or therapy [7]. Gait analysis is 
a paramount aid for therapist because they can analyze different gait pathologies and 
thus determine appropriate therapies for their patients [8]. These pathologies may be a 
consequence of spinal cord lesion, stroke, multiple sclerosis, rheumatoid arthritis etc. 

Currently, there exist different systems, with advantages and disadvantages, which 
perform gait dynamic or kinematic quantifications. Dynamic evaluations are achieved 
through accelerometers, force platforms, etc. The kinematic quantification is done by 
electrogoniometers and 2D and 3D vision systems [9],[10]. However, not many are 
related to detect gait phase detection oriented to medical diagnosis. The aim of this 
paper is to present the development of a fuzzy system to automatically detect gait 
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phases based on the analysis of information provided by a non-invasive vision system 
[11]. There are some works related to this kind of systems like the one reported in [12] 
which uses signal from the sagittal plane like, hip, knee and ankle. Another work [13] 
rely on 3D information. In our work it is proved that a 2D system can be used instead a 
3D, and that the input variables generated with the 2D system are suitable for gait 
phase detection. The information used in the proposed system corresponds to the ki-
nematic of the sagittal plane of the knee, hip, and variables time and stage. 

The organization of the paper is structured as follows. Section 2 provides the defi-
nition of gait cycle and its phases. The development of the proposed system is ex-
plained in Section 3. Experimental tests of the system are presented in Section 4 and 
the results and conclusions are commented in section 5. 

2 Gait Cycle Definition 

Human walking is a locomotion method which involves the use of lower limbs allow-
ing the displacement of the body under a stable state. In this process, one lower limb 
serves as the support, meanwhile the other one provides propulsion. The cycle of a 
human gait is divided in two main periods; the stance which takes approximately 60% 
of the cycle and the swing that covers the remaining time. In turn, the stance period is 
divided into the phases: Loading response, LR, mid-stance, MSs, terminal stance, TSs, 
and pre-swing, PSw. The swing period is composed of: Initial swing, IS, mid-swing, 
MSw, and terminal swing, TSw. Table 1 shows the different gait phases and their  
corresponding timing and cycle percentages [1]. 

Table 1. Normal gait phase timing 

Phase number Phase Percentage of phase occurrence in full cycle 
1 Loading response 0-10% 
2 Mid-stance 10-30% 
3 Terminal stance 30-50% 
4 Pre-swing 50-60% 
5 Initial swing 60-73% 
6 Mid-swing 73-87% 
7 Terminal swing 87-100% 

3 Fuzzy System Scheme for Gait Phase Detection 

The inputs to the system correspond to sagittal information related to knee, hip, time 
and an extra input called stage. The variable time is related to the gait cycle percen-
tage. The information of these variables is acquired by an image processing method 
described in [14] which is a method to obtain this information without using artificial 
marks. The system can be formalized as follows. Given kinematic signals of the knee 
and hip, xk(n), xh(n), derive two time variables xT(n) and xS(n) to design the mapping  

                                :{ ( ), ( ), ( ), ( )}k h T SF x n x n x n x n P
                                               

(1)
       

 

where xk(n), xh(n), xT(n), xs(n) and P will be fuzzified and will have the next fuzzy 
values 
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                                  xk(n) = { xkLow , xkHigh }                                                            (2)
       

 

                                  xh(n) = { xhLow, xhMedium, xhHigh }                                              (3) 

                                 xT(n) = { xTLow, xTMedium, xTHigh}                                               (4) 

                                  xS(n) = { xSLR, xSMS, xSSS}                                                        (5) 

                           P = {PLR, PMSS, PTSS, PSw,PISw,PMSw,PTSw }                                    (6) 

The mapping F is accomplished by a Mamdani type fuzzy system through the impli-
cation relation  

                                { }( )( ), ( ), ( ), ( ) ,k h T SR x n x n x n x n P                                           (7) 

3.1 Input and Output Variables and Their Fuzzy Definition 

The knee information is obtained from an average knee kinematic signal shown in 
Figure 1a. Its membership functions represents the different intervals in the y axis. 
The trajectory can be divided into two intervals; low xk Low, and high xkHigh. Figure 1b 
corresponds to an average hip movement and it can be divided in three intervals, xh 
Low, xh Medium, xh High. The intervals for the input variable time are also low, medium and 
high as shown in Figure 2. The membership functions for the input variable stage are 
not determined based on intervals because it is used to distinguish the phases loading 
response and initial swing and between mid-stance and terminal swing. They are  
defined based on phase occurrence during the gait cycle. 
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Fig. 1. a) Grade movement intervals of an average knee signal. b) Grade movement intervals of 
an average hip signal.  

It is noteworthy that the inputs to the fuzzy systems need to be normalized, where 
zero correspond to the minimum value and 1 to the maximum. The membership func-
tions, MFs, of the input variables are shown in Figure 3. The function parameters, 
mean μ and variance σ   are as follow. For the hip input the gaussians are GLow(0, 
0.175), GMedium(0.5, 0.175), GHigh(1, 0.175). For the knee the MFs are similar except 
the value medium is not used. The gaussian parameters for the input time are  
GLow(0, 0.256), GMedium(0.5, 0.175) and GHigh(1, 0.175). As commented before the  
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Fig. 2. Time intervals of an average knee signal  

input stage is incorporated to the system in order to distinguish between the phases 
loading response and initial swing and between mid-stance and terminal stance. This 
is because some inference rules are fired for similar conditions. Thereby, the variable 
stage allows the differentiation among those fired rules so the correct output is ob-
tained from the system. The stage variable is in fact other time variable with three 
possible fuzzy values loading response,x LR, mid-stance xMSs, and swing – stance SS. 
The function xSLR is used to differentiate between loading response and mid-swing and 
it is represented through a Z function with parameters ZLR(0.1, 0.11). The function 
xSMS ,GMS(0.208, 0.05) has the purpose to distinguish between mid-stance and terminal 
stance. Finally the function xSSS, represented by a S function S(0.405, 0.632), is used 
to resolve between the swing and stance phases. 

The gait phases, defined in Section 2, correspond to the values of the output varia-
ble Phase of the system. These values are represented by triangular membership func-
tions with the following parameters and illustrated in Figure 4. PLR(0,1,2), PMSs(1,2,3), 
PTSs(,2,3,4), PPSw(3,4,5), PIS(4,5,6), PMSw(5,6,7), PTSw(6,7,8). 

3.2 Fuzzy System Rules for Phase Detection 

The fuzzy system designed is a Mamdani system defined by rules  

                      1 1:     ,...,     y   i i ni in iR if x is A x is A THEN is BAND  

The defuzzification scheme used was the mean of maximum. The rules are deter-
mined by an intuitive reasoning. That is, the output is just the consequence of a spe-
cific condition of the lower body section. For example, Rule1 corresponds to the phase 
loading response, LR, and it is derived by knowing that in a normal gait cycle the 
position of the hip is approximately 20 degrees. If we locate this value for the average 
hip movement, Figure 1b, we found that correspond to a value of High. In the case of 
the knee during the same phase, it has a low value for the intervals defined in  
Figure 1a.  
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Fig. 3. Membership function definition for input variables.  a) Knee, b) Hip, c) Time, d) Stage. 
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Fig. 4. Output membership function definition 

The value of variable stage is located in the interval LR, meanwhile the variable 
time is located in the interval low. Inference using this information yields the system 
output loading response, PLR. The same methodology was used to determine the other 
rules expressed next. 

R1. If Hip is xhHigh AND Knee is xkLow AND Stage is xSLR AND Time is xTLow Then Phase is PLR  

R2. If Hip is Not xhHigh AND Knee is xkLow AND Stage is xSMS AND Time is xTLow Then Phase is PMSS  

R3. If Hip is xhMedium AND Knee is xkLow AND Stage is xSMS AND Time is xTLow Then Phase is PMSS  

R4. If Hip is xhLow AND Knee is xkLow  AND Time is xTMedium Then Phase is PTSS 

R5. If Hip is xhLow AND Knee is Not xkLow AND Stage is xSSS  AND Time is xTMedium Then Phase 

is PSw 

R6. If Hip is xhMedium AND Knee is Not xkLow AND Stage is xSSS AND Time is xTMedium Then 

Phase is PISw 

R7. If Hip is xhHigh AND Knee is xkHigh AND Stage is xSSS AND Time is xTHigh Then Phase is PMSw 

R8. If Hip is xhHigh AND Knee is xkLow AND Stage is xSSS AND Time is xTHigh Then Phase is PTSw 

a) b) 

c) d) 
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4 Experimental Results 

4.1 Experimental Data 

The system was tested with two set of data representing two cases: normal gait and 
non-normal gait. The normal data is to verify that the system is able to detect the gait 
phases and the non-normal data to prove that the system does not detected the phases 
because they do not exist in these cases or they are misplaced. The different kinematic 
cases analyzed with the fuzzy system are as follows. Case 1 represents the kinematic 
of a patient with amputation below the knee. An average gait cycle is included in the 
cases 2, 4, 7, and 8. Case 7 includes average values in the upper bound and case 8 in 
the lower case. Case 3 is a person that presents spinal cord injury. Cases 5 and 6 cor-
respond to patients with cerebral palsy.  

Findings of the experiments using the previous cases indicate that the system was 
able to correctly detect the gait phases in the normal cases, meanwhile the system did 
not report some of the phases in the non-normal cases. Specific detail of each experi-
ment is provided next. 

Case1. In the case of the patient with amputation the kinematic tends to present a 
signal similar to a normal gait cycle, however the kinematic values are not always in 
the range of normal average values, as shown in Figure 5a. This observation can be 
visualized in Figure 5b, which presents the information of the occurrence of the gait 
phases. In a normal gait cycle the two traces must completely overlap.  It can be no-
ticed that the system detects phase 5, initial swing in the 84% of the gait cycle, when 
in this percentage the phase mid-swing should be detected. During the other gait cycle 
percentage the systems detects a normal behavior with respect phase occurrence and a 
small difference on the detection of phases 3, 4 and 7.  

Case 2. First normal gait cycle. The signals corresponding to the knee and hip of this 
normal case are shown in Figure 6a. The result of the fuzzy system is illustrated in 
Figure 6b. The loading response phase is correctly detected in the percentage 0% to 
10%, as well as the mid-stance, 11% to 30%. The terminal stance is located in the 
interval 31% to 49% and the pre-swing in the 50% to 59%, which indicates a normal 
behavior because the average occurrence of this phase is between 50% - 62%. The 
initial swing is found in the range 63%-74%, the mid-swing at 75% to 87% and the 
terminal swing at 88% - 100%. Comparing these results with the data in Table 1, 
normal timing, it can be observed that the system reports very alike timing with just a 
few but not significant differences. 

Case 3. Spinal injury case. The results of this case are presented in Figure 7a and 7b. 
It can be noticed from these figures that the system detected an anomalous behavior 
because the phase occurrence differences are large, in some occasions up to 6 percen-
tage grades. Besides, an initial swing is detected in the terminal swing phase. Changes 
as the previously mentioned indicate a non-normal gait cycle.  
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Fig. 5.  Case 1 patient with leg amputation. a) Knee and hip kinematic. b) Phase detection, 
normal vs. system timing. 
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Fig. 6.  Case 2 normal gait 1. a) Knee and hip kinematic. b) Phase detection, normal vs. system 
timing. 
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Fig. 7. Case 3 spinal injury. a) Knee and hip kinematic. b) Phase detection, normal vs. system 
timing. 
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Case 4. Second normal gait cycle. This case and the cases 7 and 8 are incorporated 
into the experiments to warranty the robustness of the system to adequately detect 
normal gait cycle with normal variations. This case is not illustrated due to space 
constraints. The first three cycle phases, loading response, mid-stance and terminal 
stance are detected on time with the average gait cycle phases. Pre-swing, the four 
phase, is detected at 51% - 62%, the initial swing at 63%- 74%, mid-swing in the 
interval 75% - 87% and finally the terminal swing in 88% to 100%. The fuzzy system 
results present very similar time phase detection as for a normal gait cycle, being 2% 
the maximum difference. 

Case 5. Cerebral palsy 1, see Figure 8. The phase detection timing generated by the 
system presents very high deviation as well as an inadequate sequence from the nor-
mal cycle. For example, the loading response phase is detected only during the 0% to 
2% interval, when it must be identified from 0% to 10%. Other observation is with 
regard the terminal stance phase, where an initial swing is reported. 
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Fig. 8. Case 5 cerebral palsy 1. a) Knee and hip kinematic. b) Phase detection, normal vs.  
system timing. 

Case 6. Cerebral palsy 2. The kinematic and phase detection results are reported in 
Figure 9. As in the first cerebral palsy case, it can be observed how phase occurrence 
does not follow the normal timing. The loading response phase, as in the previous 
case is only detected during the 0% to 2%, besides and erroneous detection of a pre-
swing phase during mid-stance.  

Case 7. Normal gait cycle upper bound. This case corresponds to high average normal 
kinematic values. The kinematic is illustrated in Figure 10a and the phase detection 
results in Figure 10b. Results show that the first 3 phases are correctly detected fol-
lowing a normal phase timing. The fourth phase, pre-swing, was detected in 50% - 
62% which is considered correct. The initial swing is found in the 63% to 74%, mid-
swing at 75% - 87% and the terminal swing at 88% - 100%, thus having a maximum 
deviation of 1% with respect the correct timing. 

Case 8. Normal gait cycle lower bound. This case covers the lower kinematic val-
ues for a normal gait cycle. This case is not illustrated due to space constraints. The 
phase loading response, mid-stance and terminal stance are detected at the correct 
timing. The other phases, pre-swing, initial swing, mid-swing and terminal swing  

a) b) 
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Fig. 9.  Case 6 Cerebral palsy 2. a) Knee and hip kinematic. b) Phase detection, normal vs. 
system timing. 
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Fig. 10. Case 7 normal case upper bound. a) Knee and hip kinematic. b) Phase detection, nor-
mal vs. system timing. 

were located at 51% - 62%, 63% - 74% , 75% - 86% and  87% - 100% respectively. 
Only the phases pre-swing and initial swing present a small time shift. The maximum 
phase shift was 2%. 

5 Results and Conclusions 

The reported work proved that a fuzzy gait phase detection system is able to correctly 
detect the phases using only 2D information. The system was tested with non-normal 
as well as variation of normal gait cycle cases, in both circumstances the system 
showed acceptable results on the detection of the gait cycle phases for the normal 
cases. The maximum timing phase shift error generated was 2% for normal cases.  In 
the non-normal cases the system reported misplaced phases as expected as a result of 
inadequate knee and hip kinematic due to the physical problems of the patients. Thus, 
it may be concluded that the proposed fuzzy system can be used to analyses gait ki-
nematic by detecting gait phases in normal cycle and absences of them in non-normal 

a) b) 

a) b) 
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cycles. This information may be considered for gait anomalies detections as well as 
therapeutic purposes. 
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