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Abstract. Hyper-heuristics are methodologies that choose from a set
of heuristics and decide which one to apply given some properties of the
current instance. When solving a constraint satisfaction problem, the or-
der in which the variables are selected to be instantiated has implications
in the complexity of the search. In this paper we propose a logistic regres-
sion model to generate hyper-heuristics for variable ordering within con-
straint satisfaction problems. The first step in our approach requires to
generate a training set that maps any given instance, expressed in terms
of some of their features, to one suitable variable ordering heuristic. This
set is used later to train the system and generate a hyper-heuristic that
decides which heuristic to apply given the current features of the ins-
tances at hand at different steps of the search. The results suggest that
hyper-heuristics generated through this methodology allow us to exploit
the strengths of the heuristics to minimize the cost of the search.

Keywords: Constraint Satisfaction, Hyper-heuristics, Logistic
Regression.

1 Introduction

A constraint satisfaction problem (CSP) is defined by a set of variables X , where
each variable is associated a domain D of values subject to a set of constraints
C [17]. The goal is to find a consistent assignment of values to variables in such
a way that all constraints are satisfied, or to show that a consistent assignment
does not exist. There is a wide range of theoretical and practical applications
like scheduling, timetabling, cutting stock, planning, machine vision, temporal
reasoning, among others (see for example [9] and [17].

Several deterministic methods to solve CSPs exist(see for example [14], and
solutions are found by searching systematically through the possible assignments
to variables, guided by heuristics. It is a common practice to use depth first
search (DFS) to solve CSPs [24]. When using DFS to solve CSPs, every variable
represents a node in the tree and the deeper we go in that tree, the larger the
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number of variables that have already been assigned a feasible value. Every time
a variable is instantiated, a consistency check occurs to verify that the current
assignment does not conflict with any of the previous assignments given the
constraints in the instance. When an assignment produces a conflict with one
or more constraints, the instantiation must be undone, and a new value must
be assigned to that variable. When the feasible values decrease to zero, the
value of a previously instantiated variable must be changed, this is known as
backtracking [2]. Backtracking always goes up one single level in the search tree
when a backward move is needed. Backjumping is another powerful technique for
retracting and modifying the value of a previously instantiated variable and goes
up more levels than backtracking in the search tree [11]. Another way to reduce
the search space is using constraint propagation, where the idea is to propagate
the effect of one instantiation to the rest of the variables due to the constraints
among the variables [10]. Thus, every time a variable is instantiated, the values
of the other variables that are not allowed due to the current instantiation are
removed.

Logistic regression is a type of regression analysis used for classification pro-
blems. The idea is to map from a set of input variables to one output variable
that represents a class. Logistic regression is one type of supervised machine
learning because training examples where the expected output corresponding
to the given input must be provided. The general idea of this investigation is
to combine the strengths of some existing heuristics through a logistic regres-
sion approach to generate a method that chooses among heuristics based on
the features of the current instance. Hyper-heuristics are methods that choose
from a set of heuristics and decide which one to apply given some properties of
the instances. Because of this, they seem to be a suitable technique to imple-
ment our idea. Different approaches have been used to generate hyper-heuristics
(see for example: [1], [5] and [21]) and they have achieved promising results on
many optimization problems such as scheduling, transportation, packing and
allocation.

This paper is organized as follows. Section 2 presents a brief description of
previous studies related to this research. Section 3 describes the methodology
used in our solution model which includes the features used to characterize the
CSP instances, the set of heuristics used and the hyper-heuristic model. The
experiments and main results are discussed in Sec. 4. Finally, Sec. 5 presents the
conclusion and future work.

2 Background and Related Work

The idea of combining heuristics goes back to 1960s [8] and has been used in
many investigations under different names [26,28,7]. Hyper-heuristics are one
alternative to combine the strengths of heuristics based on the current problem
features. Hyper-heuristics can be divided into two main classes: those which
select from existing heuristics and those that generate new heuristics [21]. A more
detailed description about the classification of hyper-heuristics can be found
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in [6]. In this investigation we will focus our attention on hyper-heuristics that
select from existing heuristics.

The first attempts to systematically map CSPs to algorithms and heuristics
according to the features of the instances were presented in [29]. In their work,
the authors presented a survey of algorithms and heuristics for solving CSPs and
proposed a relation between the formulation of the CSP and the most adequate
solving method for that formulation. More recently, Ortiz-Bayliss et al. [19]
developed a study about heuristics for variable ordering within CSPs and a
way to exploit their different behaviours to construct hyper-heuristics by using
a static decision matrix to select the heuristic to apply given the current state of
the problem. More studies about hyper-heuristics applied to CSPs include the
work done by Terashima-Maŕın et al. [27], who proposed a genetic algorithm
framework to produce hyper-heuristics for variable ordering; Bittle and Fox [3]
who presented a hyper-heuristic approach for variable and value ordering based
on a symbolic cognitive architecture augmented with case based reasoning as the
machine learning mechanism for their hyper-heuristics; and recent works where
neural networks are used as hyper-heuristics for variable ordering [18,20]. The
differences between all these works on hyper-heuristics for CSPs lies in the set of
heuristics used and the learning mechanism used to produce the hyper-heuristics.

3 Solution Model

In this section we discuss the problem state representation, the set of heuristics
and the hyper-heuristic model used in this investigation.

3.1 Problem State Representation

For this research we have included only binary CSPs. A binary CSP contains
unitary and binary constraints only. Rossi et al. [23] proved that for every general
CSP there is an equivalent binary CSP. Thus, all general CSPs can be reduced
into a binary CSP. To represent the problem state we propose the use of three
important binary CSPs properties known as constraint density (p1), constraint
tightness (p2) and κ [12]. The constraint density is a measure of the proportion
of constraints within the instance; the closer the value of p1 to 1, the larger the
number of constraints in the instance. The constraint tightness (p2) represents
a proportion of the conflicts within the constraints. A conflict is a pair of values
〈x, y〉 that is not allowed for two variables at the same time. The higher the
number of conflicts, the more unlikely an instance has a solution. The value of κ is
suggested in the literature as a general measure of how restricted a combinatorial
problem is. If κ is small, the instances usually have many solutions with respect
to their size. When κ is large, instead, the instances often have few solutions or

do not have any at all [12]. κ is defined as κ =
−∑

c∈C log2(1−pc)∑
x∈X log2(mx)

, where pc is

the fraction of unfeasible tuples on constraint c and mx is the domain size of
variable x. It has been found that the most difficult instances with respect to
their size occur when κ ≈ 1 [12].
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Every time a variable is assigned a new value and the infeasible values are
removed from domains of the remaining uninstantiated variables, the values of
p1, p2 and κ change, and a sub-problem with new features appears. This is the
reason why we decided to use this set of features to represent the problem state
and guide the selection of the heuristics.

3.2 Variable Ordering Heuristics

A solution to any given CSP is constructed by selecting one variable at the time
based on one of the five variable ordering heuristics used in this investigation:
minimum domain (DOM), maximum weighted degree (WDEG), domain over
weighted degree (DOM/WDEG), kappa (K) and maximum tightness (MXT).
Each one of these heuristics orders the variables to be instantiated dynamically
at each step during the search process. These heuristics are briefly explained in
the following lines.

DOM. This heuristic selects the variable with the fewer available values in its
domain [13,22].

WDEG. This heuristic attaches a counter, called weight, to every constraint of
the problem [4,15]. The counters will be updated during the search whenever
a dead-end occurs (no more values available for the current variable remain).
This heuristic gives priority the variables with the largest weighted degrees.

DOM/WDEG This is a combination of DOM and WDEG heuristics. It selects
first the variable that maximizes the quotient of the domain size over the
weighted degree of the variable.

K orders the variables based on the value of the kappa factor, κ. K will select
first the variable that minimizes the value of κ of the remaining instance [12].

MXT prefers the variable with the tightest constraints (the one with the highest
average value of p2 among all the constraints where it is involved).

We have also used Min-Conflicts [16] as value ordering heuristic to improve the
search. When using Min-Conflicts, the next value to try for the selected variable
is the one involved in the minimum number of conflicts. Min-Conflicts is not
considered as part of the hyper-heuristic model because it is a value ordering
heuristic and at the moment we are only using the hyper-heuristic approach for
variable ordering. We expect to extend our approach to include value ordering
as part of the hyper-heuristic on future developments.

3.3 Instances Used

Our set of instances includes 1000 random binary CSPs distributed among three
sets. We will refer to these sets as training set, cross validation set and testing
set. These sets contain 600, 200 and 200 instances, respectively. All the CSP ins-
tances used for this research were randomly generated with a modified version of
model D [25]. First, a constraint graph G with n nodes is randomly constructed
and then, the incompatibility graph C is formed by randomly selecting a set of
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edges (incompatible pairs of values) for each edge (constraint) in G. The instance
generator receives five parameters: 〈n,m, σm, w1, w2〉. The number of variables
is defined by n and the domain size by m; with a maximum deviation of σ in the
domain size of each variable. The parameter w1 determines the probability that
a constraint exists in the CSP instance, whereas w2 determines the probability
that an unfeasible pair of values occurs on each constraint.

For each instance, the number of variables was randomly selected in the range
[15, 30], where each variable can contain a domain of size in the range [10, 20]
(the domain is not uniform among the variables within each instance because
of the parameter σm used by the generator). The values of w1 and w2 were
determined by independently choosing at random values in the range [0, 1] for
each instance.

Because sometimes more than one heuristic obtains the best result for a given
instance (the one with the minimum number of consistency checks), it was nec-
essary to perform a filtering process during the generation of the instances. All
the instances where more than one heuristic obtained the best result in terms of
consistency checks were discarded and another one was created.

3.4 The Hyper-heuristic Model

This investigation describes a hyper-heuristic model for variable ordering on
CSPs based on a logistic regression approach. The hyper-heuristic proposed in
this investigation dynamically decides which heuristic to apply as the search
progreses. At each step of the search, every time a new variable is to be in-
stantiated, the hyper-heuristic decides which heuristic to apply according to the
current problem state (defined by the values of p1, p2 and κ).

The hyper-heuristic contains a module for multi-class logistic regression. The
hyper-heuristic needs to be trained before being applied. A detailed description
of the training process will be provided in the next sections. The core of the
hyper-heuristic contains a sigmoid function:

h(θh,f) =
1

1 + eθh·f (1)

where f is the vector of features that characterizes the current problem instance
(p1, p2, κ). The vector θh is adjusted for each heuristic during the training phase.

In our model, each heuristic is associated a specific vector θh. The function
h(θh,f) is evaluated with the corresponding θh from each heuristic and the vec-
tor of features f of the current problem state. The heuristic which θh produces
the largest output is selected to be applied on the instance. This is a common
way to implement multi-class classification by using logistic regression. In the
next section we will discuss how to obtain the vectors θh associated to each
heuristic.

4 Experiments and Results

In this investigation, we are using logistic regression for multi-class classification.
A vector θh is generated for each heuristic. A set of examples containing the
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features f and the best heuristic for such features was obtained from the training
set. For each instance in this set, its features (p1, p2 and κ) and the most suitable
heuristic (the one that required the fewer consistency checks for the search) were
saved. The training set was later used to produce specific training examples for
each heuristic. These particular training examples contain only binary outputs:
1 when the example corresponds to problem features that made the current
heuristic the best option, and 0 otherwise. We used a gradient descend procedure
to obtain the values of θh that minimize the cost function for each heuristic. We
used 0.01 as learning rate and 1000 iterations to minimize the cost function.

There is a cost function associated to the minimization problem. In this case,
the cost function is given by:

J(θh) =

{
log(h(θh,f )) y = 1
log(1− h(θh,f )) y = 0

(2)

Then, the idea is to find a vector θh that minimizes the cost function J(θh).
With gradient descend, at each iteration we must simultaneously update all the
values in θh by using the following equation:

θh = θh − α

l∑
j=1

h(θh,f
(j))f

(j)
i (3)

where l is the number of examples in the training set and f (j) is the jth example
of the training set and f j

i is the feature i of the jth example of the training set
(p1, p2 and κ, in that order).

At the end, the values of the vectors θh obtained for each heuristic are:

θMRV = [−5.6922, 2.5416, 1.6944, 0.6989]
θWDEG = [1.7820,−0.6832, 1.8075,−2.8147]

θDOM/WDEG = [−5.6356, 2.7119, 3.9738, 0.3091]
θK = [−3.1786, 1.6747, 2.0354, 0.1376]

θMXT = [−1.6886, 0.7275,−4.9322, 0.7212]

(4)

We used this set of vectors as the core of the hyper-heuristic that was tested in
the following experiments. Nevertheless the vector of features f contains only
three elements, θh contains four because the first element in the vector corres-
ponds to a bias. To be consistent, a fixed feature with a constant value of 1 is
added at the first position of the vector of features f . Thus, the first element of
the vector θh is always multiplied by 1 at the moment of calculating θh · f .

4.1 Evaluating the Hyper-heuristics

We tried the hyper-heuristic obtained with the proposed approach on the three
sets. The results are shown in Table 1. It is important to stress that for these
instances, all the methods are able to find a solution or to prove that none exists.
Then, the only difference is the number of consistency checks which is used for
comparison of the quality of the methods.
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Table 1. Percentage of instances on each set where each method obtains the best result
(requires the fewer consistency checks)

Method Training set Validation set Test set

MRV 5.00% 3.50% 3.50%
WDEG 57.50% 57.00% 55.00%

DOM/WDEG 8.83% 10.50% 7.50%
K 18.83% 20.50% 22.50%

MXT 9.83% 8.50% 11.50%

HH 62.67% 64.50% 60.50%

We can observe that, even though WDEG is clearly the heuristic that achieves
the minimum number of consistency checks on the largest fraction of instances on
the three sets, the hyper-heuristic is able to overcome this proportion in all the
sets. One consideration about these results is the fact that the hyper-heuristic
is choosing among different heuristics during the search and then, the cost of
the search (in terms of consistency checks) is not exactly the same than the best
result obtained by the heuristics applied in isolation. Then, we must interpret
the results from table 1 as the proportion of instances where the hyper-heuristic
behaves at least as well as the best result obtained with the heuristics applied
in isolation.

In Table 2 we present the average costs of each method on the three sets. The
average cost for each method is calculated as the average consistency checks
required by each method to solve an instance in the set (the sum of the costs on
all the instances over the number of instances).

Table 2. Average cost per instance (in consistency checks) for each method on the
three sets

Method Training set Validation set Test set

MRV 228430 299319 79901
WDEG 252989 451341 133057

DOM/WDEG 195621 222157 84241
K 160538 222780 74548

MXT 286714 301132 258061

HH 190447 229294 82566

The results of the average costs per instance on the different sets show that,
even though WDEG was the heuristic that most of the times obtained the best
results, it is not the heuristic with the smallest average cost. This is an interesting
result that makes us think that most of the instances that were best solved by
using WDEG were not hard, and then, the variance in the results with respect
to the other heuristics was small. On the other hand, the instances where K and
DOM/DEG (on the cross validation set) were the best options, represent large
reductions in the number of consistency checks.
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Even though the hyper-heuristic is not able to overcome K with respect to the
average cost of the search, it is a very competent solving method with respect
to the other heuristics. It is important to stress the difference in the average
cost of WDEG and the hyper-heuristic. The percentage of instances where both
methods achieved the best results are very close to each other (around 5%), but
when we evaluate the average cost, the hyper-heuristic proves its real contribu-
tion. The hyper-heuristic is, in all the sets, a best solving method than WDEG.
The reductions in the average costs obtained by using the hyper-heuristic, with
respect to WDEG, are of 24.72%, 49.19% and 37.94% for the training, cross
validation and test set, respectively.

5 Conclusion and Future Work

We have explored the use of a logistic regression approach to produce hyper-
heuristics for CSPs. The results show that it is possible to map a CSP instance
to one suitable heuristic given the described features. The hyper-heuristic out-
performs the best heuristic in the fraction of instances where it achieves the best
results. Also, the hyper-heuristic is very competent with respect to the average
cost per instance. We observed that the hyper-heuristic is able to exploit the
strengths of individual heuristics to perform well on distinct sets of instances.

Even though the results are promising, more work is needed regarding the
features used to characterize the instances. In this investigation we used the
constraint density (p1), constraint tightness (p2) and kappa (κ), but we con-
sider that more features are needed to improve the mapping from instances to
heuristics. We think the most important idea to be addressed in the future is the
analysis of other relevant CSP features that could lead to a better classification
of the instances and the solving methods according to those features.

We also observed that there are opportunities to improve the approach in the
way we select the best heuristic for a given instance. In this investigation we
produced a set of examples by mapping the instance features to the heuristic
that required the fewer consistency checks on that instance. By using this idea
we concluded that WDEG was the best heuristic. Nevertheless WDEG was the
heuristic with the largest proportion of best results, it was not the heuristic with
the minimum average cost per instance. Then, it may be a good idea to explore
other alternatives to create the training examples. This is left as part of the
future work.

Finally, we are interested in testing our approach on other classes of instances.
For example, we would like to apply it to real problems such as scheduling and
timetabling, and some optimization problems from vision and biology. This will
raise the question of whether one heuristic exists that dominates the others for
each specific problem domain.
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27. Terashima-Maŕın, H., Ortiz-Bayliss, J.C., Ross, P., Valenzuela-Rendón, M.: Hyper-
heuristics for the dynamic variable ordering in constraint satisfaction problems. In:
Proceedings of the 10th Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO 2008), pp. 571–578. ACM (2008)

28. Terashima-Maŕın, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint
satisfaction strategies in examination timetabling. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 1999), pp. 635–642. Morgan
Kaufmann (1999)

29. Tsang, E., Kwan, A.: Mapping constraint satisfaction problems to algorithms and
heuristics. Tech. Rep. CSM-198, Department of Computer Sciences, University of
Essex (1993)


	A Supervised Learning Approach to Construct
Hyper-heuristics for Constraint Satisfaction

	1 Introduction
	2 Background and Related Work
	3 SolutionModel
	3.1 Problem State Representation
	3.2 Variable Ordering Heuristics
	3.3 Instances Used
	3.4 The Hyper-heuristic Model

	4 Experiments and Results
	4.1 Evaluating the Hyper-heuristics

	5 Conclusion and Future Work
	References




