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Abstract. Post Embedding Problems are a family of decision prob-
lems based on the interaction of a rational relation with the sub-
word embedding ordering, and are used in the literature to prove non
multiply-recursive complexity lower bounds. We refine the construction
of Chambart and Schnoebelen (LICS 2008) and prove parametric lower
bounds depending on the size of the alphabet.

1 Introduction

Ordinal Recursive functions and subrecursive hierarchies [24, 12] are employed
in computability theory, proof theory, Ramsey theory, rewriting theory, etc. as
tools for bounding derivation sizes and other objects of very high combinatory
complexity. A standard example is the ordinal-indexed extended Grzegorczyk hi-
erarchy Fα [21], which characterizes classical classes of functions: for instance,
F2 is the class of elementary functions,

⋃
k<ω Fk of primitive-recursive ones,

and
⋃

k<ω Fωk of multiply-recursive ones. Similar tools are required for the clas-
sification of decision problems arising with verification algorithms and logics,
prompting the investigation of “natural” decision problems complete for fast-
growing complexity classes Fα [14, 27].

Post Embedding Problems. (PEPs) have been introduced by Chambart and Sch-
noebelen [7] as a tool to prove the decidability of safety and termination prob-
lems in unreliable channel systems. The most classical instance of a PEP is called
“regular” by Chambart and Schnoebelen [7], but we will follow Barceló et al. [4]
and rather call it rational in this paper:

Rational Embedding Problem (EP[Rat])

Input. A rational relation R in Σ∗ ×Σ∗.
Question. Is the relation R ∩� empty?

Here, the � relation denotes the subword embedding ordering, which relates two
words w and w′ if w = c1 · · · cn and w′ = w0c1w1 · · ·wncnwn+1 for some symbols
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Fig. 1. Relationships between PEPs and similar decision problems

ci inΣ and words wi inΣ∗; in other words, w can be obtained fromw′ by “losing”
some symbol occurrences (maybe none).

Although PEPs appear naturally in relation with channel systems [7, 8, 16]
and queries on graph databases [4], their main interest lies in their use in lower
bound proofs for other, sometimes seemingly distantly related problems [23, 19,
3]: in spite of their simple formulation, they are known to be of non multiply-
recursive complexity in general. In fact, this motivation has been present from
their inception in [7]: find a “master” decision problem complete for Fωω , the
class of hyper-Ackermannian problems, solvable with non multiply-recursive
complexity, but no less—much like SAT is often taken as the canonicalNPTime-
complete problem, or the Post Correspondence Problem for Σ0

1 . This has also
prompted a wealth of research into variants and related questions [10, 4, 18].

In this paper, we revisit and simplify the original proof of Chambart and
Schnoebelen [9] that established the hardness of PEPs, and prove tight parame-
terized lower bounds when the size of the alphabet Σ is fixed. More precisely, we
show that the (k+2)-rational embedding problem, i.e. the restriction of EP[Rat]
to alphabets Σ of size at most k+2, is hard for Fωk the class of k-Ackermannian
problems if k ≥ 2. As the problem can be shown to be in Fωk+1+1 [26, 18], we
argue this to be a rather tight bound. The hyper-Ackermannian lower bound
of Fωω first proven by Chambart and Schnoebelen then arises when |Σ| is not
fixed but depends on the instance.

Our main tool to this end is another problem that involves a rational relation
together with the subword embedding:

Lossy Rewriting (LR[Rat])

Input. A rational relation R in Σ∗ ×Σ∗ and two words w and w′ in Σ∗.
Question. Does (w,w′) belong to the reflexive transitive closure R�

�?

Here R� denotes the “lossy version” of the relation R, defined formally as the
composition � �R ��. We prove our lower bounds on this variant of EP[Rat] and
then use them to prove lower bounds for EP[Rat] and other embedding problems;
Fig. 1 summarizes the lower bounds presented in this paper. In a sense, LR is
our own champion for the title of “master” problem for Fωω . Besides its rather
simple statement, note that the related question of whether (w,w′) belongs to
R� is undecidable by an easy reduction from the acceptance problem for Turing
machines.
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Overview. Technically, our results rely on an implementation of the computa-

tions for the Hardy functions Hωωk

and their inverses by successive applications
of a relation with a fixed bounded length discrepancy. The main difficulty here is
that this implementation should be robust for the symbol losses associated with
the embedding relation. It requires in particular a robust encoding of ordinals

below ωωk

as sequences over an alphabet of k+2 symbols, for which we adapt the
constructions of [9, 15]; see Sec. 3. Compared with previous work, we make the
most of the rational relations framework, leading to simpler and more detailed
proofs of robustness.

This allows us to show in Sec. 4 that for k ≥ 2, (k+2)-LR[1-bld], i.e. a version
of LR[Rat] over an alphabet of size |Σ| = k + 2 and with a relation R with
bounded length discrepancy of 1, is Fωk -hard. We also show that this lower
bound is quite tight, as (k + 2)-LR[Rat] is in Fωk+1 .

We then show in Sec. 5 that LR[1-bld] can easily be reduced to EP[Rat] and
other (parameterized) embedding problems—including EP[Sync], a restriction
of EP[Rat] introduced by Barceló et al. [4] where the relation R is synchronous
(aka regular), and which required a complex lower bound proof.

Let us now turn to the necessary formal background on PEPs in Sec. 2. Due
to space constraints, some proof details will be found in the full version of this
paper, available as arXiv:1211.5259 [cs.LO].

2 Post Embedding Problems

Rational Relations [11] play an important role in the following, as they provide
a notion of finitely presentable relations over strings more powerful than string
rewrite systems, and come with a large body of theory and results [see e.g. 25,
Chap. IV]. Let us quickly skim over the notations and definitions that will be
needed in this paper.

We assume the reader to be familiar with the basic characterizations of ratio-
nal relations R between two finite alphabets Σ and Δ by

closure of the finite relations inΣ∗×Δ∗ under union, concatenation, and Kleene
star,1

finite transductions defined by normalized transducers T = 〈Q,Σ,Δ, δ, I, F 〉
where Q is a finite set of states, δ ⊆ Q × ((Σ × {ε}) ∪ ({ε} × Δ)) × Q is
a transition relation—where ε denotes the empty word, of length |ε| = 0—,
initial set of states I ⊆ Q, and final set of states F ⊆ Q,

decomposition into a regular language L over some finite alphabet Γ and two
morphisms u:Γ ∗ → Σ∗ and v:Γ ∗ → Δ∗ s.t. R = u−1 � IdL � v, where IdL is
the identity function over the restricted domain L.

1 We use different symbols “∗” and “+” for Kleene star and Kleene plus, i.e. iteration
of concatenation “·” on the one hand, and “�” and “⊕” for reflexive transitive closure
and transitive closure, i.e. iteration of composition “�” on the other hand. Rational
relations and length-preserving relations are closed under Kleene star, but none of
the classes of relations we consider is closed under reflexive transitive closure.

http://arxiv.org/abs/1211.5259
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This last characterization is known as Nivat’s Theorem, and shows that
EP[Rat] can be stated alternatively as taking as input a regular language L in
Γ ∗ and two morphisms u and v from Γ ∗ to Σ∗ and asking whether there exists
some word x in L s.t. u(x) � v(x) [7]. This justifies the name of “Post Embed-
ding Problem”, as the well-known, undecidable Post Correspondence Problem
asks instead given u and v whether there exists x in Γ+ s.t. u(x) = v(x).

Synchronous Relations are a restricted class of rational relations, and are closed
under intersection and complement, in addition to e.g. the closure under com-
position and inverse that all rational relations enjoy. A rational relation has
b-bounded length discrepancy if the absolute value of |u| − |v| is at most b for all
(u, v) in R, and has bounded length discrepancy (bld) if there exists such a finite b.
In particular, it is length-preserving if |u| = |v|, i.e. if it has bld 0. A synchronous
relation is a finite union of relations of form {(u, vw) | (u, v) ∈ R ∧ w ∈ L} and
{(uw, v) | (u, v) ∈ R∧w ∈ L} where R ranges over length-preserving rational re-
lations and L over regular languages. In terms of classes of relations in Σ∗×Δ∗,
we have the strict inclusions [25]:

lp = 0-bld � · · · � b-bld � (b + 1)-bld � · · · � bld � Sync � Rat . (1)

Post Embedding Problems, as we have seen in the introduction, are concerned
with the interplay of a rational relation R in Σ∗ × Σ∗ with the subword em-
bedding ordering �. The latter is a particular case of a (deterministic) rational
relation that is not synchronous. Both EP[Rat] and LR[Rat] are particular in-
stances of more general, undecidable problems: the emptiness of intersection of
two rational relations for EP[Rat], and the word problem in the reflexive tran-
sitive closure of a rational relation for LR[Rat]. We can add another natural
problem to the set of PEPs:

Lossy Termination (LT[Rat])

Input. A rational relation R over Σ and a word w in Σ∗.
Question. Does R�

� terminate from w, i.e. is every sequence w = w0 R�w1 R�
· · ·R� wi R� · · · with w0, w1, . . . , wi, . . . in Σ∗ finite?

Again, this is a variant of the termination problem, which is in general undecid-
able when the relation is not lossy.

Restrictions. We parameterize PEPs with the subclass of rational relations under
consideration for R and the cardinal of the alphabet Σ; for instance, (k + 2)-
EP[Sync] is the variant of EP[Rat] where the relation is synchronous and |Σ| =
k + 2. We are interested in this paper in providing Fωk lower bounds with the
smallest possible class of relations and smallest possible alphabet size, but we
should also mention that some (rather strong) restrictions become tractable:

– Barceló et al. [4] show that EP[Rec]—where a recognizable relation is a finite
union of products L×L′ where L and L′ range over regular languages—is in
NLogSpace, because the intersection R ∩� is rational, and can effectively
be constructed and tested for emptiness on the fly,
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– Chambart and Schnoebelen [7] show that EP[2Morph]—where a 2-morphic
relation [20] is the composition R = (u−1 � v) \ {(ε, ε)} of two morphisms
u and v from Γ ∗ to Σ∗—is in LogSpace, because it reduces to checking
whether there exists a in Γ s.t. u(a) � v(a),

– the case EP[Rewr] of rewrite relations is similarly in LogSpace: a rewrite
relation R is defined from a semi-Thue system, i.e. a finite set Υ of rules
(u, v) in Σ∗ × Σ∗, as →Υ = {(wuw′, wvw′) | w,w′ ∈ Σ∗ ∧ (u, v) ∈ Υ}, and
EP[Rewr] reduces to checking whether u � v for some rule (u, v) of Υ ,

– the unary alphabet case of 1-EP[Rat] is in NLogSpace: this can be seen
using Parikh images and Presburger arithmetic:

Proposition 1. The problem 1-EP[Rat] is in NLogSpace.

3 Hardy Computations

We use the Hardy hierarchy as our main subrecursive hierarchy [21, 24, 12].
Although we will only use the lower levels of this hierarchy, its general definition
is worth knowing, as it is archetypal of ordinal-indexed subrecursive hierarchies;
see [27] for a self-contained presentation.

3.1 The Hardy Hierarchy

Ordinal Terms. Let ε0 be the smallest solution of the equation ωx = x. It is
well-known that any ordinal α < ε0 can be written uniquely in Cantor Normal
Form (CNF) as a sum

α = ωβ1 +̇ · · · +̇ ωβn (2)

where βn ≤ · · · ≤ β1 < α and each βi is itself in CNF. This ordinal α is 0 if
n = 0 in (2), a successor ordinal if βn is 0, and a limit ordinal otherwise. In the
following, we write α +̇ β to denote a direct sum α+ β where α > β or α = 0.

Subrecursive hierarchies are defined through assignments of fundamental se-
quences (λn)n<ω for limit ordinals λ < ε0, satisfying λn < λ for all n and
λ = supn λn. A standard assignment on terms in CNF is defined by:

(
γ +̇ ωα+̇1

)
n

def
= γ +̇ ωα · n,

(
γ +̇ ωλ

)
n

def
= γ +̇ ωλn , (3)

thus verifying ωn = n. Let Ω
def
= ωωω

; this yields for instance Ωk = ωωk

and, if

k > 0, (Ωk)n = ωωk−1·n.

Hardy Hierarchy. The Hardy hierarchy (Hα)α<ε0 is an ordinal-indexed hierarchy
of functions Hα:N → N defined by

H0(n)
def
= n Hα+̇1(n)

def
= Hα(n+ 1) Hλ(n)

def
= Hλn(n) . (4)
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Observe that H1 is simply the successor function, and more generally Hα is
the αth iterate of the successor function, using diagonalisation to treat limit
ordinals. A related hierarchy is the fast growing hierarchy (Fα)α<ε0 , which can

be defined by Fα
def
= Hωα

, resulting in F0(n) = H1(n) = n+1, F1(n) = Hω(n) =

Hn(n) = 2n, F2(n) = Hω2

(n) = 2nn being exponential, F3 = Hω3

being non-
elementary, Fω = Hωω

= HΩ1 being an Ackermannian function, Fωk = HΩk a
k-Ackermannian function, and Fωω = HΩ an hyper-Ackermannian function.

Fast-Growing Complexity Classes. Our intention is to establish the “Fωk hard-
ness” of Post embedding problems. In order to make this statement more precise,
we define the class Fωk of k-Ackermannian problems as a specific instance of the
fast-growing complexity classes defined for α ≥ 3 by

Fα
def
=

⋃

p∈⋃
β<α Fβ

DTime(Fα(p(n))) , Fα =
⋃

c<ω

FDTime(F c
α(n)) , (5)

where Fα defined above is the αth level of the extended Grzegorczyk hierarchy
[21] when α ≥ 2. The classes Fα are naturally equipped with

⋃
β<α Fβ as class

of reductions. For instance, because
⋃

k<ω Fωk is exactly the set of multiply-
recursive functions, Fωω captures the intuitive notion of hyper-Ackermannian
problems closed under multiply-recursive reductions.2

Hardy Computations. The fast-growing and Hardy hierarchies have been used
in several publications to establish Ackermannian and higher complexity bounds
[9, 26, 15, 27]. The principle in their use for lower bounds is to view (4), read left-
to-right, as a rewrite system over ε0 ×N, and later implement it in the targeted
formalism. Formally, a (forward) Hardy computation is a sequence

α0, n0 −→ α1, n1 −→ α2, n2 −→ · · · −→ α	, n	 (6)

of evaluation steps implementing the equations in (4) seen as left-to-right rewrite
rules over Hardy configurations α, n. It guarantees α0 > α1 > α2 > · · · and keeps
Hαi(ni) invariant. We say it is complete when α	 = 0 and then n	 = Hα0(n0)
(we also consider incomplete computations). A backward Hardy computation is
obtained by using (4) as right-to-left rules. For instance,

ωωk

, n → ωωk−1·n, n → ωωk−1·(n−1)+̇ωk−2·n, n (7)

constitute the first three steps of the forward Hardy computation starting from
Ωk, n if k > 1 and n > 0.

2 Note that, at such high complexities, the usual distinctions between deterministic vs.
nondeterministic, or time-bounded vs. space-bounded computations become irrele-
vant. In particular, F2 is the set of elementary functions, and F3 the class of problems
with a tower of exponentials of height bounded by some elementary function of the
input as an upper bound.
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Termination of Hardy Computations. Because α0 > α1 > · · · > α	 in a forward
Hardy computation like (6), it necessarily terminates. For inverse computations,
this is less immediate, and we introduce for this a norm ‖α‖ of an ordinal α
in ε0 as its count of “ω” symbols when written as an ordinal term: formally,
‖.‖: ε0 → N is defined by

‖0‖ def
= 0 ‖ωα‖ def

= 1 + ‖α‖ ‖α +̇ α′‖ def
= ‖α‖+ ‖α′‖ . (8)

We can check that, for any limit ordinal λ, ‖λn‖ > ‖λ‖ whenever n > 1. There-
fore, in a backward Hardy computation, the pair (n, ‖α‖) decreases for the lexi-
cographic ordering over N2. As this is a well-founded ordering, we see that back-
ward computations terminate if n remains larger than 1—which is a reasonable
hypothesis for the following.

3.2 Encoding Hardy Configurations

Our purpose is now to encode Hardy computations as relations over Σ∗. This
entails in particular (1) encoding configurations α, n in Ωk ×N of a Hardy com-
putation as finite sequences using cumulative ordinal descriptions or “codes”,
which we do in this subsection, and (2) later in Sec. 3.3 designing a 1-bld rela-
tion that implements Hardy computation steps over codes. A constraint on codes
is that they should be robust against losses, i.e. if π(x) and π(x′) are the ordinals
associated to the codes x and x′ and π(x) � π(x′), then Hπ(x)(n) ≤ Hπ(x′)(n)—
pending some hygienic conditions on x and x′, see Lem. 2.

Finite Ordinals below k can be represented as single symbols a0, . . . , ak−1 of an
alphabet Σk along with a bijection

ϕ(ai)
def
= i . (9)

Small Ordinals below ωk are then easily encoded as finite words over Σk: given
a word w = b1 · · · bn over Σk, we define its associated ordinal in ωk as

β(w)
def
= ωϕ(b1) + · · ·+ ωϕ(bn) . (10)

Note that β is surjective but not injective: for instance, β(a0a1) = β(a1) = ω. By
restricting ourselves to pure words over Σk, i.e. words satisfying ϕ(bj) ≥ ϕ(bj+1)
for all 1 ≤ j < n, we obtain a bijection between ωk and p(Σ∗

k) the set of pure
finite words in Σ∗

k , because then (10) is the CNF of β(w).

Large Ordinals below Ωk are denoted by codes [9, 15], which are #-separated

words over the extended alphabet Σk#
def
= Σk � {#}. A code x can be seen as

a concatenation w1#w2# · · ·#wp#wp+1 where each wi is a word over Σk. Its
associated ordinal π(x) in Ωk is then defined as

π(x)
def
= ωβ(w1w2···wp) +̇ · · · +̇ ωβ(w1w2) +̇ ωβ(w1) , (11)
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or inductively by

π(w)
def
= 0, π(w#x)

def
= ωβ(w) · π(x) +̇ ωβ(w) (12)

for w a word inΣ∗
k and x a code. For instance, π(a1a0#) = ωω+̇1=π(a0a1a0#a3),

or, closer to our concerns, the initial ordinal in our computations is π(ank−1#) =
(Ωk)n when k > 0.

Observe that π is surjective, but not injective. We can mend this by defining
a pure code x = w1# · · ·#wp#wp+1 as one where wp+1 = ε and every word
wi for 1 ≤ i ≤ p is pure—note that it does not force the concatenation of two
successive words wiwi+1 of x to be pure. This is intended, as this is the very
mechanism that allows π to be a bijection between Ωk and p(Σ∗

k#)

Lemma 1. The function π is a bijection from p(Σ∗
k#) to Ωk.

We also define p(x) to be the unique pure code x′ verifying π(x) = π(x′); then
p(x) � x, and x � x′ implies p(x) � p(x′).

Hardy Configurations α, n are finally encoded as sequences c = π−1(α) � #n

using a separator “�”, i.e. as sequences in the language Confs
def
= p(Σ∗

k#)·{�}·{#}∗.
This is a regular language over Σk#�{�}, but the most important fact about this
encoding is that it is robust against symbol losses as far as the corresponding
computed Hardy values are concerned. Robustness is a critical part of hardness
proofs based on Hardy functions. The main difficulty rises from the fact that
the Hardy functions are not monotone in their ordinal parameter: for instance,
Hω(n) = Hn(n) = 2n is less than Hn+̇1(n) = 2n + 1. Code robustness is
addressed in [9, Prop. 4.3]. Robustness is the limiting factor that prevents us
from reducing languages in Fα for α > Ω into PEPs.

Lemma 2 (Robustness). Let c = x � #n and c′ = x′ � #n′
be two sequences

in Confs. If c � c′, then Hπ(x)(n) ≤ Hπ(x′)(n′).

3.3 Encoding Hardy Computations

It remains to present a 1-bld relation that implements Hardy computations over
Hardy configurations encoded as sequences in Confs. We translate the equations
from (4) into a relation RH = (R0 ∪ R1 ∪ R2) ∩ (Confs × Confs), which can be
reversed for backward computations:

R0
def
= {(#x � #n, x � #n+1) | n ≥ 0, x ∈ Σ∗

k#} (13)

R1
def
= {(wa0#x � #n, w#np(a0x) � #

n) | n > 1, w ∈ Σ∗
k , x ∈ Σ∗

k#} (14)

R2
def
= {(wai#x � #n, wani−1#p(aix) � #

n) | n > 1, i > 0, w ∈ Σ∗
k , x ∈ Σ∗

k#} (15)

The relation R0 implements the successor case, while R1 and R2 implement the
limit case of (3) for ordinals of form γ +̇ ωα+̇1 and γ +̇ ωλ respectively. The
restriction to n > 1 in R1 and R2 enforces termination for backward computa-
tions; it is not required for correctness. Because RH is a direct translation of (4)
over Confs:



Parametric Complexity of PEPs 281

Lemma 3 (Correctness). For all α, α′ in Ωk and n, n′ > 1, (π−1(α) � #n)
(RH ∪R−1

H )�(π−1(α′) � #n′
) iff Hα(n) = Hα′

(n′).

Unfortunately, although R0 is a length-preserving rational relation, R1 and R2

are not 1-bld, nor even rational. However, they can easily be broken into smaller
steps, which are rational—as we are applying a reflexive transitive closure, this
is at no expense in generality. This requires more complex encodings of Hardy
configurations, with some “finite state control” and a working space in order
to keep track of where we are in our small steps. Because we do not want to
spend new symbols in this encoding, given some finite set Q of states, we work
on sequences in

Seqs
def
= {a0, a1}�log |Q|� · {�} · p(Σ∗

k) · {#}∗ · {�} · p(Σ∗
k#) · {�} · {#, a0, a1}∗ . (16)

with four segments separated by “�”: a state, a working segment, an ordinal
encoding, and a counter. Given a state q in Q, we use implicitly its binary
encoding as a sequence of fixed length over {a0, a1}.

We define two relations Fw and Bw with domain and range Seqs that imple-
ment forward and backward computations with RH . A typical case is that of
computations with R1, which can be implemented as the closure of the union:

qFw �� wa0#x � #n+2 Fw1 qFw1
� w# � p(a0x) � #

n+1a0 (17)

qFw1
� w#m � x � #n+1ap+1

0 Fw1 qFw1
� w#m+1 � x � #nap+2

0 (18)

qFw1
� w#m+1 � x � an+2

0 Fw1 qFw1
�� w#m+1x � #n+2 (19)

for m,n, p in N, w in p(Σ∗
k), and x in p(Σ∗

k#). Note that p(a0x) returns a0x if x
begins with # or a0, and x otherwise. The corresponding backward computation
for R1 inverses the relations in (17–19) and substitutes qBw and qBw1

for qFw and
qFw1

. The reader should be able to convince herself that this is indeed feasible in
a rational 1-bld fashion; for instance, (18) can be written as a rational expression

[
qFw1

�

qFw1
�

]

· IdΣ∗
k
·
[
#
#

]∗
·
[
ε
#

]

·
[
�

�

]

· IdΣ∗
k#

·
[
�

�

]

·
[
#
#

]∗
·
[
#
ε

]

·
[
a0
a0

]+
·
[
ε
a0

]

. (20)

Observe that separators “�” are reliable, and that losses cannot pass unnoticed in
the constant-sized state segment of a sequence in Seqs; thus we can use lemmas 2
and 3 to prove that Fw�

� and Bw�
� are “weak” implementations of Hα and its

inverse when α is in Ωk. Not any reformulation of RH as the closure of a rational
relation would work here: our relation also needs to be robust to losses; see the
full paper for details.

Lemma 4 (Weak Implementation). The relations Fw and Bw are 1-bld and
terminating. Furthermore, if k ≥ 1, m,n > 1 and α ∈ Ωk,

(qFw �� π−1(α) � #n) Fw�
� (qFw ��� #m) implies m ≤ Hα(n)

(qBw ��� #m) Bw�
� (qBw �� π−1(α) � #n) implies m ≥ Hα(n)

and there exists rewrites verifying m = Hα(n) in both of the above cases.
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4 The Parametric Complexity of LR[1-bld]

Now equipped with suitable encodings for Hardy computations, we can turn
to the main result of the paper: Prop. 2 below shows the Fωk -hardness of
(k + 2)-LR[1-bld]. As we obtain almost matching upper bounds in Sec. 4.2, we
deem this to be rather tight.

4.1 Lower Bound

Thanks to the relations over Σk# � {�} defined in Sec. 3, we know that we can
weakly compute with Fw a “budget space” as a unary counter of size Fωk(n),
and later check that this budget has been maintained by running through Bw.
We are going to insert the simulation of an Fωk -hard problem between these
two phases of budget construction and budget verification, thereby constructing
Fωk -hard instances of (k + 2)-LR[1-bld].

Proposition 2. Let k ≥ 2. Then (k + 2)-LR[1-bld] is Fωk -hard.

Bounded Semi-Thue Reachability. The problem we reduce from is a space-
bounded variant of the semi-Thue reachability problem (aka semi-Thue word
problem): as already mentioned in Sec. 2, a semi-Thue system Υ over an alpha-
bet is a finite set of rules (u, v) in Σ∗ ×Σ∗, defining a rewrite relation →Υ . The
semi-Thue reachability problem, or R[Rewr], is a reliable version of the lossy
reachability problem. This problem is in general undecidable, as one can express
the “next configuration” relation of a Turing machine as a semi-Thue system.
Its Fωk -bounded version for some k ≥ 1 takes as input an instance 〈Υ, y, y′〉 of
size n where, if y →�

Υ x, then |x| ≤ Fωk(n). This is easily seen to be hard for
Fωk , even for a binary alphabet Σ.

Reduction. Let 〈Υ, y, y′〉 be an instance of size n > 1 of Fωk -bounded R[Rewr]
over the two-letters alphabet {a0, a1}. We build a (k + 2)-LR[1-bld] instance in
which the rewrite relation R performs the following sequence:

1. Weakly compute a budget of size Fωk(n), using Fw described in Sec. 3.
2. In this allocated space, simulate the rewrite steps of Υ starting from y.
3. Upon reaching y′, perform a reverse Hardy computation using Bw and check

that we obtain back the initial Hardy configuration. This check ensures that
the lossy rewrites were in fact reliable (i.e., no symbols were lost).

For Phase 2, we define a #-padded version Sim of →Υ that works over Seqs:

Sim
def
= {(qSim ��� u#p, qSim ��� v#q) | u →Υ v, |u|+ p = |v|+ q} . (21)

This is a length-preserving rational relation.We define two more length-preserving
rational relations Init and Fin that initialize the simulation with y on the budget
space, and launch the verification phase if y′ appears there, allowing to move
from Phase 1 to Phase 2 and from Phase 2 to Phase 3, respectively:

Init
def
= {(qFw ��� #	+|y|, qSim ��� y#	) | � ≥ 0} , (22)

Fin
def
= {(qSim ��� y′#	, qBw ��� #	+|y′|) | � ≥ 0} . (23)
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Finally, because Fωk(n) = H(Ωk)n(n), we define our source and target by

w
def
= qFw �� ank−1# � #n , w′ def

= qBw �� ank−1# � #n , (24)

and we let R be the 1-bld rational relation Fw ∪ Init ∪ Sim ∪ Fin ∪ Bw.

Claim. The given R[Rewr] instance is positive if and only if 〈R,w,w′〉 is a pos-
itive instance of the (k + 2)-LR[1-bld] problem.

Proof. Suppose w R�
� w′. It is easy to see that the separator symbol “�” and the

encodings of states from Q are reliable. Because of the way the relations treat
the states, we in fact get

w Fw�
� (qFw ��� #	1) Init� (qSim ��� z1) Sim

�
� (qSim ��� z2) Fin� (qSim ��� #	2) Bw�

� w′

for some strings z1, z2 and naturals �1, �2 ∈ N. By Lem. 4, we have �1 ≤ Fωk(n)
and �2 ≥ Fωk(n). Since Init, Sim, and Fin are length-preserving, we get

Fωk(n) ≥ �1 ≥ |z1| ≥ |z2| ≥ �2 ≥ Fωk(n) (25)

Thus equality holds throughout, and therefore the lossy steps of Sim� in Phase 2
were actually reliable, i.e. were steps of Sim. This allows us to conclude that the
original R[Rewr] instance was positive.

Suppose conversely that the R[Rewr] instance is positive. We can translate
this into a witnessing run for w R�

� w′, in particular, for w Fw�
� Init � Sim�

�

Fin � Bw� w′, because any successful run from the R[Rewr] instance can be
plugged into the Sim� phase; Lem. 4 and the fact that the configurations of Υ
are bounded by Fωk(n) together ensure that this can be done.

4.2 Upper Bound

Well-Structured Transition Systems. As a preliminary, let us show that the lossy
rewriting problem is decidable. Indeed, the relation R� can be viewed as the
transition relation of an infinite transition system over the state space Σ∗. Fur-
thermore, by Higman’s Lemma, the subword embedding ordering � is a well
quasi ordering (wqo) over Σ∗, and the relation R� is compatible with it: if
uR� v and u � u′ for some u, v, u′ in Σ∗, then there exists v′ in Σ∗ s.t. u′R� v′:
here it suffices to use v′ = v by transitivity of �.

A transition system S = 〈S,→,≤〉 with a wqo (S,≤) as state space and a
compatible transition relation → is called a well-structured transition system
(WSTS), and several problems are decidable on such systems under very light
effectiveness assumptions [1, 13], among which the coverability problem, which
asks given a WSTS S and two states s and s′ in S whether there exists s′′ ≥ s′

s.t. s →� s′′. The lossy rewrite problem when w �� w′ can be restated as a
coverability problem for the WSTS 〈Σ∗, R�,�〉 and w and w′, since if there
exists w′′ � w′ with w R�

� w′′, then w R�
� w′ also holds by transitivity of �.
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Parameterized Upper Bound. In many cases, a combinatory algorithm can be
employed instead of the classical backward coverability algorithm for WSTS: we
can find a particular coverability witness w′ = w0 � � R−1 w1 · · ·w	−1 � � R−1

w	 � w of length � bounded by a function akin to Fωk−1 using the Length
Function Theorem of [26]. This is a generic technique for coverability explained
in [27], and the reader will find it instantiated for (k + 2)-LR[Rat] in the long
version of this paper:

Proposition 3 (Upper Bound). The problem (k + 2)-LR[Rat] is in Fωk+̇1 .

The small gap of complexity we witness here with Prop. 2 stems from the encod-
ing apparatus, which charges us with one extra symbol. We have not been able
to close this gap; for instance, the encoding breaks if we try to work without our
separator symbol “�”.

5 Applications

We apply in this section the proof of Prop. 2 to prove parametric complexity
lower bounds for several problems. In three cases (propositions 4, 5, and 7 below),
we proceed by a reduction from the LR problem, but take advantage of the
specifics of the instances constructed in the proof Prop. 2 to obtain tighter
parameterized bounds. The hardness proof for the LT problem in Prop. 6 requires
more machinery, which needs to be incorporated to the construction of Sec. 4.1
in order to obtain a reduction.

Rational Embedding. We first deal with the classical embedding problem: We
reduce from a (k + 2)-LR[Rat] instance and use Prop. 2. The issue is to some-
how convert an iterated composition into an iterated concatenation—the idea is
similar to the one typically used for proving the undecidability of PCP.

Proposition 4. Let k ≥ 2. Then (k + 2)-EP[Rat] is Fωk-hard.

Proof. Assume without loss of generality that w �= w′ in a (k + 2)-LR[Rat]
instance 〈R,w,w′〉. We consider sequences of consecutive configurations of � �

(R � �)⊕ of form

w = v0 � u0 R v1 � u1 R v2 � · · ·R vn � un = w′ (26)

that prove the LR instance to be positive. Let $ be a fresh symbol; we construct
a new relation R′ that attempts to read the ui’s on its first component and the
vi’s on the second, using the $’s for synchronization:

R′ def
=

[
$w′$
$

]

·
(

R ·
[
$
$

])+

·
[
ε
w$

]

(27)

Observe that in any pair of words (u, v) of R′, one finds the same number of
occurrences of the separator $ in u and v, i.e. we can write u = $un$ · · · $u0$ and
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v = $vn$ · · · $v0$ with n > 0, verifying v0 = w, un = w′, and ui R vi+1 for all
i. Assume u � v: the embedding ordering is restricted by the $ symbols to the
factors ui � vi. We can therefore exhibit a sequence of form (26). Conversely,
given a sequence of form (26), the corresponding pair (u, v) belongs to R′ ∩ �.

In order to conclude, observe that we can set $
def
=� in the proof of Prop. 2

and adapt the previous arguments accordingly, since “�” is preserved by R and
appears in both w and w′ in the particular instances we build.

Synchronous Embedding. Turning now to the case of synchronous relations, we
proceed as in the previous proof, but employ an extra padding symbol ⊥ to
construct a length-preserving version of the relation R in an instance of (k+2)-
LR[Sync], allowing us to apply the Kleene star operator while remaining regular.

Proposition 5. Let k ≥ 2. Then (k + 3)-EP[Sync] is Fωk-hard.

Proof. Let 〈R,w,w′〉 be an instance of (k + 2)-LR[Sync] with w �= w′ and let $
and ⊥ be two fresh symbols. Because R · {($, $)} is a synchronous relation, we
can construct a padded length-preserving relation

R⊥
def
= {(u$⊥m, v$⊥p) | m, p ≥ 0 ∧ (u, v) ∈ R ∧ |u$⊥m| = |v$⊥p|} (28)

and define a relation similar to (27):

R′
⊥

def
=

[
$w′$
$

]

·R+
⊥ ·

[
ε
w$

]

·
[
ε
⊥

]∗
. (29)

Let us show that R′
⊥ is regular: {($w′$, $)} and {(ε, w$)} are relations with

bounded length discrepancy and R∗
⊥ is length preserving, thus their concate-

nation has bounded length discrepancy, and can be effectively computed by
resynchronization [25]. Suffixing {(ε,⊥)}∗ thus yields a synchronous relation.

As in the proof of Prop. 4, R′
⊥ preserves the $ separators, thus if (u, v) belongs

to R′
⊥, then we can write

u = $ un $ ⊥mn un−1 $ ⊥mn−1 · · · $ ⊥m1 u0 $ ⊥m0 ,
v = $ vn $ ⊥pn vn−1 $ ⊥pn−1 · · · $ ⊥p1 v0 $ ⊥p0 .

(30)

with n > 0 andmn = 0. Furthermore, v0 = w, un = w′, and (ui$⊥mi, vi+1$⊥pi+1)
belongs to R⊥, thus uiRvi+1 for all i. If the EP instance is positive, i.e. if u � v,
then ui � vi and mi ≤ pi for all i, and we can build a sequence of form (26)
proving the LR instance to be positive. Conversely, if the LR instance is positive,
there exists a sequence of form (26), and we can construct a pair (u, v) as in (30)
above by guessing a sufficient padding amount p0 that will allow to carry the

entire rewriting. Finally, as in the proof of Prop. 4, we can set $
def
=�.

Lossy Termination. In contrast with the previous cases, our hardness proof for
the LT problem does not reduce from LR but directly from a semi-Thue word
problem, by adapting the proof of Prop. 2 in such a way that R�

� is guaranteed to
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terminate. The main difference is that we reduce from a semi-Thue system where
the length of derivations is bounded, rather than the length of configurations—
this is still Fωk -hard since the distinction between time and space complexities
is insignificant at such high complexities. The simulation of such a system then
builds two copies of the initial budget in Phase 1: a space budget, where the
derivation simulation takes place, and a time budget, which gets decremented
with each new rewrite of Phase 2, and enforces its termination even in case of
losses. See the full paper for details.

Proposition 6. Let k ≥ 2. Then (k + 2)-LT[1-bld] is Fωk-hard.

Lossy Channel Systems. By over-approximating the behaviours of a channel
system by allowing uncontrolled, arbitrary message losses, Abdulla, Cécé, et al.
[6, 2] obtain decidability results on an otherwise Turing-complete model. Many
variants of this model have been studied in the literature [7, 8, 16], but our
interest here is that LCSs were originally used as the formal model for the Fωω

lower bound proof of Chambart and Schnoebelen [9], rather than a PEP.
Formally, a lossy channel system (LCS) is a finite labeled transition system

〈Q,Σ, δ〉 where transitions in δ ⊆ Q × {?, !} × Σ × Q read and write on an
unbounded channel. An channel system defines an infinite transition system
over its set of configurations Q × Σ∗—holding the current state and channel
content—, with transition relation q, x → q′, x′ if either δ holds a read (q, ?m, q′)
and x = mx′, or if it holds a write (q, !m, q′) and xm = x′. The operational
semantics of an LCS then use the lossy version →� of this transition relation.
In the following, we consider a slightly extended model, where transitions carry
sequences of instructions instead, i.e. δ is a finite set included in Q × ({?, !} ×
Σ)∗ ×Q. The natural decision problem associated with a LCS is its reachability
problem:

Lossy Channel System Reachability (LCS)

Input. A LCS C and two configurations (q, x) and (q′, x′) of C.
Question. Is (q′, x′) reachable from (q, x) in C, i.e. does q, x →�

� q′, x′?

The lossy rewriting problem easily reduces to a reachability problem in a LCS:
the LCS cycles through the channel contents thanks to a distinguished symbol,
and applies the rational relation at each cycle; see the full version for details.

Proposition 7. Let k ≥ 2. Then (k + 2)-LCS is Fωk-hard.

6 Concluding Remarks

Post embedding problems provide a high-level packaging of hyper-Ackermannian
decision problems—and thanks to our parametric bounds, for k-Ackermannian
problems—, compared to e.g. reachability in lossy channel systems (as used
in [9]). The lossy rewriting problem is a prominent example: because it is stated
in terms of a rational relation instead of a machine definition, it benefits auto-
matically from the theoretical toolkit and multiple characterizations associated
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with rational relations. For a simple example, the increasing rewriting problem,

which employs R�
def
= ��R�� instead of R�, is immediately seen to be equivalent

to LR, by substituting R−1 for R and exchanging w and w′.
Interestingly, this inversion trick allows to show the equivalence of the lossy

and increasing variants of all our problems, except for lossy termination:

Increasing Termination (IT[Rat])

Input. A rational relation R over Σ and a word w in Σ∗.
Question. Does R�

� terminate from w?

A related problem, termination of increasing channel systems with emptiness
tests, is known to be in F3 [5] instead of Fωω for LCS termination, but IT[Rat]
is more involved. Like LR[Rat] or EP[Rat], it provides a high-level description,
this time of fair termination problems in increasing channel systems, which are
known to be equivalent to satisfiability of safety metric temporal logic [23, 22, 17].
The exact complexity of IT[Rat] is open, with a gigantic gap between the Fωω

upper bound provided by WSTS theory, and an F4 lower bound by Jenkins [17].

Acknowledgements. The authors thank Philippe Schnoebelen and the anony-
mous reviewers for their insightful comments.
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