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Abstract. As the mobile platform continues to pervade all aspects of
human activity, and mobile applications, or mobile apps for short, on
this platform tend to be faulty just like other types of software, there is
a growing need for automated testing techniques for mobile apps. Model-
based testing is a popular and important testing approach that operates
on a model of an app’s behavior. However, such a model is often not avail-
able or of insufficient quality. To address this issue, we present a novel
grey-box approach for automatically extracting a model of a given mobile
app. In our approach, static analysis extracts the set of events supported
by the Graphical User Interface (GUI) of the app. Then dynamic crawl-
ing reverse-engineers a model of the app, by systematically exercising
these events on the running app. We also present a tool implementing
this approach for the Android platform. Our empirical evaluation of this
tool on several Android apps demonstrates that it can efficiently extract
compact yet reasonably comprehensive models of high quality for such

apps.

1 Introduction

The mobile platform is projected to overtake the desktop platform as the global
Internet platform of choice in the very near future [I]. There has been a deci-
sive shift to mobile devices in numerous application areas such as email, social
networking, entertainment, and e-commerce [IL2]. This trend has prompted an
explosive growth in the number and variety of mobile apps being developed.
As of June 2012, Android’s Google Play had over 600,000 apps that had been
downloaded more than 10 billion times in total [3]! Users typically have a choice
between several apps with similar functionality. Thus developers are required to
develop high quality apps in order to be competitive. On the other hand, mobile
apps are usually developed in relatively small-scale projects, which may not be
able to support extensive and expensive manual testing. Thus, it is particularly
important to develop automated testing tools for mobile apps.
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For the purpose of this research, we use Android apps as a representative of
mobile apps in general. Most tools and frameworks [4H8] currently available for
testing Android apps are simply aids for (manual) test-case authoring, deploy-
ment, debugging, and visualization. There are no effective industrial products for
automated test-case generation per se. Recognizing this inadequacy, researchers
have very recently begun to develop such techniques [9HI3]. This paper attempts
to build on this fairly nascent body of research.

Mobile apps are a subset of the more general class of event-driven applications
and specifically event-driven Graphical User Interface (GUI) applications. How-
ever, they have the following characteristics that make them suitable for specific
automated testing techniques.

— Small size. Mobile apps are typically much smaller and simpler than desk-
top applications, both in terms of the physical footprint as well as behavior.
Desktop applications can be large, feature-rich, and computationally intensive.
However, a significant fraction of mobile apps are designed as “micro-apps” to
solve small and specific tasks [14]. Furthermore, the size of mobile apps is con-
strained by the limited processing, storage, and display resources of the mobile
device. The small size of mobile apps enables automatic testing techniques to
be feasible and applicable to real-world apps.

— Event-centric. Mobile devices have evolved to be small-screen devices with-
out a keyboard. Since typing is onerous on such devices, mobile apps are
designed around a rich set of user gestures as input events. Thus, on the one
hand, the role of typed data is somewhat diminished in mobile apps in contrast
to desktop applications. On the other hand, the richer set of user gestures in
mobile apps needs to be incorporated into any testing process.

— Simple & Intuitive GUI. Users of desktop GUI applications might be ex-
pected to refer to documentation or tutorials to fully comprehend how to use
the applications. In contrast, mobile apps are expected to have a simple and
intuitive user interface where most, if not all, usage scenarios of an app should
be evident to average users, from the GUIL.

Model-based testing [I5] is a popular and important type of testing that uses a
model of the application under test as a basis for constructing test cases. Au-
tomated model-generation techniques that dynamically analyze the GUI of the
application have been previously developed for desktop GUI applications [16]
and for AJAX web applications [I7]. However, the limited degree of automation
of these tools and the incompleteness of the resulting models have posed bar-
riers for their industrial adoption. Such limitations can be attributed, in part,
to the nature of their target application domains. For example, the GUIs of
feature-rich desktop applications or web applications can have a large, poten-
tially unlimited, number of states. Thus, techniques such as Crawljax [I7] either
bound their exploration or require user-specified state abstractions to extract a
finite model. Techniques such as GUITAR [I6], on the other hand, resort to more
imprecise event-based models. By contrast, as observed above, mobile apps have
substantially smaller and simpler GUIs. This characteristic raises the possibility
of more complete and automated GUI state-space exploration in mobile apps.
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Second, automated crawling techniques typically require knowledge of the set
of GUI widgets supporting actions (e.g, clicks) and precisely what actions are
supported on each such widget. For web applications, much of this information
is represented in client-side JavaScript code, which is notoriously difficult to an-
alyze. Thus, this information needs to be manually specified. For desktop GUI
applications, this analysis is not that important since user actions are mostly
simple mouse clicks. However, as noted above, supporting a rich array of user
gestures is an integral part of mobile-app design. Further, as we demonstrate
in this work, mobile app development frameworks are quite amenable to auto-
matic analysis and extraction of this information. The objective of this work is to
build a novel, customized and more efficacious automated GUI-model generator
for mobile apps, particularly Andriod apps, by exploiting these observations.

Our approach uses static analysis of the app source code to extract the actions
supported by the GUI of the app. This information is typically not available to a
purely black-box analysis and is far more expensive to extract through a dynamic
white-box approach [9]. Next, we use dynamic crawling to build a model of the
app by systematically exercising the extracted events on the live app. We concur
with the view of previous work [I6}[I7] that a dynamic analysis is far simpler
and more precise than static analysis for analyzing GUIs. However, we exploit
the smaller, simpler, and highly event-centric interface of mobile apps to build
a more efficient and automated crawler.

Specifically, this paper makes the following main contributions:

— A dynamic, grey-box GUI reverse-engineering approach for mobile apps, which
we identify as a specialized type of event-driven GUI apps.

— A novel static analysis to support the dynamic GUI crawling.

A tool implementing this grey-box approach of automated model extraction

for Android apps.

An evaluation of this tool on several real-world Android apps for demonstrat-

ing its efficacy at generating high-quality GUI models.

2 Background and Problem Definition

Model-based testing [15] is an approach for software testing orchestrated around
a model of the application under test. The model is typically an abstract rep-
resentation of the application behavior and may be constructed either manu-
ally [I8] or using automatic techniques [16]. This model is used to construct a
suite of test cases to test the application. Various techniques of model-based
testing have been proposed in the literature [19L20].

One of the crucial steps in model-based testing is the creation of the model
itself. When performed manually, it is usually a laborious and error-prone pro-
cess. There is a body of work [11L[16L[I7] that tries to partially or completely
automate the process of extracting models from GUI applications. The general
approach is to automatically and systematically interact with the GUI of the
live, running application, in an attempt to extract and record a model of the
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usage scenarios supported by it. GUI applications are a subset of general event-
driven applications and include types of applications such as web applications
and desktop GUI applications as well as mobile apps.

As discussed in Section [Tl mobile apps have special characteristics that distin-
guish them from other types of event-driven applications. This paper addresses
the problem of automated GUI-model generation for mobile apps.

Problem Definition. Given a mobile app, efficiently generate a high-quality
model representing the valid input event sequences accepted by the app, where
quality is measured by the following criteria:

1. Coverage. Every reachable program statement of the app should be executed
by running at least one of the event sequences included in the model.

2. Precision. The model should not include invalid events, i.e., events that are
not supported by widgets on a given screen.

3. Compactness. The size of the model, in relation to the number of event
sequences that it represents, should be as small as possible.

Note that the above problem definition uses statement coverage as the coverage
criterion. However, the approach presented here would be equally applicable to
any other suitable code coverage criteria.

3 Related Work

Automated Model Extraction. Our work falls under the broad category of
automated model-generation techniques. The GUITAR [16] tool by Memon et al.
is one of the earliest and most prominent representatives of this category. GUI-
TAR reverse-engineers a model of a GUI application directly from the executing
GUIL A recent extension of the tool, Android-GUITAR [21] supports Android
apps. GUITAR uses formalisms of GUI forests and event-flow graphs to repre-
sent the structure and execution behavior of the GUI, respectively. However, the
event-flow graph representation typically includes many false event sequences,
which may need to be weeded out later.

The Crawljax [I7] tool by Mesbah et al. is an automatic model extractor
targeted to AJAX web applications. In contrast to GUITAR, it uses a state-
machine representation to capture the model because of the stateful nature of
AJAX user-interfaces. However, AJAX applications present particularly challeng-
ing targets for automatic model extraction because of their large (sometimes
unbounded) state space. Therefore, in practice, manually specified state abstrac-
tions are required to extract a model with high coverage but manageable size.
WebMate [22] is another, more recent, model extractor for web applications.
The ICRAWLER [13] tool by Joorbachi et al. is a reverse-engineering tool for i0S
mobile apps and such tool also uses a state-machine model. The emphasis there
is on dealing with the idiosyncrasies of the iOS platform. All of the above tools
have no means of deducing actionable GUI elements and supported actions on
each screen. This information typically needs to be supplied to the tools. Some
tools, such as Android-GUITAR, exercise only the default tap action on widgets.
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However, doing so provides less than optimal coverage of the behavior. Our pro-
posed approach is unique in that it uses an efficient static analysis to automate
and solve this aspect of model discovery for the Android platform.

Automated Testing of Mobile Apps. Hu and Neamtiu [23] propose an ap-
proach that exercises the app under pseudo-random event sequences produced
by the Android Monkey tool and analyzes the log files of this execution for cer-
tain kinds of faults. The AndroidRipper [I1] tool also performs stress testing of
an Android app but by systematically crawling its GUI. These approaches can
sometimes reveal unexpected and interesting faults. However, their objective is
to stress-test the app rather than to create a reusable model for use in future
testing, as in our case. Takala et al. [I8] present a case study of applying model-
based testing for testing Android apps. The M[agi]C [10] tool is used to generate
test cases for apps using a combination of model-based testing and combinato-
rial testing. Previous approaches [10,[I8] work off a GUI model of the app and
such model could potentially be generated using our proposed approach. More
recently, Anand et al. [9] have applied concolic execution to generate feasible
event sequences for Android apps. However, the computation-intensive nature
of symbolic analysis coupled with an explosion in the sheer number of event se-
quences being enumerated limits their approach to fairly short event sequences.
Our approach, by contrast, can efficiently exercise fairly deep event sequences.
Mirzaei et al. [I2] use static analysis to deduce the set of feasible event sequences
and represent them using a context-free grammar (CFG). The deduced event se-
quences are then analyzed through symbolic execution. Their proposed static
analysis is conceptually a generalization of our proposed action-inference analy-
sis. However, the lack of algorithmic details and limited evaluation there makes
a direct comparison with our approach difficult.

4 A Motivating Example

We use an Android app called Simple Tipper as an example to illustrate our ap-
proach. SimpleTipper is a simplified version of the open-source app, TippyTipper
(http://code.google.com/p/tippytipper/), used to calculate the tip amount for
a meal. Figure [ illustrates its functionality. It consists of five screens. On the
opening (Input) screen, the user enters the meal bill amount through a numeric
keypad. The DEL button erases one digit. The CLEAR button or a longClick on
DEL clears the textfield. Clicking the Calculate button takes the user to the
second (Result) screen, which shows the total cost including the calculated tip.
The third screen is the Menu screen. It is opened by clicking the Menu button on
either the Imput or the Result screen. The About option on the menu leads to the
fourth screen, About, with information about the app. The Settings option on
the menu directs the user to the fifth screen, Settings with two setting options.
Checking either of them on or off influences the tip calculation.
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Fig. 1. Overview of SimpleTipper(a) and its state graph(b)

5 Proposed Approach

We propose a grey-box approach for automatically extracting a model of a given
mobile app. First, we use static analysis of the app’s source code to extract
the set of user actions supported by each widget in the GUI. Next, a dynamic
crawler is used to reverse-engineer a model of the app, by systematically exercis-
ing extracted actions on the live app. Our model has been designed to provide
sufficient state abstraction for compactness, without unduly compromising its
precision. The following sections describe these elements of our approach.

5.1 Action Inference Using Static Analysis

As explained earlier, supporting a wide array of user gestures is an integral aspect
of mobile app design. A model representing only the default click action would
miss a significant portion of the app’s behavior. For example, in Figure[[(a), the
longClick behavior of the DEL button on screen (1) would be omitted. Further,
the Settings and About screens of the app cannot be accessed without the
Menu button. These states constitute much of the app’s state space, as shown
in Figure [d(b). On the other hand, simply firing all possible actions on each
widget would bring in invalid actions into the model and lower its precision.
Thus, knowledge of the precise set of GUI actions is essential to generating a
high-quality model.

Our approach uses static analysis to infer these actions. We make the ob-
servation that in the Android framework a user action is defined by either (a)
registering an appropriate event listener for it or, (b) by inheriting the event-
handling method of an Android-framework component. We term the former as
registered action and the latter inherited action. For both these categories, iden-
tifying an action involves three basic steps: (1) identify the place where an action
is instantiated or registered; (2) locate the component on which the action would
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;view btn_delete = findViewById(R.id.btn delete);
iBtn_delete.setonClickListener(new onClickListener()

{

;Btn delete.setOnLongClickListener(new
onLongClickListener() {

public void onLongClick(View v)
{

public void onClick(View v) {
removeBillAmount();
FlurryAgent.onEvent(“Delete Button™);
}
12N

clearBillAmount();
return true;

SimpleTipper.
OnCreate()

¥
s

Fig. 2. An illustration of using static analysis for action inference

Algorithm 1. registeredactiondetection

Input : A: app source code

Output: &: action map

1 begin

2 ActionSet <+ getAllActions()

3 EntryPoints < getAllEntryPoints()

4 foreach P € EntryPoints do

5 CG < makeCallGraph(A, P)

6 foreach X € ActionSet do

7 L + getEventRegMethod(X)

8 PNodeSet < getParentNode(CG, L) // Get all L’s callers

9 foreach PNode € PNodeSet do
10 s « findCallTo(PNode, L)
11 v < getCallingObject(s)

12 i < backLocate(v, A)
13 ID <+ getParameter(i)
14 E.add(ID, X)

15 end

16 end

17 end

18 end

be fired; (3) extract an identifier of the component that the crawler can later use
to recognize the corresponding object and fire the action.

Algorithm [I] presents the analysis to detect registered actions. It essentially
iterates over all program-entry points (EntryPoints) and all actions (ActionSet)
supported by the mobile framework (Lines 6-16). For each entry point P and
action X, it extracts the call graph of the app (Line 5) and locates a set of
statements PNodeSet (Line 8) containing instances of a valid event-listener reg-
istering statement L for action X'. Finally, for each statement PNode in PNodeSet
it performs a backward slice on PNode to locate an initialization statement of
the widget on which the instance of £ was called (Lines 10-12). The backward
slice is used to get an identifier ID of the component (Line 13) that is registered
in the action map £ with the action X. Figure 2lshows a code snippet where the
developer defines click as well as longClick actions on the button DEL shown
on screen (1) in Figure [[[(a). To identify components on which to fire longClick,
we first use the call graph to find the methods where setOnLongClickListener
is called. It happens to be called in method onCreate of activity Simple Tipper.
Then we locate the statement calling setOnLongClickListener in onCreate and
get object btn delete that the listener is registered to. Finally we backslice to
get the initialization statement of bin delete, get its ID btn delete, and add
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Algorithm 2. inheritedActionDetection

Input : A: app source code
Output: £: action map

1 begin

2 ActionSet < get All Actions()

3 CH < getClassHierarchy(A)

4 Klass < getUserClass(CH) // Get user defined classes
5 foreach Class € Klass do

6 foreach X € ActionSet do

7 L + getActionHandlMethod(X)

8 M <« getDeclaredMethod(Class, L)
9 if L € M then

10 ID < getNameOrID(L, M)

11 E.add(ID, X)

12 end

13 end

14 end

15 end

the ID-action pair to the action mapping used by the crawler. Thus, when the
crawler encounters a screen with component btn delete, it fires a longClick
on it.

Algorithm ] describes the inherited action detection. We first get class hi-
erarchy CH of the whole app (Line 3). Then, we use app’s namespace to filter
non-user-defined classes (Line 4). For each of the user-defined classes, if the class
overrides the action handling method £ (Line 8), we regard the action X as valid,
then we extract the Activity name or registered ID of the class (Line 10), and
add the ID-action pair in the action mapping (Line 11).

5.2 Model Definition

We model the GUI behavior of an Android app as a finite-state machine. As
noted by others [16,[17], GUI apps in general could have a large, potentially
infinite number of Ul states. However, our aim is to exploit the simple and
intuitive GUI design of mobile apps to derive a compact yet high-quality model.

The model design is inspired by the Ul-design principles espoused by the
Android team. The Android User Experience Team [4] suggests that developers
should “make places in the app look distinct” to give users confidence that they
know their way around the app. In other words, different screens of the app
should and typically do have stark structural differences not just minor stylistic
ones. In addition, we would like to capture and reflect important differences
such as a button being enabled or disabled. Such differences are reflected in the
attributes of GUI components that support user actions. Finally, to keep the
model compact, we ignore differences in the UI state resulting from different
data values input by the user.

We use these principles to define a Ul state, which we term as a visual observ-
able state. Our model is a finite-state machine over these states with the user
actions constituting the transitions between these states. The structure of a GUI
screen in Android is represented by a tree of different GUI components, called
a hierarchy tree. Further, we classify GUI components as executable components
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and display components. The former support user actions (which are detected
by our static analysis) while the latter are just for display purposes. Thus, a
visual observable state in our model is composed of the hierarchy tree of the Ul
screen, as well as a vector of attribute values of each of the executable compo-
nents. The chosen attributes are ones that result in an observable change to the
GUI component but excluding ones bearing user-supplied text values or values
derived from them. It is fairly easy to manually identify the relevant attributes
for each type of Ul component, once, for all apps.

Figure [[(b) shows the state model of SimpleTipper. Each of screens (1) and
(2) correspond to a unique state. Note that different values of the bill amount,
input by the user in screen (1) do not give rise to different states. Further the
pop-up dialog box launched by hitting the Menu button corresponds to state (3),
irrespective of whether it is launched from states (1) or (2). For screen (5), the
Settings screen, the two checkboxes are executable components. Their state
changes give rise to the four different states 5a-5d for the app.

5.3 Crawling Algorithm

The objective of the crawling algorithm is to exhaustively explore all the app’s
states by firing open actions, i.e., actions that have previously not been exercised
by the crawler, on each observed state. The crawling process ends if the model
has no open states, i.e., states that have open actions to be fired. This process can
potentially be done through a simple depth-first search (DFS) on the UT states.
However, the key challenge here is the backtracking step, i.e., undoing the most
recent action done by DFS, on reaching a previously seen state. Crawljax [17]
solves this issue, in the case of web applications, by re-loading the initial state and
replaying all but the last action leading up to the current state. This strategy is
possible in our case too, but can be fairly expensive, as shown in our evaluation.
We refer to this strategy as standard DFS in the sequel.

Algorithm 3. crawlapp

Input : A: app under test, £: action map
Output: M: crawled model

1 begin

2 M « 0; s < getOpeningScreen(A)

3 while s # null do

a s + forwardCrawlFromState(s, A, M, E) // forward crawl from s
5 s < backtrack(s, A)

6 if isInitialState(s) then s < findNewOpenState(s, M, A)

7 end

8

Mobile platforms, such as Android, provide a Back button to undo actions.
But this button is designed for app navigation and is context-sensitive. Thus, it
is not a reliable mechanism for backtracking to precisely the previous state. For
example, on state 5d of Figure[Il pressing the Back button will not lead us back
to previous state 5b or 5¢, not even to the previous screen (3), but to the screen
(1) or (2) from where it was reached. Thus, the Back button need not take the



A Grey-Box Approach for Automated GUI-Model Generation 259

navigation back to the immediately preceding state but to any of its ancestors.
Hitting Back a finite number of times will eventually take the app to the initial
screen. Our crawler uses a modified depth-first search, which tries to crawl only
“forward” as much as possible using the Back button to backtrack when needed.

Algorithm [B] describes this strategy. It repeats a sequence of three steps till
it can make no further progress at which point it terminates. The first step
is a forward-crawling step implemented by function forwardCrawlFromState()
(Line 4). In this step the algorithm recursively visits states with open actions. It
fires an open action and continues crawling till it reaches a state with no open
actions. At this point function backtrack() (Line 5) is called to backtrack from
the current state till another open state is found or one of the initial states of
the crawl model is reached. In the former case forward crawling is resumed from
this open state. In the latter case the function findNewOpenState() (Line 6) is
used to find and crawl to a new open state and forward crawling is continued
from there.

Algorithm 4. forwardCrawlFromState

Input : s.: state to crawl forward from, A: app under test
M: crawled model being generated, £: action map
Output: s: current state at the end of crawling

1 begin

2 Sz  Sc

3 while s, # null do

a S 4 Sz

5 if isNewState(s) then

6 initActions(s, £, A)

7 addToModel(s, M)

8 end

9 e + getNextOpenAction(s)
10 if e = null then s, < null
11 else
12 sz — execute(s, e, A)
13 updateOpenActions(s, e)
14 addToModel(s, e, s, M)
15 end
16 end
17 return s
18 end

Algorithm Ml implements the function forwardCrawlFromsState() for forward
crawling from a given state s.. It iterates Lines 4-15 on the current state s,
obtaining an open action e on s (getNextOpenAction(), Line 9) and executing it,
to potentially reach another open state (function ezecute() on Line 12). The set of
open actions of s is accordingly updated by function updateOpenActions() (Line
13) to reflect the changes. Further, the executed transition s < s, is added to the
model M by function addToModel() on Line 14. As an illustration, to completely
crawl the sub-graph formed by states 5a-5d in Figure [I(b), the standard DFS
would need to backtrack several times whereas our algorithm would cover it in a
single forward crawl through the sequence Menu — Settings — al — a2 —
al - a2 — a2 — al — a2 — al , by continuing to fire open actions.
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6 Tool Implementation

We have implemented our reverse-engineering approach in a tool called ORBIT.
It is composed the action detector and the dynamic crawler. Figure Bl shows an
overview of ORBIT.

A ction Detector | — i

- - i Dynamic Crawler !

WALA | Partial Connected T FwdCrawl Al it 1
AUT o Call Graph R, i AENE BT | ) [state

Source| i | Robotium >

T Tddre il Mode

i Inferring Algorithm ||! N

el | e e e |
: . T — i Runtime |
Intent-Passing Logic Action Mapping R e R

Fig. 3. Overview of the ORBIT tool

Action Detector. The action detector is implemented using the WALA
static-analysis framework [24]. Android apps are event-driven and therefore or-
ganized as a set of event-handler callback methods. Thus, static analysis of just
the app code gives a set of partial, disconnected sub call-graphs. The remain-
ing behavior resides in the Android SDK, which we do not explicitly analyze.
However, our tool incorporates an intent-passing logic module, created based
on our knowldege of the Android SDK. For a given app, this module automati-
cally builds a mapping of intent-sending methods and intent filters by analyzing
the app’s source code and manifest file. This mapping essentially connects the
sub call graphs into a partial connected call graph. It is partial because for some
intent-passing mechanisms like intent broadcasting whose behavior is affected by
the runtime state of the Android system, we are unable to infer this information
statically. Then we apply the action-inference algorithm described in Section [5.]
on the partial connected call graph to generate the action mapping.

Dynamic Crawler. Our crawler is built on top of the Robotium [5] An-
droid test framework and implements the algorithms explained in Section
Although the crawler gets the list of actions from the Action Detector, it im-
plements special handling for certain components such as dynamically-created
GUI components and system-generated GUI components that are not statically
declared.

Dynamically-created GUI components typically appear in Android containers
like ListView, as a list of dynamically-created child components. Each child
has the identical behavior, defined by the container. In such cases, the crawler
represents the container as one of the two abstract states: an empty list and a
non-empty list. Further, it randomly chooses only one of the child components
to crawl further, by firing actions defined in the container.

System-generated GUI components typically have system-defined IDs and pre-
defined actions. For example, the system-generated context menu is a ListView
object, with ID select dialog listview and different menu options as child compo-
nents, each with different behaviors. The crawler identifies such components at
runtime and systematically crawls each child, rather than treating it as a generic
container.
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7 Evaluation

To assess the efficacy of our automated model extraction, we conducted a study
addressing the following research questions:

RQ1: Is the proposed GUI crawling algorithm more efficient than a standard
depth-first state-traversal algorithm?

RQ2: Are the widget and screen actions inferred by static analysis effective in
enhancing the behavior covered by the generated model?

RQ3: Can our tool generate a higher-quality model, more efficiently, compared
to other state-of-the-art techniques?

Subjects. For our study, we use eight open-source Android apps that have
also been used by other work on automated testing of mobile apps [10,11121].
They are mostly small to medium-sized apps spanning a variety of application
categories and are listed in Table[dl

Results. To address the three research questions, we carry out a corresponding
experiment for each of the questions on all subjects. Among the subjects, Notepad
can be started with multiple notes (Notepad2) or no note (Notepad0), which will
substantially change the initial state of the crawling. To eliminate bias, we carry
out every experiment on Notepad for both scenarios.

To address R1, we record the time spent, the coverage as well as the counts of
forward actions (any actions other than back) and back actions exercised during
both DFS traversing and our crawling (FwdCrawl) in Table 2l As shown in the
Table, although both DFS and FwdCrawl can cover most of an app’s behavior,
DF'S takes 70% more time to traverse all 9 subjects together.

The second experiment is to run our traversal algorithm with click actions only
instead of inferred actions. To address R2, we record the coverage and counts

Table 1. Test subjects used in the evaluation

Subject #LOCs #Activities Category Purpose

TippyTipper 2238 5 Tool Dining tip calculator
OpenManager 1595 6 Business File manager for Android

Notepad 332 3 Productivity Note creation and management
TomDroid 3711 3 Business Online note reading

Aarddict 4518 4 Books & Reference Aard Dictionary for Android
HelloAUT 234 1 Entertainment  Shape drawing & coloring
ContactManager 497 2 Productivity Contacts manager

ToDoManager 323 2 Productivity Task-list creation and management

Table 2. Comparison of standard DFS-based crawling vs. proposed forward crawling

Subject FwdCrawl DFS

Time(sec) Coverage(%) #Fwd #Back Time(sec) Coverage (%) #Fwd #Back
TippyTipper 198 78 61 15 512 82 134 52
OpenManager 480 63 92 18 822 56 209 29
Notepad2 102 82 25 4 147 83 39 12
Notepad0 80 78 18 2 75 71 15 2
TomDroid 340 70 78 23 459 58 61 8
AardDict 173 65 15 2 397 60 20 8
HelloAUT 156 86 46 0 278 85 61 0
ContactManager 125 91 20 1 137 92 22 2
ToDoManager 178 75 60 2 294 74 84 4
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Table 3. Comparison of Crawling with and without Action Inference

#clicks #longClicks #menu #States Coverage(%)

Subject C C+IC CHIC C+I C CHI C C+1
TippyTipper 21 55 — 2 4 3 9 47 78
OpenManager 50 67 — 19 — 4 10 20 39 63
Notepad2 2 13 — 3 - 9 2 739 82
Notepad0 0 8 — 1 - 9 0 714 78
TomDroid 3 52 — 0 — 26 2 9 36 70
AardDict 4 15 — 0 — 7 3 743 64
HelloAUT 15 34 — 0 — 12 4 8 53 86
ContactManager 20 20 — 0 - 05 5 92 92
ToDoManager 60 60 — 0 0o 7 776 76

of clicks, longClicks, and menu, the three most common actions fired during
crawling. The results show that non-click actions constitute only 22% of the
total actions but firing these actions during crawling increases the coverage by
34% on average. The low proportion of these actions also supports the argument
made in Section [l that blindly firing all supported actions will produce a large
number of invalid edges in our model. Table Bl also shows that our crawling
produces fairly compact models with a few states.

We also compare ORBIT with other existing Android GUI ripping tools to
address R3. In Table[] we compare ORBIT with Android GUITAR [21], Android
GUI Ripper [11] and Android’s Monkey tool. As Android GUI Ripper takes
substantially long time to run, we use the runs of its generated test cases to
do the comparison. The time of each run was recorded from the start of the
AUT (App Under Testing) to the generation of coverage report. The time along
with coverage shows that our crawler is 32%-75% faster while constructing a 5%-
140% more complete model than Android GUITAR and Android GUI Ripper.

Table 4. Comparison of ORBIT with other tools

Android Android

Subject Monkey GUITAR GUI Ripper ORBIT

Time(sec) Cov.(%) Time(sec) Cov.(%) Time(sec) Cov.(%) Time(sec) Cov.(%)
Tippy Tipper 83 41 322 47 - - 198 78
OpenManager 90 29 - - - - 480 63
Notepad?2 127 60 - - - - 102 82
Notepad0O 122 59 - - - - 80 78
TomDroid 69 46 - - 529 40 340 70
AardDict 124 51 - - 694 27 173 65
HelloAUT 98 71 117 51 - - 79 98
ContactManager 90 53 247 61 - - 125 91
ToDoManager 115 71 194 71 - - 121 75

For illustration purposes, we also compare our tool against the Android Mon-
key tool. Monkey fires a pseudo-randomly-generated action sequence, of a spec-
ified length, on the app. For our subjects, we found that the maximum coverage
achieved by Monkey tended to saturate at around 1200 events. For our exper-
iment, we ran Monkey 10 times with a 1500 event count on each app, and
report the median of the coverage achieved in these 10 runs in Table @l Indeed,
for the given event count, Monkey is much faster than ORBIT but achieves
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substantially lower coverage. This result underscores the benefit of the system-
atic crawling performed by ORBIT.

8 Discussion

Crawling algorithm. Our crawling algorithm is faster than DFS for every
subject except Notepad0. By examining the execution log, we found that our
algorithm had traversed two more states than DFS, accounting for the difference.
Such result is due to the randomness in the choice of the next action to explore
and to the side effects of execution. When crawling by DF'S, the crawler happened
to click the delete note button first before clicking the open note button. Since
there are no notes left after deletion, the crawler cannot visit the edit note screen.
Our crawling happened to click the edit button before delete, so we are able to
traverse the editing screen. The randomness can be mitigated by carrying out
multiple runs. We also plan to consider controlling the order of event sequences
as part of future work.

Selection of subjects. Our evaluation is based on subjects drawn from
existing related tools, and we try to avoid bias by including all subjects used to
evaluate Android GUITAR and GUI Ripper in previous work. However, we do
see a preference in the choice of subjects made by these tools. Both of the tools
seemed to select subjects with few non-click actions. For GUI Ripper, both the
subjects do not have longClick actions, although we did find a later version of
TomDroid that has longClicks. For GUITAR, because GUITAR does not support
non-click actions, two of its subjects, ContactManager and ToDoManager, do not
support non-click actions at all. In general, Android apps have a wide variety of
actions, and we apply our methodology against on apps with multiple actions
and those with only one or two kinds of actions. The both results show that our
methodology is effective on both of the cases.

ORBIT vs Android GUITAR. As Android GUITAR can fire only click
actions, it seems unfair to use our results with action inference for comparison.
If we compare our click-only runs with GUITAR, we observe that for most of
the subjects, Android GUITAR’s coverage rate in Table M is comparable to
our click-only coverage in Table Bl So we infer that our advantage in model
completeness is largely attributable to the action-detection technique. Another
difference between the two tools is that GUITAR was initially created for desktop
applications and its event-flow model typically contains many invalid paths,
while ORBIT is designed specifically for mobile apps, and uses a more precise
state-based model, which would also integrate well with other state-based testing
techniques.

Manual effort. The only manual work in our approach is to manually se-
lect attributes of executable components to compose the visual observable states
for the GUI. This effort is a one-time effort for a mobile platform. As we have
already performed this exercise for Android apps, additional effort will be re-
quired only when applying our technique on other mobile platforms to make
minor adjustments or revisions for Android.
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9 Conclusion

In this paper, we have proposed an approach for automatically reverse-engineering
GUI models of mobile apps. We described our tool called ORBIT that implements
our approach for Android, and presented the results of our empirical evaluation of
this tool on several Android apps. The results showed that for these apps, ORBIT
efficiently extracted high-quality models fully automatically.
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