
Validating the Visual Saliency Model

Ali Alsam and Puneet Sharma

Department of Informatics & e-Learning (AITeL),
Sør-Trøndelag University College (HiST),

Trondheim, Norway
er.puneetsharma@gmail.com

Abstract. Bottom up attention models suggest that human eye move-
ments can be predicted by means of algorithms that calculate the differ-
ence between a region and its surround at different image scales where
it is suggested that the more different a region is from its surround the
more salient it is and hence the more it will attract fixations. Recent
studies have however demonstrated that a dummy classifier which as-
signs more weight to the center region of the image out performs the
best saliency algorithm calling into doubt the validity of the saliency
algorithms and their associated bottom up attention models. In this pa-
per, we performed an experiment using linear discrimination analysis to
try to separate between the values obtained from the saliency algorithm
for regions that have been fixated and others that haven’t. Our working
hypothesis was that being able to separate the regions would constitute
a proof as to the validity of the saliency model. Our results show that the
saliency model performs well in predicting non-salient regions and highly
salient regions but that it performs no better than a random classifier in
the middle range of saliency.
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1 Introduction

A salient image region is defined as an image part that is clearly different
from its surround [1]. This difference is measured in terms of a number of at-
tributes, namely, contrast, brightness and orientation [2–6]. By measuring these
attributes, visual saliency algorithms aim to predict the regions in an image that
would attract our attention under free viewing conditions [4], i.e., when the ob-
server is viewing an image without a specific task such as searching for an object.
Finally, the output of the visual saliency algorithms is a so called saliency map
which is a two dimensional gray scale map where the brighter regions represent
higher saliency.

To evaluate the performance of visual saliency algorithms, the two dimensional
saliency maps are compared with the image regions that attract observers’ at-
tention [7–14]. This is done by displaying to the observers a set of images and
using an eye tracker to record their eye fixations. Further, it is thought that a
higher number of fixations correspond to salient image regions. The recorded
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fixations are thus compared with the associated visual saliency maps in a pair
wise manner [8, 15–17]. Unfortunately, most studies have shown that while the
saliency algorithms do predict a certain percentage of fixations they are far from
being able to fully account for observers’ visual attention [18, 19]. In fact, in a
recent comprehensive eye tracking study by Judd et al. [20], it was shown that a
dummy classifier defined by a Gaussian blob at the center of the image was better
at predicting the eye fixations than any of the visual saliency models [1, 21, 22].
In other words, assuming that the eye fixations fall at the center of the image
results in better prediction than an analysis of the image content. This finding
is surprising and raises the question of whether our attention is indeed guided
by salient image features.

In this paper we set about validating the saliency algorithm by means of an
experiment in which we divided 200 images into regions which have received fix-
ations and others that didn’t. By collecting the values returned by the saliency
algorithm local to those regions into two matrices we were able to use discrimi-
nation analysis to determine whether the data of the two matrices is separable.
Our working hypothesis was that being able to separate the data using linear
discrimination analysis would constitute a proof that the saliency algorithm is
indeed in good correspondence with the eye fixations while failing to separate
the data would constitute a proof that the saliency algorithm is a poor predictor
of eye fixations.

In our experiment we found that the saliency algorithm predicts eye fixations
almost perfectly in regions that don’t attract any fixations and also in regions
that attract many fixations. It is, however, a poor estimator of fixations in regions
with middle saliency where the algorithm performs as a random classifier.

2 Brief Description of the Saliency Algorithm

Input to the algorithm is provided in the form of static color images. Three
early features: color, intensity, and orientation are calculated from the input im-
age. From these features several spatial scales are created using dyadic Gaussian
pyramids [1]. Salient features are detected by using center-surround differences
which are grounded in vision studies. The center-surround differences are cal-
culated between the fine and the coarse scales followed by normalization. For
details see [1]. Finally the resultant feature maps are combined linearly to form
a so-called saliency map.

3 Experiments and Results

3.1 Data Set

The images and the associated fixations data used in the analysis were obtained
from the comprehensive study by Judd et al. [20]. The data-set [20] includes 1003
images which were shown to 15 different observers with normal vision under free
viewing conditions, i.e., the observers viewed the images without a specific task
such as searching for an object.
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Validating the Saliency Theory. In this experiment we set about validating
the claim that the eye fixates on regions in the image that are salient or different
with respect to their surround. To achieve an objective validation we chose to
divide each image into two different sets of regions, in the first we have image
regions which have attracted observers fixations and in the second set we have
image regions that didn’t attract fixations. The data was based on a subset of
the images and corresponding fixations obtained by Judd et al. [20] where we
used 200 landscape images and all the fifteen observers. The images were 1024
by 768 pixels in dimension and a fixated area was defined as a square region of
dimensions 100 by 100 pixels where the center was located at the fixation point.
Non-fixated areas were chosen randomly from parts of the image that had a
region of a 100 by 100 pixels without any fixations. As an example, the fixated
and the non-fixated regions for an image and the corresponding feature maps
obtained by the saliency algorithm [1] are shown in figure 1.

By dividing the image into square regions that are classed as either fixated or
not fixated we were able to assign a value to each square part that corresponds
to the average of the intensity of the corresponding pixels in the saliency map
obtained by Itti et al. [1]. In so doing we obtained two matrices, F and Nf

where the elements in the vectors of F were the values of the averages of the
feature maps based on the square regions centered at the fixation points while
the vectors of Nf were the average values for non-fixated areas. Further we chose
the number of non-fixated areas to be equal to that of the fixated regions, thus,
the size of F was n× k were n was the number of fixations in all the 200 images
and k was the number of feature maps was defined by the algorithm to be three
maps pertaining to intensity, color and orientation.

Our main objective with the creation of the matrices F and Nf was to de-
termine whether we can separate between the data of the two matrices using
discrimination analysis or not. The basic idea was that being able to separate
the data would constitute a proof that the fixations are indeed driven by low level
features such as contrast and lightness as is the claim by researchers supporting
the bottom up attention model. We further believe that the level of separation
achieved between the fixated and non-fixated regions would offer us a clear view
as to the goodness of the saliency algorithm in predicting the fixations. Thus if
the prediction is random we can conclude, based on the available data set, that
the idea that salient regions attract attention is false while a perfect separation
would indicate that salient image regions dictate our visual attention.

We chose a simple discrimination method which involves calculating the dif-
ference vector between the averages of F and Nf and then projecting the vectors
of F and Nf onto the difference vector to judge whether the data is separated
along that vector or in other words whether F and Nf are significantly different.
Mathematically, the operation are:

w = µF − µNf
, (1)

where the size w corresponds to the number of feature maps (3 for the saliency
algorithm), and µF and µNf

are the means along the columns of F and Nf .
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Image from database [20] Fixations and non-fixations

Color Intensity

Orientation

Fig. 1. Figure shows the fixated and the non-fixated regions for an image and the
corresponding feature maps obtained by the saliency algorithm [1]. The fixated regions
are marked as blue and the non-fixated regions are marked as red



Validating the Visual Saliency Model 157

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Saliency value

P
ro

b
a
b
ili

ty

 

 

fixated
non fixated

(a) Probability histogram
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(b) Relative probabilities

Fig. 2. Probability histograms and relative probabilities for the fixated and non-fixated
regions for observer no 1. X-axis shows the saliency values obtained by using the visual
saliency algorithm [1].
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(b) Relative probabilities

Fig. 3. Probability histograms and relative probabilities for the fixated and non-fixated
regions for observer no 2. X-axis shows the saliency values obtained by using the visual
saliency algorithm [1].

pF = wF (2)

pNf
= wNf , (3)

where the number of elements of the vectors pF and pNF are 1 by k. The dis-
tribution of pF and pNF provides a mathematical description of whether the
fixated and non-fixated regions are indeed different as predicted by the saliency
algorithm.
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(a) Probability histogram

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Saliency value

R
e
la

tiv
e
 p

ro
b
a
b
ili

ty

 

 

fixated
non fixated

(b) Relative probabilities

Fig. 4. Probability histograms and relative probabilities for the fixated and non-fixated
regions for observer no 3. X-axis shows the saliency values obtained by using the visual
saliency algorithm [1].
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(b) Relative probabilities

Fig. 5. Probability histograms and relative probabilities for the fixated and non-fixated
regions for observer no 4. X-axis shows the saliency values obtained by using the visual
saliency algorithm [1].

In figure 2, we plotted the probability histograms of pF and pNf
. Here, the

histogramwas normalized such that the area under the curve is one. We note that
the separation between the two sets is not ideal but rather we find a considerable
overlap between the two histograms specifically in the middle range. We further
note that there is a clear separation between the two sets for regions of the images
that received no fixations indicating that the method is good at predicting non-
salient regions of the images. At a value of 0.3 the classification of the two sets
is random.
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(b) Relative probabilities

Fig. 6. Probability histograms and relative probabilities for the fixated and non-fixated
regions for an average observer. X-axis shows the saliency values obtained by using the
visual saliency algorithm [1].

To gain better insight into the ability of the algorithm to separate the image
regions into fixated and non-fixated, we plotted the relative probabilities of the
histograms. For the non-fixated histogram, the relative probabilities were ob-
tained by dividing the area under the non-fixated probability histogram curve
of a specific bin i by the area under the fixated histogram curve for the same
bin. For the relative probability of the fixated histogram the reciprocal value
was calculated. Based on the fixation data of observer number one, this curve is
plotted in figure 2 where we observe that for low salience values the separation
of non-fixated regions is ideal and that the goodness of the separation declines
to a level that is random. We also note that the separation of the highly salient
regions, is nearly ideal. Based on this we can conclude that the algorithm is good
in predicting non-salient and highly salient regions but its performance drops in
the middle range. Assuming that the algorithm is a good representation of the
way in which the human vision system functions we can state that flat regions
which are almost never fixated while middle range contrast attracts fixations
though not in every part and regions with very high saliency almost always at-
tract fixations. This interpretation is of course dependent on the total number
of fixations and the spatial distribution of the salient regions.

To generalize the analysis for the other observers, we performed the same
calculations for all the observers and found similar trends in all cases. The results
for observers two, three, and four shown in figures 3, and 5 respectively; and
similar results were obtained for the fifteen individual observers. The results for
the average observer based on all fifteen observers are shown in figure 6.

4 Discussion

In this paper, we performed a study to validate the claim that human eye fix-
ations correspond to salient image features. We divided the image into regions
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which attracted fixations and others that were deemed by the observers as non-
salient. By grouping the associated values for the feature maps obtained from
the saliency algorithm by Itti et al. [1] into two matrices one pertaining to the
fixated regions and an other to the non-fixated areas we were able to use linear
discrimination to separate the regions optimally. Our working hypothesis was
that being able to distinguish between the local values of the feature maps at
fixated and non-fixated regions would indicate that the algorithm is indeed use-
ful in predicting eye fixations. Our findings indicate that saliency algorithm by
Itti et al. [1] is nearly ideal at predicting non-salient and highly salient regions
with a considerable confusion in the mid saliency region.
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