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Abstract. Workflow is a well-established approach to visually compose
large and complex applications out of components. However, existing
workflow models do not provide high-level abstractions of two recurring
user-interaction patterns in mobile cloud applications, namely backtrack-
ing and interactive controls. In this paper, we propose Sonata, a workflow
model that provides high-level abstractions for implicit and structured
backtracking, and interactive controls. We prototype a workflow engine
for Android devices and another for a RESTful cloud service platform,
each of which orchestrates the execution of mobile components and cloud
services, respectively. Choreography between the mobile orchestrator and
cloud orchestrator is implemented on top of HTTP using REST-style
invocations. An example application workflow incorporating all our pro-
posed constructs is further elaborated.

Keywords: implicit backtracking, structured workflow, interactive con-
trol, orchestration, choreography.

1 Introduction

The convergence of mobile and cloud leads to the emergence of mobile cloud ap-
plications [6]. A mobile cloud application is composed of cloud services and tasks
running on end-point devices (e.g., smartphones, tablets, laptops, and future
smart devices). As the number of features in applications increase, the complex-
ity of application development needs to be managed. At present, the industries
largely adopt the workflow paradigm to simplify the design, configuration, cus-
tomization, management, and maintenance of complex applications such as in
SOA (service-oriented architecture) [9I8] and big data processing [BITI514]. In this
paradigm, an application is viewed as a composition of independent components
with a pre-defined execution flow among the components. A component is a self-
contained building blocks of an application which, depending on the domain,
can range from fine-grained objects (e.g., Java beans and Microsoft COM) to
loosely-coupled services (e.g., web or cloud services).

To simplify the application development, high-level abstractions should be
provided for two interaction patterns which are commonly found in mobile cloud
applications, namely backtracking and interactive control. Backtracking, sup-
ported in all generations of mobile devices, enables the user of an application to
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instruct the application to go from one component to another. Interactive control
enables the user to directly instruct which component to execute. As an illus-
tration, consider an application for uploading an image to a social-networking
website. This application consists of a gallery component, a site selector com-
ponent, and a number of image uploader components. When the application is
invoked, the gallery component displays a list of images stored on the phone.
The user interacts with the application by selecting an image. This selection
triggers a transition to the site selector component, which displays the selected
image and the list of available social-networking websites. At this point, the
user can press the back button of her device to backtrack to the gallery com-
ponent. Alternatively, the user selects the website to publish the selected image
(i.e., the interactive control pattern), which further trigger the execution of the
appropriate image uploader component.

To the best of our knowledge, existing workflow models do not provide high-
level abstractions for the above mentioned interactive patterns. Forward-only
models such as MapReduce [3], Hadoop [1], and Dryad [5] do not support back-
tracking. Fzplicit models such as BPMN [9] and SPL [4] require the patterns
to be implemented explicitly using low-level constructs such as backward edges
and gateway nodes. Although Sarasvati supports arbitrary backtracking whereby
any component can backtrack to any ancestor [2], it may lead to an ambiguous
execution state (see Section M), let alone interactive controls.

This paper proposes Sonata, our proposed approach to model the backtrack-
ing and interactive control in mobile cloud applications. It is motivated by a
simple premise whereby the probability for composition error can be decreased
by reducing the number of explicit constructs. Thus, instead of backward edges
and gateway nodes, Sonata indicates backtracking by assigning tags to compo-
nents. We also propose a structure of mobile cloud applications that are free
from arbitrary backtracking to guarantee that workflow execution does not en-
ter an ambiguous state. Lastly, Sonata proposes two specific interactive controls,
namely chooser and iterator. We demonstrate the feasibility of Sonata by com-
posing a face recognition application using Android components and RESTful
cloud services. Our prototype runtime platform consists of a workflow engine
for Android (written in Python) to orchestrate mobile components, a server-side
workflow engine (written in Java and MySQL) to orchestrate cloud services, and
a REST-based scheme to choreograph these two engines.

The remainder of this paper is organized as follows. Firstly, we compare Sonata
with existing workflow models (Section ). We then describe the interaction
patterns in mobile cloud applications(Section [3), followed by our proposed work
(SectionH]). Afterwards, we describe our prototype (Section[H]) and an application
use case (Section [A]). Lastly, we conclude this paper (Section [7]).

2 Related Work

In terms of backtracking, existing workflow models can be classified as forward-
only models, explicit models, and arbitrary models.
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By design, forward-only models such as MapReduce [3], Hadoop [I], and
Dryad [5] do not support backtracking. Hence, they are not suitable for mo-
bile cloud applications in which users may request the application to transition
from the current GUI state to a preceding GUI state.

Explicit models such as BPMN [9] and SPL [4] require backtracking to be
explicitly specified for every pair of nodes where backtracking may occur. Hence,
design scalability is a significant issue since the number of backward edges and
gateway nodes (see Section B.I]) increases with the number of components in a
workflow. Because the semantic of workflow is left to workflow designers, it is
possible to inadvertently create a syntactically correct workflow yet semantically
incorrect (see Section [ for the detail discussion).

Arbitrary models such as Sarasvati [2] do not guarantee that workflow exe-
cution remains unambiguous. Sarasvati is programming toolkit to develop Java-
based workflow [2]. It does not come with a model to visually compose a new work-
flow. Sarasvati supports only unstructured backtracking whereby any node can
backtrack to an arbitrary ancestor. Therefore, it is prone to the time-travel para-
dox which is discussed in detail in Section Lastly, Sarasvati does not support
interactive controls which are an integral part of mobile cloud applications.

Existing workflow models target batch executions, whereby the next compo-
nent to execute in a conditional execution is automatically triggered based on
messages or events generated. No human intervention is required. Hence, con-
ditional executions are implemented using programming-like constructs such as
if-else, loop, scoping and fork-and-join. Scripting is typically involved, e.g., to
specify the conditional logic of if-else or loop. However, mobile cloud applica-
tions are interactive. As such, they include use cases where the next component
to execute is solely determined by users, rather being automatically inferred.
Hence, implementing the inherently high-level user interactions is unnecessarily
complicated. For example, interactive iteration is modeled using a combination
of backward edges, explicit marker of the scope of iteration, and filtering rules
scripted by application designer in the design time, so that during runtime, ap-
plications can automatically decide when to an iteration completes. In contrast
to these existing approach, Sonata simply represents an interactive control as a
single component, thereby, simplifying the resulted workflow.

3 Design Objectives

Mobile cloud applications are interactive: they wait for input from users, and
then perform action based on the input. We identify two common patterns of
interactions between users and mobile devices, namely backtracking and inter-
active controls. A desirable property of high-level abstraction is to minimize the
number of explicit constructs to implement the patterns, since this reduces the
probability of composition errors. In the followings, we discuss this subject in
details.
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Fig. 1. Backtracking Interface in Mobile Devices

3.1 Backtracking

Backtracking is inherent in interactive mobile applications, as evident throughout
device generations (Figure[ll). Backtracking enables applications to go back from
one GUI-enabled state to a previous GUI-enabled state. A high-level abstraction
of backtracking should address the following issues.

Firstly, it should minimize the number of mandatory constructs required to
represent a backtracking step. In explicit models, every backtracking from c to ¢’
(Figure[2a)) requires one explicit backward edges and a gateway node (Figure2h).
The gateway node represents the step whereby devices wait for user input. Hence,
the number of backward edges and gateway nodes increase as the number of
components where backtracking is possible grow.

Secondly, the high-level abstraction must enforce valid backtracking whereby
backtracking occurs only between interactive nodes which wait for user input
(FigureB]). A backtracking from ¢ to ¢’ can be triggered only if ¢ waits for users
to press the back button. Hence, ¢ must be interactive which implies that ¢ has
a GUIL. When ¢’ is visited, the application displays the state pertaining to ¢’ and
waits for user input. This also implies that ¢ must also be interactive. Should ¢’ is
non-interactive, e.g., a cloud service or a logic-only mobile component, then users
will perceive that the back button is ignored as ¢’ will execute and immediately
the application state returns to c. A low-level abstraction may produce workflows
that are syntactically correct but semantically incorrect (i.e., the three invalid

- Exclusive OR
Backtrack Back gateway
(a) Logical (b) BPMN Implementation

Fig. 2. Backtracking and its Explicit Implementation
e (g
) @ ) D

v X X X

Fig. 3. Valid versus Invalid Backtracking (with GUI Symbols Added for Clarity
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Fig. 4. Time Travel Paradox

backtracking illustrated in Figure Bl It is desirable that such workflows can be
prevented by using a high-level abstraction.

Lastly, the high-level abstraction must prevent time-travel paradox. This para-
dox occurs when backtracking causes only a subset of a node’s parents to be
re-executed. Figure ] shows a workflow which generates the time-travel para-
dox. Assume that a backtracking path is defined from B to A. The sequence of
workflow execution that leads to the paradox is as follows:

1. Node A completes its execution.

2. Node C and D start their execution.

3. Suppose that before node D completes, node C already finished its execution
and node B starts to execute.

4. Node B receives a backtracking command from user. Thus, we backtrack to
node A. All the while, node D is still executing.

5. Node A is re-executed. After its completion, node C and D should be re-
executed. However, recall that node D is still executing (i.e., from the pre-
vious iteration/wave). At this point, time-travel paradox occurs on node D.

To solve the paradox, either:

1. node D cancels its execution from the previous iteration, or

2. after node D completes its execution from previous iteration, node E is
executed. Then, node D is re-executed again (i.e., the current/new iteration),
which implies that later node E will also be re-executed.

However, the appropriate solution depends on the context of the applications,
and explicit notations increases the workflow complexity. Hence, a simpler solu-
tion based on preventive strategy is required(Section H).

3.2 Interactive Controls

Interactive control enables application users to control the execution path of
applications. Two types of interactive controls are identified in mobile applica-
tions (Figure[). Firstly, when a workflow forks into multiple disjointed execution
paths, users may want to select only one particular path. This is illustrated by
the example in (Figure [Bal). To other interactive control is iteration (Figure [5H).
Iteration enables a list of data items of the same type to be consumed by a node
designed to process only one item at a time. When a producer outputs outputs a
list of data items, a mobile device will request its users to select a particular data
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Fig. 6. Modeling Interactive Controls with BPMN

item from the list. Then, the selected data item is forwarded to the consumer
which is designed to accept only one data item per invocation.

The motivation for a high-level abstraction is similar as in the case of back-
tracking. Firstly, we aim to minimizes the number of edges and gateway nodes
(Figure[@l). Secondly, we aim to prevent workflows that are syntactically correct
but semantically incorrect. For examples, the exlusive OR gateway may be in-
advertently replaced with a parallel fork/join, or when the backward edges are
removed from an iterator such that it degenerates to a chooser.

4 Proposed Workflow Model

We propose Sonata, a workflow model for interactive mobile cloud applications
which are composed of cloud services and tasks running on mobile devices. A
workflow is modeled as a directed graph where each node represents a cloud
service or a task on a mobile device, and each directed edge represents control
and data flow between nodes. The key novelties of Sonata are: (i) implicit back-
tracking based on node types, (ii) structured workflow to prevent the time-travel
paradox, and (iii) interactive control nodes.

Sonata infers backability from the types of nodes (Figure [); thus, obviat-
ing the need for backward directed edges and additional gateway nodes (see
Figure 2). Nodes are classified along two dimensions: (i) interactive versus non-
interactive, and (ii) backtrackable versus non-backtrackable. Interactive compo-
nents provides a GUI to allow user interaction during execution. On the contrary,
non-interactive components do not allow user interaction during their execution.
Only mobile components are interactive because users directly interact with mo-
bile devices (i.e., the client-side). On the other hand, cloud services, by definition,
are server-side components accessed programmatically by mobile components.
Only backtrackable nodes can be re-visited by its interactive successor. Back-
trackable are further sub-classed into backable and bookmarked. A backable node
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Fig. 7. Taxonomy and visual notation of nodes

can be re-visited only by its immediate interactive successor. Backable is the
default type for interactive nodes. However, this behavior can be overriden by
tagging an interactive node as a bookmarked node so that it can be re-visited by
any of its interactive descendants. The bookmark sub-type is intended for larger-
screen devices (e.g., tablets, notebooks and desktops) as additional navigation
index can be displayed without obscuring the GUI content of a component. With
our proposed approach, mobile cloud application workflows remain succinct and
elegant, and are clean from redundant backward edges. Notice that in using our
classification, the location of a component (i.e., mobile or cloud) is optional so
that we do not need to explicitly mark whether a component is mobile or cloud.

To address the time-travel paradox, Sonata adopts a prevention strategy to
prevent such an ambiguity to occur. The time-travel paradox occurs due to the
structure of a directed graph is arbitrary. Hence, to prevent the paradox, Sonata
enforces a structure whereby a Sonata workflow is structured as a critical path
consisting of a sequence of interactive nodes and region of logic nodes (Figure[]).
Each interactive node has at most one interactive successor (see the left-side
workflow in Figure [). Logic nodes between consecutive interactive nodes are
grouped in a region, and synchronization barriers are imposed at the entrance
and exit of each region (see the right-hand-side workflow in Figure []). Sonata
structure is reasonable for mobile cloud applications. The critical path denotes
that interactive nodes must be executed in sequence. This makes sense in mobile
devices since concurrent interactive nodes will compete for the device screen to
display their GUI, and yet device screen is relatively limited for sophisticated
UI mash-up.

Synchronization barrier

Region R

Fig. 8. Structure of Sonata Workflow
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Fig. 9. Interactive Control Nodes

Sonata defines two interactive control structures, namely chooser (Figure [0al)
and iterator (Figure QD). Both accept user inputs from GUI during runtime,
thereby, completely obviate the need for scripting and scoping in design time.
Chooser is non-backable and equivalent to the XOR boolean operator. Chooser
restricts users to select exactly one and only one execution path out of many
during runtime to preserve the critical-path structure. Iterator enables a collec-
tion of data items of the same type to be processed by a node designed to process
only one item at a time. As illustrated in Figure QD when face detection outputs
a list of detected faces, the iterator will request users to select a particular face
from the list. Then, the selected face is forwarded to face recognition which is
designed to recognize one face at a time.

5 Preliminary Prototype

A workflow graph, implemented as a JSON object, is partitioned into a mobile
partition and a cloud partition which contains Android-based mobile compo-
nents and Java-based cloud components, respectively. Barriers and interactive
controls within a workflow graph are implemented as built-in components (Ta-
ble ). The mobile partition and cloud partition is then executed by a mobile
orchestrator and a cloud orchestrator, respectively (Figure [I0). Choreography
between these engines are implemented using RESTful invocations over HTTP.
Within an orchestrator domain, component execution follows the master-and-
slave paradigm whereby the orchestrator invokes one component after another,

Table 1. Built-in Components

Built-in Component Type Location
Barrier Logic Mobile
Chooser Non-backable Mobile

Iterator Backable Mobile
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Fig. 10. Choreography between Mobile Orchestrator and Cloud Orchestrator

and data from one component must go through the orchestrator to the next
component. The cloud orchestrator is implemented in Java and supports the
execution of Java components. Intra-cloud invocations and data forwarding are
implemented as native Java method invocations. The mobile orchestrator is im-
plemented in Python using the SL4A[ (Scripting Languages For Android) envi-
ronment. Intra-device invocations and data forwarding are implemented via the
Android’s intent mechanism.

Each component specifies zero or more input and output parameters using
get (key) and set(key, value) operation, respectively. The skeleton of a com-
ponent is shown in Figure[IIl The specific implementations of cloud components
and mobile components are as follows:

— Cloud Components — We have developed a Java-based SDK to ease the
development of cloud components. The SDK provides a framework for com-
ponent life cycle and input/output APIs, and guarantees that components
are re-entrant. A new cloud component is implemented by sub-classing the

Component c¢
String i1 = get(“i1”);
String iz = get(“i2”);
String o1 = do something(ii, i2);
put(“01”);
put(“02”);

Fig. 11. Skeleton of Component with Input {i1,i2} and Output {o1, 02}

! http://code.google.com/p/android-scripting
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Table 2. RESTful Interfaces of Cloud Component ¢ with Workflow w

Method URL Description

POST /w Request a new session. Mandatory prior to executing
w. Return handle s.

POST /w/s Start or resume the execution of cloud-portion of w.
POST /w/s/c Execute workflow w, starting from component c.
GET /w/s/c/k  Retrieve output k emitted by component c. If the out-

put is a blob object, returns a URL to the object to
facilitate subsequent downloads.

CloudComponent class, and then overriding its activate () method with the
specific functionality to be provided. Presently, keys are strings, whereas
values can be strings or blobs. String values are transient and thus, they
can be garbage collected when no longer referred to by any component. On
the other hand, blob values are persisted as a file stored in a cloud storage.
Components are transparently decorated with RESTful interface to ease
their development (Table [2)).

— Mobile Components — A mobile component is implemented as a native
Android application (i.e., an apk package). Each mobile component is a
subclass of Activity. Component input and output is implemented using the
Intents mechanisrrﬁ., In particular, the get and set operations are achieved
using the intent’s extra APIs in the Android application framework.

To handle state transitions from a mobile device to cloud and vice versa, we adopt
the choreography approach whereby interactions between the orchestrator follow
a peer-to-peer model (Figure [[{), rather than being governed by a centralized
entity. The transition from a mobile orchestrator to a cloud orchestrator is en-
capsulated in a multi-part/form-data HTTP POST request [7] /w/s or /w/s/c
shown in Table 2l On the other hand, the transition from a cloud orchestrator
to a mobile orchestrator is currently implemented using a pull mechanism. In
this scheme, the mobile orchestrator periodically polls whether the cloud or-
chestrator has completed its execution. Once the cloud execution completes, the
mobile orchestrator pulls the necessary data by sending an HTTP GET request
/w/s/c/k (see Table[) to the cloud orchestrator. In response, the cloud orches-
trator serializes the data into JSON objects, then serves the serialized data to
the mobile orchestrator. The mobile orchestrator then de-serializes the JSON ob-
jects before injecting the data to the appropriate mobile components. Polling the
cloud orchestrator may be simpler to implement, but may increase the number
of round trips. Thus, at the moment, a push-based mechanism is being consid-
ered. However, the issue of polling-vs-not is just a non-functional aspect of our
implementation which does not affect the functionality the Sonata model.

2 http://developer.android.com/guide/topics/intents/intents-filters.html
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Fig. 12. Face Recognition Application

6 Use Case

Face Recognition enables a user to automatically retrieve the profile of a face
taken with an Android device. As can be seen in Figure [2aHI2b] the Sonata
workflow is simpler than the BPMN one. The Photo Snapper snaps a photo by
engaging the embedded camera on the mobile phone (Figure[I2d). The captured
photo will be sent to and processed by the Face Detection cloud service. This
cloud service detects faces in a photo based on the face detection algorithm
proposed by Tong et. al. [I0]. The list of detected face images is forwarded to
the mobile device, and then displayed by the Iterator component Figure [12dl
Once a user selects the face image, the face image is forwarded to the Face
Recognition component. The Face Recognition component compares the face
image to available images in a database based on the face clustering algorithms in
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Tong et al. [10]. It returns three images with the highest match scores, and their
corresponding profile (i.e., name, designation, and email) are further retrieved by
User Info Fetcher. The face image and profile of the three candidates (i.e., image
faces and their profile) is forwarded to the mobile device to be displayed by the
Display component (Figure [[2€). Once a user select a candidate, the Chooser
component displays two possible actions corresponding to the two successors of
Chooser, namely Share and Viewer (Figure[I21l If the user chooses to view, then
the Viewer component displays the selected candidate image in full-screen mode
Figure[I2g} Alternatively, if the user chooses to share, then the Share component
will be invoked to (Figure [2h).

7 Conclusion

Our proposed workflow model is based on the simple premise whereby the proba-
bility for composition errors can be decreased by reducing the number of explicit
constructs. Our workflow model supports implicit backtracking and interactive
controls, which are two recurrent interactive patterns in mobile devices. Our
workflow model imposes structured backtracking to prevent workflows that are
syntactically correct but semantically incorrect. Interactive controls (i.e., chooser
and iterator) are targeted at use cases where the next component to execute is
solely determine by users, rather being automatically triggered from messages
or events generated by a workflow engine. Therefore, during the design time, the
application designer does not need to write the filtering rules with programmatic
expressions. When Sonata is implemented into a workflow designer GUI, then
mobile cloud application can be visually assembled in a drag-and-drop fashion.
Our ongoing works include investigating more high-level constructs into Sonata,
including abstractions for life-cycle management and streaming (i.e., tightly-
coupled) operations between components. In addition, we are working on quan-
titative analysis of design scalability and workflow’s runtime performance.
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