Skip to main content

Towards Constraining Glacial Isostatic Adjustment in Greenland Using ICESat and GPS Observations

  • Conference paper
  • First Online:
Earth on the Edge: Science for a Sustainable Planet

Abstract

Constraining glacial isostatic adjustment (GIA) i.e. the Earth’s viscoelastic response to past ice changes, is an important task, because GIA is a significant correction in gravity-based ice sheet mass balance estimates. Here, we investigate how temporal variations in the observed and modeled crustal displacements due to the Earth’s response to ongoing ice mass changes can contribute to the process of constraining GIA. We use mass change grids of the Greenland ice sheet (GrIS) derived from NASA’s high resolution Ice, Cloud and land Elevation Satellite (ICESat) data in three overlapping time spans covering the period 2004–2009 to estimate temporal variations in the elastic response due to present day ice mass loss. The modeled crustal displacements (elastic + GIA) are compared with GPS time series from five permanent sites (KELY, KULU, QAQ1, THU2, and SCOR). We find, that the modeled pattern of elastic crustal displacements shows pronounced variation during the observation period, where an increase in elastic displacement is found at the northwest coast of Greenland, while a decrease is found at the southeast coast. This pattern of temporal changes is supported by the GPS observations. We find, that the temporal behavior of the ICESat-based modeled elastic response agrees well with the GPS observations at the sites KELY, QAQ1, and SCOR. This suggests, that our elastic models are able to resolve the temporal changes in the observed uplift, which indicates that the elastic uplift models are reliable at these sites. Therefore, we conclude that these sites are useful for constraining GIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abshire J, Sun X, Riris H, Sirota J, McGarry J, Palm S, Yi D, Liiva P (2005) Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys Res Lett 32:L21S02. doi:10.1029/2005GL024028

    Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949

    Google Scholar 

  • Bevis M, Kendrick R, Smalley R, Dalziel I, Caccamise D, Sasgen I, Helsen M, Taylor F, Zhou H, Brown A et al (2009) Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochem Geophy Geosy 10:1–11. doi:10.1029/2009GC002642

    Google Scholar 

  • Chen J, Wilson C, Tapley B (2011) Interannual variability of Greenland ice losses from satellite gravimetry. J Geophys Res 116:B07406. doi:10.1029/2010JB007789

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet 25:297–356. http://dx.doi.org/10.1016/0031-9201(81)90046-7

  • Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys 10:761–797. doi:10.1029/RG010i003p00761

    Article  Google Scholar 

  • Fleming K, Lambeck K (2004) Constraints on the Greenland ice sheet since the last glacial maximum from sea-level observations and glacial-rebound models. Quaternary Sci Rev 23:1053–1077. doi:10.1016/j.quascirev.2003.11.001

    Article  Google Scholar 

  • Howat I, Smith B, Joughin I, Scambos T (2008) Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophys Res Lett 35:L17505. doi:10.1029/2008GL034496

    Article  Google Scholar 

  • Khan S, Wahr J, Leuliette E, van Dam T, Larson K, Francis O (2008) Geodetic measurements of postglacial adjustments in Greenland. J Geophys Res 113:B02402. doi:10.1029/2007JB004956

    Google Scholar 

  • Khan S, Wahr J, Bevis M, Velicogna I, Kendrick E (2010a) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37:L06501. doi:10.1029/2010GL042460

    Article  Google Scholar 

  • Khan S, Liu L, Wahr J, Howat I, Joughin I, van Dam T, Fleming K (2010b) GPS measurements of crustal uplift near Jakobshavn Isbræ due to glacial ice mass loss. J Geophys Res 115:B09405. doi:10.1029/2010JB007490

    Google Scholar 

  • King M, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernández-Pajares M, Lavallee D, Mendes Cerveira P et al (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 1–43. doi:10.1007/s10712-010-9100-4

    Google Scholar 

  • Lucas-Picher P, Nielsen WM, Christensen JH, Adalgeirsdottir G, Mottram R, Simonsen SB (2012) Very high resolution regional climate model simulations over Greenland: identifying added value. J Geophys Res 117:D02108. doi:10.1029/2011JD016267

    Google Scholar 

  • McFadden E, Howat I, Joughin I, Smith B, Ahn Y (2011) Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009). J Geophys Res 116:F02022. doi:10.1029/2010JF001757

    Google Scholar 

  • Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi:10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  • Schrama E, Wouters B, Vermeersen B (2011) Present day regional mass loss of Greenland observed with satellite gravimetry. Surv Geophys 1–9. doi:10.1007/s10712-011-9113-7

    Google Scholar 

  • Simpson M, Milne G, Huybrechts P, Long A (2009) Calibrating a glaciological model of the Greenland ice sheet from the last glacial maximum to present-day using field observations of relative sea level and ice extent. Quaternary Sci Rev 28(17):1631–1657. http://dx.doi.org/10.1016/j.quascirev.2009.03.004

    Google Scholar 

  • Simpson M, Wake L, Milne G, Huybrechts P (2011) The influence of decadal-to millennial-scale ice mass changes on present-day vertical land motion in Greenland: implications for the interpretation of GPS observations. J Geophys Res 116:B02406. doi:10.1029/2010JB007776

    Google Scholar 

  • Spada G, Stocchi P (2007) SELEN: a Fortran 90 program for solving the“sea-level equation”. Comput Geosci 33(4):538–562. http://dx.doi.org/10.1016/j.cageo.2006.08.006

  • Spada G, Ruggieri G, Sørensen LS, Nielsen K, Melini D, Colleoni F (2012) Greenland uplift and regional sea level changes from ICESat observations and GIA modelling. Geophys J Int. doi:10.1111/j.1365-246X.2012.05443.x

    Google Scholar 

  • Sørensen LS, Simonsen SB, Nielsen K, Lucas-Picher P, Spada G, Adalgeirsdottir G, Forsberg R, Hvidberg CS (2011) Mass balance of the Greenland ice sheet (2003–2008) from ICESat data the impact of interpolation, sampling and firn density. Cryosphere 5(1):173–186. doi:10.5194/tc-5-173-2011

    Article  Google Scholar 

  • Thomas I, King M, Bentley M, Whitehouse P, Penna N, Williams S, Riva R, Lavallee D, Clarke P, King E et al (2011) Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys Res Lett 38:L22302. doi:10.1029/2011GL049277

    Google Scholar 

  • Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

  • Zwally H, Schutz R, Bentley C, Bufton J, Herring T, Minster J, Spinhirne J, Thomas R (2011) GLAS/ICESat L2 Antarctic and Greenland ice sheet altimetry data V031. National Snow and Ice Data Center, Boulder. ftp://n4ftl01u.ecs.nasa.gov/SAN/GLAS/GLA12.031

Download references

Acknowledgements

This work was supported by funding from the ice2sea programme from the European Union 7th Framework Programme, grant number 226375. Ice2sea contribution number 080. This work was partly supported by COST Action ES0701 “Improved Constraints on Models of Glacial Isostatic Adjustment”. We thank the Editor-in-Chief Pascal Willis and the three anonymous reviewers for their constructive comments and suggestions, which have helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nielsen, K., Sørensen, L.S., Khan, S.A., Spada, G., Simonsen, S.B., Forsberg, R. (2014). Towards Constraining Glacial Isostatic Adjustment in Greenland Using ICESat and GPS Observations. In: Rizos, C., Willis, P. (eds) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37222-3_43

Download citation

Publish with us

Policies and ethics