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Abstract. Programs with dynamic allocation are able to create and use an un-
bounded number of fresh resources, such as references, objects, files, etc. We
propose History-Register Automata (HRA), a new automata-theoretic formalism
for modelling and analysing such programs. HRAs extend the expressiveness of
previous approaches and bring us to the limits of decidability for reachability
checks. The distinctive feature of our machines is their use of unbounded mem-
ory sets (histories) where input symbols can be selectively stored and compared
with symbols to follow. In addition, stored symbols can be consumed or deleted
by reset. We show that the combination of consumption and reset capabilities ren-
ders the automata powerful enough to imitate counter machines (Petri nets with
reset arcs), and yields closure under all regular operations apart from comple-
mentation. We moreover examine weaker notions of HRAs which strike different
balances between expressiveness and effectiveness.

1 Introduction

Program analysis faces substantial challenges due to its aim to devise finitary methods
and machines which are required to operate on potentially infinite program computa-
tions. A specific such challenge stems from dynamic generative behaviours such as,
for example, object or thread creation in Java, or reference creation in ML. A program
engaging in such behaviours is expected to generate a possibly unbounded amount of
distinct resources, each of which is assigned a unique identifier, a name. Hence, any
machine designed for analysing such programs is expected to operate on an infinite al-
phabet of names. The latter need has brought about the introduction of automata over
infinite alphabets in program analysis, starting from prototypical machines for mobile
calculi [23] and variable programs [[18]], and recently developing towards automata for
verification tasks such as equivalence checks of ML programs [24125]], context-bounded
analysis of concurrent programs [7\3] and runtime program monitoring [[14].

The literature on automata over infinite alphabets is rich in formalisms each based
on a different approach for tackling the infiniteness of the alphabet in a finitary manner
(see e.g. [31]] for an overview). A particularly intuitive such model is that of Register
Automata (RA) [18l26], which are machines built around the concept of an ordinary
finite-state automaton attached with a fixed finite amount of registers. The automaton
can store in its registers names coming from the input, and make control decisions by
comparing new input names with those already stored. Thus, by talking about addresses
of its memory registers rather than actual names, a so finitely-described automaton can
tackle the infinite alphabet of names. Driven by program analysis considerations, regis-
ter automata have been recently extended with the feature of name-freshness recogni-
tion [33], that is, the capability of the automaton to accept specific inputs just if they
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are fresh —they have not appeared before during computation. Those automata, called
Fresh-Register Automata (FRA), can account for languages like the following,

Lo={a1-an e N |Vi#j. a; # a;}

which captures the output of a fresh-name generator (A is an infinite set of names).
FRAs are expressive enough to model, for example, finitary fragments of languages
like the m-calculus [33]] or ML [24].

The freshness oracle of FRAs administers the automata with perhaps too restricted
an access to the full history of the computation: it allows them to detect name freshness,
but not non-freshness. Consider, for instance, the following simple language,

L' ={w e ({0, P} x N)* | each element of w appears exactly once in it
A each (O, a) in w is preceded by some (P, a) }

where the alphabet is made of pairs containing an element from the set {O, P} and a
name (O and P can be seen as different processes, or agents, exchanging names). The
language £’ represents a paradigmatic scenario of a name generator P coupled with
a name consumer O: each consumed name must have been created first, and no name
can be consumed twice. It can capture e.g. the interaction of a process which creates
new files with one that opens them, where no file can be opened twice. The inability of
FRAs to detect non-freshness, as well as the fact that names in their history cannot be
removed from it, do not allow them to express £'. More generally, the notion of re-usage
or consumption of names is beyond the reach of those machines. Another limitation of
FRAs is the failure of closure under concatenation, interleaving and Kleene star.
Aiming at providing a stronger theoretical tool for analysing computation with
names, in this work we further capitalise on the use of histories by effectively upgrading
them to the status of registers. That is, in addition to registers, we equip our automata
with a fixed number of unbounded sets of names (histories) where input names can be
stored and compared with names to follow. As histories are internally unordered, the
kind of name comparison we allow for is name belonging (does the input name be-
long to the i-th history?). Moreover, names can be selected and removed from histories,
and individual histories can be emptied/reset. We call the resulting machines History-
Register Automata (HRA). For example, £’ is accepted by the HRA with 2 histories

The automaton starts at state go with empty history and non-
. @ P @ deterministically makes a transition to state P or (), accept-

~_ ing the respective symbol. From state P, it accepts any input
a,1 name a which does not appear in any of its histories (this is

0] 1,2 what @ stands for), puts it in history number 1, and moves
back to gg. From state O, it accepts any input name a which

@ appears in history number 1, puts it in history number 2, and

moves back to gg.

Fig. 1. History-register automaton accepting £’
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[ FRA J—»[ unary HRA ]—»[ HRA ]

T

[ RA J [ non-reset HRA ] — [ DA/CMA ]

Fig. 2. Expressiveness of history-register automata compared to previous models (in italics). The
inclusion M — M’ means that for each A € M we can effectively construct an A" € M’
accepting the same language as .A. All inclusions are strict.

depicted in Figure [Tl where by convention we model pairs of symbols by sequences of
two symbolsﬂf

The strengthening of the role of histories substantially increases the expressive power
of our machines. More specifically, we identify three distinctive features of HRAs:
(1) the capability to reset histories; (2) the use of multiple histories; (3) the capability
to select and remove individual names from histories. Each feature allows us to express
one of the paradigmatic languages below, none of which are FRA-recognisable.

L1 = {apw - - - apwy, € N*|Vi. w; € N* AN agw; € Lo} for given ag
Lo ={aid) - ana, e N*| a1+ an,a}---a,, € Lo}

/ / * / / - . /
Ls={ar-ana)---a,, e N*[ar--an,a}---a,, € LoAViTj.a; =a;}

Apart from the gains in expressive power, the passage to HRAs yields a more well-
rounded automata-theoretic formalism for generative behaviours as these machines en-
joy closure under all regular operations apart from complementation. On the other hand,
the combination of features (1-3) above enable us to use histories as counters and sim-
ulate counter machines, and in particular Petri nets with reset arcs [2]. We therefore
obtain non-primitive recursive bounds for checking language emptiness. Given that lan-
guage containment and universality are undecidable already for register automata [26]],
HRAs are fairly close to the decidability boundary for properties of languages over in-
finite alphabets. Nonetheless, starting from HRAs and weakening them in each of the
first two factors (1,2) we obtain automata models which are still highly expressive but
computationally more tractable. Overall, the expressiveness hierarchy of the machines
we examine is depicted in Figure[Il (weakening in (2) and (1) respectively occurs in the
second column of the figure).

Motivation and Related Work. The motivation for this work stems from semantics and
verification. In semantics, the use of names to model resource generation originates
in the work of Pitts and Stark on the v-calculus [27] and Stark’s PhD [32]. Names
have subsequently been incorporated in the semantics literature (see e.g. [16441119]),
especially after the advent of Nominal Sets [[13]], which provided formal foundations
for doing mathematics with names. Moreover, recent work in game semantics has pro-
duced algorithmic representations of game models using extensions of fresh-register

! Although, technically speaking, the machines we define below do not handle constants (as
e.g. O, P), the latter are encoded as names appearing in initial registers, in standard fashion.
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automata [24/25]], thus achieving automated equivalence checks for fragments of ML.
In a parallel development, a research stream on automated analysis of dynamic con-
current programs has developed essentially the same formalisms, this time stemming
from basic operational semantics [7U3]. This confluence of different methodologies is
exciting and encourages the development of stronger automata for a wider range of
verification tasks, and just such an automaton we propose herein.

Although our work is driven by program analysis, the closest existing automata mod-
els to ours come from XML database theory and model checking. Research in the latter
area has made great strides in the last years on automata over infinite alphabets and
related logics (e.g. see [31]] for an overview from 2006). As we show in this paper,
history-register automata fit very well inside the big picture of automata over infinite
alphabets (cf. Figure[I) and in fact can be seen as a variant of Data Automata (DA) [6]
or, equivalently, Class Memory Automata (CMA) [3]]. This fit leaves space for transfer
of technologies and, more specifically, of the associated logics of data automata.

2 Definitions and First Properties

We start by fixing some notation. Let A/ be an infinite alphabet of names (or data
values, in terminology of [31]]), which we range over by a, b, ¢, etc. For any pair of
natural numbers i < j, we write [i, j] for the set {¢,i+1, -+, 5}, and for each ¢ we
let [¢] be the set {1,--- ,4}. For any set S, we write | S| for the cardinality of .S, P(.5)
for the powerset of S, T, (.S) for the set of finite subsets of .S, and Py (S) for the set
of non-empty subsets of .S. We write id : S — S for the identity function on .S, and
img(f) for the image of f : S — T.

We define automata which are equipped with a fixed number of registers and his-
tories where they can store names. Each register is a memory cell where one name
can be stored at a time; each history can hold an unbounded set of names. We use the
term place to refer to both histories and registers. Transitions are of two kinds: name-
accepting transitions and reset transitions. Those of the former kind have labels of the
form (X, X'), for sets of places X and X'; and those of the latter carry labels with
single sets of places X . A transition labelled (X, X’) means:

— accept name ¢ if it is contained precisely in places X, and
— update places in X and X’ so that a be contained precisely in places X' after the
transition (without touching other names).

By a being contained precisely in places X we mean that it appears in every place in X,
and in no other place. In particular, the label ((}, X’) signifies accepting a fresh name
(one which does not appear in any place) and inserting it in places X’. On the other hand,
a transition labelled by X resets all the places in X, that is, it updates each of them to
the empty set. Reset transitions do not accept names; they are e-transitions from the
outside. Note then that the label (X, () has different semantics from the label X: the
former stipulates that a name appearing precisely in X be accepted and then removed
from X; whereas the latter clears all the contents of places in X, without accepting
anything.
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Formally, let us fix positive integers m and n which will stand for the default number
of histories and registers respectively in the machines we define below. The set Asn of
assignments and the set Lab of labels are:

Asn = {H : [m+n] — Pa(N) | Vi > m.|H(i)| < 1}
Lab = P([m+n])* UP([m+n])

For example, {(z,0) | ¢ € [m+n]} is the empty assignment. We range over elements of
Asn by H and variants, and over elements of Lab by ¢ and variants. Moreover, it will be
handy to introduce the following notation for assignments. For any assignment H and
anya € N, S C Nand X C [m+n]:

— We set HQX to be the set of names which appear precisely in places X in H, that
is, HQX = ;e x H (i) \ U ¢ x H ().
In particular, HQ () = N\ | J,H (i) is the set of names which do not appear in H.
- H[X +— 5] is the update H’' of H so that all places in X are mapped to S, that is,
H'={(t,H®))|i¢ X}U{(i,5)|i € X}.E.g. H[X ~ 0] resets all places in X.
— Hlain X] is the update of H which removes name a from all places and inserts it
back in X, that is, H[a in X] is the assignment:

{(, H(HW{a}) [i € XN[m]} U {(i, {a}) [i € X\[m]} U{(, H(D)\{a}) |i ¢ X}

Note above that operation H[a in X] acts differently in the case of histories (i < m)
and registers (i > m) in X: in the former case, the name « is added to the history H (i),
while in the latter the register H (7) is set to {a} and its previous content is cleared.

We can now define our automata.

Definition 1. A history-register automaton (HRA) of type (m,n) is a tuple A =
(Q, q0, Ho, 0, F') where:

— Q) is a finite set of states, qq is the initial state, F' C () are the final ones,

— Hy € Asn is the initial assignment, and

- 0 C Q x Lab x Q is the transition relation.
For brevity, we shall call A an (m,n)-HRA.

. .. . X, X' X . .-
We write transitions in the forms ¢ —— ¢’ and ¢ — ¢’, for each kind of transition

label. In diagrams we may unify different transitions with common source and target,

X' /Yy’
for example ¢ —) q' and ¢ —) ¢’ may be written ¢ BT CEN q'; moreover, we

shall lighten notation and write ¢ for the singleton {i}, and ij for {4, j}.

We already gave an overview of the semantics of HRAs. This is formally defined by
means of configurations representing the current computation state of the automaton. A
configuration of A is a pair (¢, H) € Q, where:

Q =@ X Asn
From the transition relation § we obtain the configuration graph of .4 as follows.

Definition 2. Let A be an (m,n)-HRA as above. Its configuration graph (Q, —),
where — C Q x (NU {e}) x Q, is constructed by setting (¢, H) =5 (¢, H') just
if one of the following conditions is satisfied.
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- x:aeNandthereisq)g/ q € dsuchthata € HQX and H' = Hlain X'].
—z=candthereisq == ¢ € d such that H' = H[X ~ ().

The language accepted by Ais L(A) = {w € N* | (qo, Ho) - (q, ) andq € F'}
where —» is the reflexive transitive closure of — (i.e. ¢ Iy i if q LN

Note that we use € both for the empty sequence and the empty transition so, in particular,
when writing sequences of the form z; - - - ,, we may implicitly consume €’s.

Example 3. The language £, of the Introduction is recognised by the following (1, 1)-
HRA (leftmost below), with initial assignment {(1, ), (2, ag)}. The automaton starts
by accepting ag, leaving it in register 2, and moving to state ¢;. There, it loops accepting
fresh names (appearing in no place) which it stores in history 1. From g¢; it goes back
to q; by resetting its history.

HJ oRR

@2/112

We can also see that the other two HRAs, of type (2, 0) and (1, 0), accept the languages
L5 and L3 respectively. Both automata start with empty assignments.

Finally, the automaton we drew in Figure[T]is, in fact, a (2,2)-HRA where its two regis-
ters initially contain the names O and P respectively. The transition label O corresponds
0(3,3),and Pto (4,4).

As mentioned in the introductory section, HRAs build upon (Fresh) Register Automata
[[18.26l33]]. The latter can be defined within the HRA framework as follows@

Definition 4. A Register Automaton (RA) of n registers is a (0,n)-HRA with no reset
transitions. A Fresh-Register Automaton (FRA) of n registers is a (1,n)-HRA A =
(@, qo, Ho, 0, F) such that Ho(1) = J, Ho (i) and:

— forall (q,4,q") € 6, there are X, X' such that { = (X, X")and 1 € X';
- forall (q,{1},X’,q’) € 6, thereis also (¢,0,X’,q’) € 4.

Thus, in an FRA all the initial names must appear in its history, and the same holds for
all the names the automaton accepts during computation (1 € X’). As, in addition, no
reset transitions are allowed, the history effectively contains all names of a run. On the
other hand, the automaton cannot recognise non-freshness: if a name appearing only
in the history is to be accepted at any point then a totally fresh name can be also be
accepted in the same way. Now, from [33] we have the followingE

Lemma 5. The languages L1, Lo and L3 are not FRA-recognisable.

Bisimulation Bisimulation equivalence, also called bisimilarity, is a useful tool for re-
lating automata, even from different paradigms. It implies language equivalence and is
generally easier to reason about than the latter. We will be using it avidly in the sequel.

2 The definitions given in [I8126/33] are slightly different but can routinely be shown equivalent.
3 L1 was explicitly examined in [33]. For £2 and £3 we use a similar argument as the one for
showing that Lo * Lo is not FRA-recognisable [33]].
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Definition 6. Let A; = (Qi, qoi, Hoi, di, I;) be (m,n)-HRAs, for i = 1,2. A relation
R C Q1 X Q2 is called a simulation on A; and As if, for all (1, 42) € R,

- if G — §; and 71(q)) € Fy then Go —» @b for some 1 (Gh) € Fa, where Ty is
the first projection function,
- ifG1 —=»- - § then Go —» -2 g, for some (§},d5) € R.
Ris called a bisimulation if both R and R~ are simulations. We say that Ay and As are
bisimilar, written A; ~ As, if ((go1, Ho1), (qo2, Ho2)) € R for some bisimulation R.

The following is a standard result.
Lemma 7. If A; ~ Ay then L( A1) = L(A3).

As a first taste of HRA reasoning, we sketch a technique for simulating registers by
histories in HRAs. The idea is to represent a register by a history whose size is always
kept at most 1. To ensure that histories are effectively kept in size < 1 they must be
cleared before inserting names, which in turn complicates deciding when a transition
can be taken as it may depend on the deleted names. To resolve this, we keep two copies
of each register so that, for each transition with label (X, X’), we use one set of copies
for the name comparisons needed for the X part of the label, and the other set for the
assignments dictated by X'. Resets are used so that one set of copies is always empty.

Proposition 8. Ler A = (Q, qo, Ho, 9, F') be an (m,n)-HRA. There is an (m+2n, 0)-
HRA A’ such that A ~ A'.

In Proposition 20l we show that registers can be simulated also without using resets.
Both that and the above reductions, though, come at the cost of an increased number of
histories and, more importantly, the simulation technique obscures the intuition of reg-
isters and produces automata which need close examination even for simple languages
like the one which contains all words a; - - - a, such that a; # a;41 for all ¢ (see Exam-
ple 2T)). As, in addition, it is not applicable to the weaker unary HRAs we examine in
Section ] we preferred to explicitly include registers in HRAs. Another design choice
regards the use of sets of places in transitions instead e.g. of single places. Although the
latter description would lead to an equivalent and probably conciser formalism, it would
be inconvenient for combining HRAs e.g. in order to produce the intersection of their
accepted languages. In fact, our formulation follows M-automata [18]], an equivalent
presentation of RAs susceptible to closure constructions.

Determinism. We close our presentation here by describing the deterministic class of
HRAs. We defined HRAs in such a way that, at any given configuration (¢, H) and for
any input symbol a, there is at most one set of places X that can match a, i.e. such that
a € HQX. As a result, the notion of determinism in HRAs can be ensured by purely

. . X, . . .
syntactic means. Below we write ¢ — ¢’ € § if there is a sequence of transitions
X X . .
¢ —> - = ¢ ind such that X = (J;_, X;. In particular, ¢ BN q€d.

Definition 9. We say that an HRA A is deterministic if, for any reachable configura-
tion § and any name a, if § —» - —— Gy and § — - —= {o then G = Go.

X\Y1,X3 Y2 X\Y2,X5

A is strongly deterministic if ¢ 2, G €Edandq —» - ———— g2 €6

imply g1 = q2, Y1 = Yo and X1 = X».
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Lemma 10. If A is strongly deterministic then it is deterministic.

3 Closure Properties, Emptiness and Universality

History-register automata enjoy good closure properties with respect to regular lan-
guage operations. In particular, they are closed under union, intersection, concatenation
and Kleene star, but not closed under complementation.

In fact, the design of HRAs is such that the automata for union and intersection come
almost for free through a straightforward product construction which is essentially an or-
dinary product for finite-state automata, modulo reindexing of places to account for du-
plicate labels (cf. [[18]]). The constructions for Kleene star and concatenation are slightly
more involved as we make use of the following technical gadget. Given an (m, n)-HRA
A and a sequence w of k distinct names, we construct a bisimilar (m, n+k)-HRA, de-
noted A fix w, in which the names of w appear exclusively in the additional k registers,
which, moreover, remain unchanged during computation. The construction allows us,
for instance, to create loops such that after each loop transition the same initial configu-
ration occurs (in this case, w would enlist all initial names).

Proposition 11. Languages recognised by HRAs are closed under union, intersection,
concatenation and Kleene star.

As we shall next see, while universality is undecidable for HRAs, their emptiness prob-
lem can be decided by reduction to coverability for transfer-reset vector addition sys-
tems with states. In combination, these results imply that HRAs cannot be effectively
complemented. In fact, there are HRA-languages whose complements are not recognis-
able by HRAs. This can be shown via the following example, adapted from [22].

Lemma 12. HRAs are not closed under complementation.

Example 13. Consider £, = {w € N*| not all names of w occur exactly twice in it },
which is accepted by the (2, 0)-HRA below, where “—” can be any of &, 1, 2.

2,1/1,1 @,1/1,1 @,1/1,1 - =

ol .2 @ 2,2 é 2,2
The automaton non-deterministically selects an input name which either appears only
once in the input or at least three times.

We claim that £, the language of all words whose names occur exactly twice in
them, is not HRA-recognisable. For suppose it were recognisable (wlog) by an (m, 0)-
HRA A with k states. Then, 4 would accept the word w = aj - - - ag a1 - - - a, where
all a;’s are distinct and do not appear in the initial assignment of 4. Let p = p1po be
the path in A through which w is accepted, with each p; corresponding to one of the
two halves of w. Since all a;s are fresh for A, the non-reset transitions of p; must carry
labels of the form (@, X), for some sets X. Let ¢ be a state appearing twice in p;, say
p1 = p11(¢)p12(q)p13. Consider now the path p’ = p/p2 where p] is the extension
of p; which repeats p1o, that is, p{ = p11(¢)p12(q)p12(¢)p13. We claim that p’ is an
accepting path in A. Indeed, by our previous observation on the labels of pq, the path
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p} does not block, i.e. it cannot reach a transition ¢; & g2, with X # (), in some
configuration (q1, Hy) such that H;@X = (). We need to show that ps does not block
either (in p’). Let us denote (g, H1) and (g, Hs) the configurations in each of the two
visits of ¢ in the run of p on wj; and let us write (g, H3) for the third visit in the run of
p’, given that for the other two visits we assume the same configurations as in p. Now
observe that, for each non-empty X C [m], repeating p12 cannot reduce the number of
names appearing precisely in X, therefore | Ho@X | < |H3@QX |. The latter implies that,
since p does not block, p’ does not block either. Now observe that any word accepted
by w’ is not in L4, as p accepts more than k distinct names, a contradiction.

We now turn to the question of checking emptiness. The use of unbounded histories
effectively renders our machines into counter automata: where a counter automaton
would increase (or decrease) a counter, an HRA would add (remove) a name from one
of its histories, or set of histories. Nonetheless, HRAs cannot decide their histories for
emptiness, which leaves space for decidabilityﬂ The capability for resetting histories,
on the other hand, leads us to consider Transfer-Reset Vector Addition Systems with
States [812] (i.e. Petri nets with reset and transfer arcs) as appropriate formalisms for
this question.

A Transfer-Reset Vector Addition System with States (TR-VASS) of m dimensions
isatuple A = (Q, 6), with Q aset of statesand § C Q x ({—1,0, 1}™U[m]2U[m]) xQ
a transition relation. Each dimension of A corresponds to an unbounded counter. Thus,
a transition of .4 can either update its counters by addition of a vector ¥ € {—1,0,1}™,
or transfer the value of one counter to another, or reset some counter.

Formally, a configuration of A is a pair (g, ¥) €  x N™ consisting of a state and a
vector of values stored in the counters. The configuration graph of A is constructed by
including an edge (¢, ¥) — (¢, v") if:

— there is some (¢, 7", ¢’) € ¢ such that o' = ¥ + ¢/, or
— thereis (g, 4, j,q") € 6 such that ¥ = (¢]j — v;+v;])[i — 0],
— or there is some (g, ¢,¢') € J such that & = ¥[i — 0];

where we write v; for the ith dimension of ¥, and ¢]i — v’] for the update of ¥ where
the i-th counter is set to v’. An R-VASS is a TR-VASS without transfer transitions.
The control-state reachability problem for TR-VASSs is defined as follows. Given
a TR-VASS A of m dimensions, a configuration (go, 0o) and a state g, is there some
¥ € N™ such that (go, %) —» (g, ¥)? In such a case, we write (A, qo, U9, q) € Reach.

Fact 14 ([10/30J11]]). Control-state reachability for TR-VASSs and R-VASSs is decid-
able and has non-primitive recursive complexity.

We next reduce HRA nonemptiness to TR-VASS control-state reachability. Starting
w.lo.g. from an (m, 0)-HRA A, we construct a TR-VASS A’ with 2™ dimensions: one
dimension X for each X C [m]. The dimension @ is used for garbage collecting. We
assign to each state of A a corresponding state in A’ (and also include a stock of dummy
states for intermediate transitions) and translate the transitions of A into transitions of
A’ as follows.

# Recall that 2-counter machines with increase, decrease and check for zero are Turing complete.
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— Each transition with label (X, X”) is mapped into a pair of transitions which first
decrease counter X and then increase X'. _
— Each reset transition with label X causes a series of transfers: for each counter Y,

we do a transfer from Y to Y \ X.

Thus, during computation in each of A’ and A4, the value of counter X matches the num-
ber of names which precisely appear in histories X. Since, for checking emptiness, the
specific names inside the histories of .4 are of no relevance, the above correspondence
extends to matching nonemptiness for .4 to (final) control-state reachability for .A’.

Proposition 15. Emptiness is decidable for HRAs.

Doing the opposite reduction we can show that emptiness of even strongly deterministic
HRAs is non-primitive recursive. In this direction, each R-VASS A of m dimensions
is simulated by an (m, 0)-HRA A’ so that the value of each counter 7 of the former is
the same as the number of names appearing precisely in history ¢ of the latter. Using
a non-trivial encoding of resets we can ensure that if A adheres to a particular kind
of determinacy conditions (which the machines used in [30] for proving non-primitive
recursive complexity do adhere to) then A’ is strongly deterministic.

Proposition 16. Emptiness for strongly deterministic HRAs is non-primitive recursive.

We finally consider universality and language containment. Note first that our machines
inherit undecidability of these properties from register automata [26]]. However, these
properties are decidable in the deterministic case, as deterministic HRAs are closed un-
der complementation. In particular, given a deterministic HRA A, the automaton A’
accepting the language '\ £(.A) can be constructed in an analogous way as for deter-
ministic finite-state automata, namely by obfuscating the automaton with all “missing”
transitions and swapping final with non-final states (modulo e-transitions). We add the

missing transitions as follows. For each state ¢ and each set X such that there are no

.- Y X\Y, X’ . .. X,0
transitions of the form ¢ — - \—> ¢’ in A, we add a transition ¢ —— gg to some

sink non-final state ¢g.

Proposition 17. Language containment and universality are undecidable for HRAs.
They are decidable for deterministic HRAs, with non-primitive recursive complexity.

4 Weakening HRAs

Since the complexity of HRAs is substantially high, e.g. for deciding emptiness, it is
useful to seek for restrictions thereof which allow us to express meaningful properties
and, at the same time, remain at feasible complexity. As the encountered complexity
stems from the fact that HRAs can simulate computations of R-VASSs, our strategy for
producing weakenings is to restrict the functionalities of the corresponding R-VASSs.
We follow two directions:

(a) We remove reset transitions. This corresponds to removing counter transfers and
resets and drops the complexity of control-state reachability to exponential space.
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(b) We restrict the number of histories to just one. We thus obtain polynomial space
complexity as the corresponding counter machines are simply one-counter automata.
This kind of restriction is also a natural extension of FRAs with history resets.

Observe that each of the aspects of HRAs targeted above corresponds to features (1,2)
we identified in the Introduction, witnessed by the languages £, and L, respectively.
We shall see that each restriction leads to losing the corresponding language.

Our analysis on emptiness for general HRAs from Section [3] is not applicable to
these weaker machines as we now need to take registers into account: the simulation
of registers by histories is either not possible or not practical for deriving satisfactory
complexity bounds. Additionally, a direct analysis will allow us to reduce instances of
counter machine problems to our setting decreasing the complexity size by an expo-
nential, compared to our previous reduction. Solving emptiness for each of the weaker
versions of HRAs will involve reduction to a name-free counter machine. In both cases,
the reduction shall follow the same concept as in Section 3] namely of simulating com-
putations with names symbolically.

4.1 Non-reset HRAs

We first weaken our automata by disallowing resets. We show that the new machines
retain all their closure properties apart from Kleene-star closure. The latter is concretely
manifested in the fact that language £, of the Introduction is lost. On the other hand,
the emptiness problem reduces in complexity to exponential space.

Definition 18. A non-reset HRA oftype (m,n)isan (m,n)-HRA A= (Q, qo, Ho, 0, F)
such that there is no q X q €.

We call such a machine a non-reset (m, n)-HRA. In an analogous fashion, a VASS of
m dimensions (an m-VASS) is an R-VASS with no reset transitions. For these machines,
control-state reachability is significantly less complex.

Fact 19. Control-state reachability for VASSs is EXPSPACE-complete [21)28)], and can
be decided in space O((M+log |Q|) - 2™ 1°8 ™) ‘ywhere () the set of states of the exam-
ined instance, m the vector size, M the maximum initial value and r a constant [29)].

Closure Properties. Of the closure constructions of Section 3] those for union and
intersection readily apply to non-reset HRAs, while the construction for concatenation
needs some minor amendments. On the other hand, using an argument similar to that
of 15} Proposition 7.2], we can show that the language £ is not recognised by non-reset
HRASs and, hence, the latter are not closed under Kleene star. Finally, note that the HRA
constructed for the language £4 in Example[I3lis a non-reset HRA, which implies that
non-reset HRAs are not closed under complementation.

Emptiness. We next reduce nonemptiness for non-reset HRAs to control-state reach-
ability for VASSs. Starting from a non-reset (m,n)-HRA A = (Q, qo, Ho, 6, F'), the
reduction maps each non-empty subset of [m] which appears in § to a VASS counter
(Y C [m] appears in ¢ if there is (¢, X, X', ¢’) € d such that Y € {XN[m], X'N[m]}).
Thus, the resulting VASS A’ has m’ counters, where m’ < 2||. Although the num-
ber of states of A’ is exponential, as the status of the registers needs to be embedded
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in states, the dominating factor for state-reachability is m/, which is linear in the size
of A.

For the converse direction, we reduce reachability for a VASS of 2”*—1 counters to
nonemptiness for an (m, 0)-automaton: we map each counter to a non-empty subset
of [m]. Note that such a (2™-1)-to-m reduction would not work for R-VASSs, hence
the different reduction in Proposition This is because resets in HRAs cannot fully
capture the behaviour of resets in R-VASSs. In HRAs a reset of a set of histories {1, 2},
say, cannot occur without also resetting histories 1 and 2. In addition, resets necessarily
cause virtual transfers of names (e.g. resetting history 1 makes all names appearing
precisely in {1, 2} to appear precisely in history 2).

Proposition 20. Emptiness checking for non-reset HRAs is EXPSPACE-complete.

Non-reset HRAs without registers We now show that non-reset HRAs with only histo-
ries are as expressive as general non-reset HRAs. The equivalence we prove is weaker
than the one we proved for general HRAs: we obtain language equivalence rather than
bisimilarity. Our proof below is based on the colouring technique of [3]. Before we pro-
ceed with the actual result, let us first demonstrate the technique through an example.

Example 21. Tt is easy to see that the following language

Ls={a1 - an € N* |Vi.a; # a1} Hz’l

is recognised by the (0,1)-HRA on its right. What is perhaps not as clear is that the
(2,0)-HRA on the right below, call it A, accepts the same language.

Note first that, by construction, it is not possible for A to

accept the same name in two successive transitions: if we 2,1/ 2’1&2 / 2,2&'2 /1,2
write (X, X’) for the labels of incoming transitions to gg

and (Y, Y’) for the outgoing, we cannot match any X’ with H
some Y, and similarly for g;. This shows £(A) C Ls. To 2,1/1,1

prove the other inclusion, we need to show that for every

word w = aj ---a, € Ls there is an accepting run in \A. For this, it suffices to find
a sequence (1, - - - , £,, of labels from the set {(0, 1), (0,2), (1,1),(1,2),(2,1),(2,2)},
say (¢; = (X;, X]), satisfying:

1. Forany i, X| # Xit1.
2. Ifa; = aj,i < j,and forno ¢ < k < j do we have a; = a then X/ = X.
3. For any i, if a; #a; for all j <i then X; = ().

The first condition ensures that the sequence corresponds to a valid transition sequence
in A, and the other two that the sequence accepts the word w = a; - - - a,,. Conditions
1 and 2 determine dependencies between the choices of left and right components in
¢;s. Let us attach to w dependency pointers as follows: attach a pointer of type 1 (de-
pendency right-to-left) from each a; to its next occurrence in w, say a;; from each a; 1
attach a type 2 pointer (dependency left-to-right) to a;. Now note that, as there is no
cycle in w which alternates between type 1 and type 2 pointers, it is always possible to
produce a valid sequence ¢1, - - - , £,,.

We now state the general result. The proof follows the rationale described above,
and is omitted for space limitations. We assume automata with their registers initially
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empty — the general case can be captured by first applying a construction like A fix w
of Section 3] (the construction introduces new registers where we would store the initial
names, but we can as well use new histories for the same purpose).

Proposition 22. For each (m,n)-non-reset HRA A with initially empty registers there
is an (m~+3n, 0)-non-reset HRA A’ such that L(A) = L(A').

4.2 Unary HRAs

Our second restriction concerns allowing resets but bounding the number of histories to
just one. Thus, these automata are closer to the spirit of FRAs and, in fact, extend them
by rounding up their history capabilities. We show that these automata require polyno-
mial space complexity for emptiness and retain all their closure properties apart from
intersection. The latter is witnessed by failing to recognise Lo from the Introduction.
Extending this example to multiple interleavings, one can show that intersection is in
general incompatible with bounding the number of histories.

Definition 23. A (1,n)-HRA is called a unary HRA of n registers.

In other words, unary HRAs are extensions of FRAs where names can be selectively
inserted or removed from the history and, additionally, the history can be reset. These
capabilities give us a strict extension.

Example 24. The automata used in Example 3] for £, and L3 were unary HRAs. Note
that neither of those languages is FRA-recognisable. On the other hand, in order to
recognise L5, an HRA would need to use at least two histories: one history for the odd
positions of the input and another for the even ones. Following this intuition we can
show that L is not recognisable by unary HRAs.

Closure properties. The closure constructions of Section [3 readily apply to unary
HRAs, with one exception: intersection. For the latter, we can observe that Lo =
L(A1) N L(Ag), where L(Ay) = {a1a}---anal, € .
N* a1 -an, € Lo} and L(Ag) = {a1a} - anal, € H
N*|a}---al, € Lo}, and A; and A, are the unary (1, 0)-

. . . . 2,2 /1,1
HRASs on the side, with empty initial assignments. On the
other hand, unary HRAs are not closed under complemen- ﬁ
tation as well, as one can construct unary HRAs accepting
L(A1) and L(As), and then take their union to obtain a 2,1
unary HRA for L.

Emptiness In the case of just one history, the results on TR-VASS reachability [30/11]]
from Section 3| provide rather rough bounds. It is therefore useful to do a direct analysis.
We reduce nonemptiness for unary HRAs to control-state reachability for R-VASSs of
1 dimension. Although these machines can be seen as close relatives to several other
formalisms, like one-counter automata or pushdown automata on a one-letter alphabet,
to the best of our knowledge there has been no direct attack of state reachability for
them. Our analysis below, which follows standard techniques, yields square minimal-
path length, and hence a polynomial complexity for emptiness (/V is the size of the
input).
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Lemma 25. Control-state reachability for R-VASSs of dimension I can be decided in
SpACE(log? N).

Proposition 26. Emptiness for unary HRAs can be decided in SPACE((N log N)?).

5 Connections with Existing Formalisms

We have already seen that HRAs strictly extend FRAs. In this section we shall draw
connections between HRAs and an automata model over infinite alphabets at the limits
of decidability, called Data Automata (DA), introduced in [6] in the context of XML
theory. DAs operate on data words, i.e. over finite sequences of elements from S x N,
where S is a finite set of data tags and N is an infinite set of data values (but we shall
call them names). A DA operates in two stages which involve a transducer automaton
and a finite-state automaton respectively. Both automata operate on the tag projection
of the input, with the second automaton focussing on tags paired with the same name.

For the rest of our discussion we shall abuse data words and treat them simply as
strings of names, neglecting data tags. This is innocuous since there are straightfor-
ward translations between the two settingsﬁ An equivalent formulation of DAs which
is closer to our framework is the following [3].

Definition 27. A Class Memory Automaton (CMA) is a tuple A = (Q, qo, ¢0, 9, F1,
Fy) where Q) is a finite set of states, qo € Q is initial, Fy C Fy C Q are sets of final
states and the transition relation is of type 6 C Q x (QU{L}) x Q. Moreover, ¢g is an
initial class memory function, that is, a function ¢ : N' — Q U { L} with finite domain

({a| ¢(a) # L} is finite).

The semantics of a CMA A like the above is given as follows. Configurations of A are
pairs of the form (g, ¢), where ¢ € @ and ¢ a class memory function. The configuration
graph of A is constructed by setting (¢, ¢) — (¢, ¢') just if there is (¢, #(a), ¢') € &
and ¢ = ¢la — ¢']. The initial configuration is (¢o, ¢o), while a configuration (g, ¢) is
accepting just if ¢ € Fy and, foralla € N, ¢(a) € Fo U {L}.

Thus, CMAs resemble HRAS in that they store input names in “histories”, only that
histories are identified with states: for each state ¢ there is a corresponding history ¢
(note notation overloading), and a transition which accepts a name a and leads to a state
q must store a in the history g. Moreover, each name appears in at most one history
(hence the type of ¢) and, moreover, the finality conditions for configurations allow us
to impose that all names appear in specific histories, if they appear in any. For example,
here is a CMA (left below, with F; = F» = {qo}) which recognises L4 of Example[13

4) *’3/—\
(11
q1
3 A string of names is the same as a data word over a smgleton set of data tags; while data tags

can be simulated by names in registers of the initial configuration which do not get moved nor
copied during the computation.
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Each name is put in history ¢; when seen for the first time, and to g when seen for the
second time. The automaton accepts if all its names are in gg. This latter condition is
what makes the essential difference to HRAs, namely the capability to check where the
names reside for acceptance. For example, the HRA on the right above would accept
the same language were we able to impose the condition that accepting configurations
(q, H) satisfy a € HQ{2} for all names a € | J; H(i).

The above example proves that HRAs cannot express the same languages as CMAs.
Conversely, as shown in [5, Proposition 7.2], the fact that CMAs lack resets does not
allow them to express languages like, for example, £;. In the latter sections of [5]
several extensions of CMAs are considered, one of which does involve resets. However,
the resets considered there do not seem directly comparable to the reset capability of
HRAs.

On the other hand, a direct comparison can be made with non-reset HRAs. We al-
ready saw in Proposition[22]that, in the latter idiom, histories can be used for simulating
register behaviour. In the absence of registers, CMAs differ from non-reset HRAs solely
in their constraint of relating histories to states (and their termination behaviour, which
is more expressive). As the latter can be easily counterbalanced by obfuscating the set
of states, we obtain the following.

Proposition 28. Foreachnon-reset HRA Athere isa CMA A’ such that L(A) = L(A').

6 Further Directions and Acknowledgements

Our goal is to apply automata with histories in static and runtime verification. While
FRAs have been successful in modelling programs which, at each point during com-
putation, can have access to a bounded memory fragment [33l24], HRAs allow us to
express access to unbounded memory, provided that memory locations can be grouped
in a bounded number of equivalence classes. Moreover, with HRAs we can express a
significantly wider range of properties, closed under complementation-free regular oper-
ations, and in particular we can write properties where the history is used in meaningful
ways (cf. the scenario of Figure[Tl). Although the complexity results derived in this pa-
per may seem discouraging at first, they are based on quite specific representations of
hard problems; in practice, we expect programs to yield automata of low complexities.
Experience with tools based on TR-VASS coverability, like e.g. BFC [17]], positively
testify in that respect. On the other hand, an extension we envisage to consider is one
with restricted emptiness tests, in analogy to e.g. [12].

A connection we would like to investigate is that between our automata and register
automata which use alternation. Such machines with one register express behaviours re-
lated to HRAs [9]] and enjoy some common properties, such as non-primitive recursive
complexity for emptiness. Another interesting connection is with Data Nets [20], a class
of machines which combine Petri nets with infinite alphabets but are not formalised
as language acceptors over them. In terms of complexity, data nets seem substantially
more involved than reset Petri nets and our machines. Finally, a problem left open in
this work is decidability and complexity of bisimilarity. Although it is known that bisim-
ilarity is undecidable for Petri nets [15], the version which seems of relevance towards
an undecidability argument for HRAs is that of visibly counter automata with labels,
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i.e. automata which accept labels at each transition, and the action of each transition is
determined by its label. The latter problem is not known to be decidable.

We would like to thank Dino Distefano, Petr Jancar, Ranko Lazic, Philippe Schnoe-

belen, Sylvain Schmitz and anonymous reviewers for fruitful discussions, suggestions
and explanations. This work was supported by EPSRC grant HO11749 (Grigore) and a
Royal Academy of Engineering research fellowship (Tzevelekos).
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