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Abstract. Climate simulation models are used for a variety of scientific
problems and accuracy of the climate prognoses is mostly limited by the
resolution of the models. Finer resolution results in more accurate prog-
noses but, at the same time, significantly increases computational com-
plexity. This explains the increasing interest to the High Performance
Computing (HPC), and GPU computations in particular, for the cli-
mate simulations. We present an efficient implementation of the Nonhy-
drostatic ICosahedral Atmospheric Model (NICAM) on the multi-GPU
environment. We have obtained performance results for the number of
GPUs up to 320. These results were compared with the parallel CPU
version and demonstrate that our GPU implementation gives 3 times
higher performance over parallel CPU version. We have also developed
and validated the performance model for a full-GPU implementation of
the NICAM. Results show 4.5x potential acceleration over parallel CPU
version. We believe that our results are general, in that in similar appli-
cations we could achieve similar speedups, and have the ability to predict
its degree over CPUs.

Keywords: GPU computations, CUDA Fortran, climate simulations,
nonhydrostatic model.

1 Introduction

Climate change has significant impact on the Earth and human life as well as
on the world’s economic and geopolitical landscapes. The consequences of cli-
mate change such as higher temperatures, changing landscapes and different
weather cataclysms potentially affect everyone. Thus, it is important to im-
prove the understanding of the changing climate system and enable scientists to
predict future climate behavior. Complex climate simulation modeling requires
state-of-the-art HPC systems in order to get the "realistic” results. Particularly
heterogeneous systems, which are based on using both conventional micropro-
cessors and graphic processor units (GPUs), give us an extra performance for
many kinds of scientific computations.

The main objective of this work is to increase performance of the exist-
ing climate simulation by using large-scale parallelism available on multi-GPU
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environments. In this work we have developed and optimized a multi-GPU im-
plementation of the ultra-high resolution atmospheric global circulation model
NICAM [I] (see sections 3, 4). We have also built a performance model, which
allows us to estimate potential performance of full-GPU implementation for any
problem configuration (see section 5).

Our method is based on the localization of the most computationally intensive
part of the climate model and modifying it to be computed on GPUs. One
of the main challenges which such method faces is to reduce communication
overheads and, at the same time, use large-scale parallelism of the hybrid system
in the most efficient way. In order to achieve an optimal performance GPU
kernels were analyzed and optimized. Experiments demonstrate that we have
achieved significant acceleration of the initial parallel code. We have compared
maximum performance for the initial MPI-parallel code with the one for our
GPU implementation. The evaluation results show that the performance of the
ported module is close to maximum efficiency and we can see more then 3x
speedup in case of porting only one module to GPUs. Estimation results for a
full-GPU implementation of shallow water NICAM simulation show potential
4.5x speedup over CPU MPI-parallel version.

Our contributions can be summarized as follows:

— We propose an effective multi-GPU implementation for a high resolution
nonhydrostatic atmospheric model, specifically optimized for the large hy-
brid systems.

— We have evaluated our approach experimentally on more than hundred of
nodes with 320 GPUs on a TSUBAME2.0 supercomputer. Evaluation results
show performance’s raise and significant acceleration of the original MPI-
parallel code.

— We have developed performance model for a full-GPU NICAM implementa-
tion, which produces an estimation of potential performance for any problem
configuration. It was shown that performance model prediction matches to
the observed results for a large scale NICAM code.

2 Related Work

Increasing interest to the HPC among developer of climate simulation software
can be explained by the extreme necessity to increase computational performance
in purpose to improve the accuracy of simulations.

There are several weather/climate simulation models, which were recently
accelerated with GPUs, such as: WRF[2], COSMOJ3], NIM[4], HILRAMJ5],
ASUCA [6], GEOS-5[7] and GRAPESI§]. ASUCA, GEOS-5 and GRAPES are
full-GPU approaches, WRF and COSMO(1) are based on porting only ” Physics”
module to the GPU, and COSMO(2), NIM and HILARM are poring to GPU only
”Dynamics” module. Performance results are different for all listed simulation
models and depends on numerical scheme as well as on the GPU-implementation
strategy. Full-GPU implementation of ASUCA shows 26.3x speedup for a dou-
ble precision and 80x speedup for a single precision cases[6]. By using GPU
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co-processor technology GEOS-5 have demonstrated a potential speedup of 15-
40 times over conventional processor cores[7]. Recent results of porting the
GRAPES model to the GPU system show that acceleration was not as efficient
as it was supposed and implementation algorithm needs significant optimiza-
tions. For the models, based on porting only one module (Physics or Dynamics)
to the GPU we also observe quite sufficient acceleration, but the performance
results are lower then for a full-GPU ones. It can be explained by higher com-
munication overheads and smaller commutation intensity on the GPU. WRF
GPU implementation shows 17x speedup over 1 CPU[2]; COSMO simulation on
1 GPU is 2x faster then on 6 CPUs; HILARM single GPU implementation shows
10x speedup over 1 CPU[5].

Our multi-GPU implementation of the NICAM is based on porting shallow
water computations module (2-dimension ”Dynamics” module) to GPUs and
shows potential speedup of 4.5 times over CPU MPI-parallel implementation.

In our previous work [9] we have implemented the module, which performs
the NICAM ’s main shallow water computations, on a single GPU. Due to the
relatively small GPU memory, the results, we obtained, were limited only to
small-scale problems (grid level up to 8). Multi-GPU implementation, described
in this paper, solves the memory problem by distributing grid elements between
nodes. We have modified our single GPU implementation into multi-GPU one.
For this purpose we had to study the way to organize MPI-CUDA coordination
efficiently.

3 The NICAM Model

NICAM is a Nonhydrostatic ICosahedral Atmospheric Model, which is designed
to perform ”cloud resolving simulations” by directly calculating deep convection
and meso-scale circulations[I], [I0]. Detailed description of the NICAM numeri-
cal scheme can be found in [1], [I1], [12]. For the horizontal discretization NICAM
model uses icosahedral grid system on the sphere. Grid dimension is defined by
the grid division level n (gl n), and total number of grid point can be calculated
by the formula: Ng = 10(2")? + 2

Initial NICAM code is based on FLAT-MPI parallel programming model.
NICAM uses 2D decomposition, where initial grid is divided by regions. This
regions are distributing between MPI processes. Total number of rectangles for
the region level n can be calculated by the formula:

Nr =10(4") (1)
In this work we have investigated 2-dimensional (Shallow water) case of NICAM

model [I3], which plan to implement for the 3- dimensional case in a future work.

4 Implementation in CUDA Fortran

The CUDA architecture [14] enables hybrid computing, where both host (CPU)
and device (GPU) can be used to accelerate different types of computations.
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Current CUDA-enabled GPUs can contain from tens to hundreds of processor
cores which are capable of running tens of thousands of threads concurrently.
This gives us an opportunity to get significant acceleration of the code, but,
at the same time, data transfers between host and device through the PCI bus
tend to be the bottleneck in data movement. Therefore it is feasible to use GPUs
only for computationally intensive code. The Portland Group (PGI) offers us an
opportunity to explicitly program for GPUs using CUDA Fortran. NICAM is
originally written in Fortran, thus the PGI CUDA Fortran syntax allows us to
develop GPU kernels using a familiar coding environment.

Simplified flow-graph of the GPU NICAM implementation is presented on the
Figure[Il It is shown that in the beginning of the computations we execute some
initial modules like: MPI initialization, reading from the input file, checking the
system, calculation of the grid geometry and some others. Main computations
of the model are performing in the cycle by the time steps (nl).

Start process
COPY to GPU:
.................... h, vx, vy,vz

One Large step:

U
«" <<<kernel for scl, hvx, hvy, hvz >>>

<<<kernel OPRT_gradient >>>

lCPU-GPU communication J

i [Onelarge step |

[Computation on GPU } - <<<kernel OPRT_vorticity 2>>>

............ >
-----------------

Viscosity filter
Horizontalize filter

MPI communication|

Fig. 1. GPU implementation scheme

<<< kernel OPRT_divergence >>>

[
'
'
'
<<<kernel OPRT _vorticity 1>>>
'
'
'
'

lGPU-CPU communication J

<<<kernel for dvx, dvy, dvz, dh>>>

COPY to CPU:
dh, dvx, dvy,dvz

In purpose to analyze runtime behavior of the given code we have used the
Scalasca performance toolset [I5]. According to the profiling results ”One large
step” is the most time consuming module of the code. It takes more then 50%
of the whole time to compute this module. Therefore, in purpose to accelerate
computations, we have decided to port this module to GPUs. We describe our
GPU implementation algorithm below.

Before starting main cycle computations we send initial data arrays to GPUs
(see Figure[ll). This data are constant during entire computational process and
we keep them in the GPU global memory until the end of the computations. The
data, which are variable and necessary for the ”One large step” module compu-
tations, are copying to GPUs in the beginning of the ”One large step” module.
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Then, after we finish computations on GPUs, we copy output data arrays to
CPU. ”One large step” module consist of 3 main subroutines: OPRT gradient,
OPRT vorticity and OPRT divergence. In purpose to reduce communication
overheads we have also ported initial data and output data computation mod-
ules to GPUs and thus, keep all temporary data in the GPU global memory.
Initial CPU code for this module was slightly modified in purpose to reduce the
amount of memory to be allocated on GPU. We have created one kernel for
OPRT gradient and one for OPRT divergence. For OPRT vorticity module it
was necessary to create 2 kernels, because we need to synchronize data within
GPU in the middle of the vorticity module computations. Each modified mod-
ule based on one nested loop or several loops calculation and each loop iteration
computes 1 element of 2-dimensional array. Each thread of our GPU kernels
calculates 1 element of the array.

CUDA programming model requires the programmer to organize parallel ker-
nels into a grid blocks, which divided into thread blocks with at most 512 threads
each. The NVIDIA GPU architecture executes threads of a block in SIMT (sin-
gle instruction, multiple thread) groups of 32 called warps. NICAM model uses
2-dimensional grid, which size depends on the of grid level and region level sizes.
We have used a block configuration of 256 threads, one thread per element. Our
block size is a multiple of 32 which fits with the warp size and, therefore, allows
us to achieve maximum efficiency. We have performed several tests to find the
best way of organizing GPU-CPU communications and found that using pinned
memory with PGI CUDA Fortran assignment gives as the best results and re-
duces communication time for about 3x time over a non-optimized version. By
this means CPU-GPU communication bandwidth reached 5.6 GB/sec, which is
close to the maximum. GPU kernels are located inside of each MPI process (see
Figure [[) Therefore in the evaluation experiments we used the same number of
MPI processes and GPUs.

It is shown in section 6 that CPU-GPU communications are quite significant
and became a bottleneck. In purpose to increase performance we need to reduce
communication time to computation time ratio. For this reason we plan to in-
crease computational intensity on GPUs by porting the rest modules of the main
Shallow Water computations to graphic processor units. In purpose to estimate
potential performance for a full-GPU implementation of the NICAM we have
built a performance model, described in the next section.

5 Performance Model

Simplifyed flow-graph for the full-GPU implementation of the NICAM is shown
on the Figure [2 a). We assume that we compute ”One large step”, ” Viscosity
filter” and ”Horizontalize filter” modules on GPUs. For this reason, we send
h,vz,vy,vz arrays to GPU Global memory before starting GPU computations
and copy output arrays dh, dvx, dvy,dvz to CPU after finishing ”Horizontalize
filter” computations. The size of arrays we copy to GPU and from GPU to CPU
are the same as it was for a case of porting only ”One Large step” module, and,
therefore, the communication time (COM M time) should be the same
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Fig. 2. Performance model a)flow-graph for a full-GPU NICAM implementation b)
performance estimation results

The results we have got for the described multi-GPU implementation show
that the ”"One large step” - is a memory bound module. Experimental re-
sults show, that its performance on GPU without communications tends to
14 TFLOPS (we will call it OLSPerfomanse below). Also it was estimated
that the average CPU-GPU communication bandwidth (COMM Bandwidth) is
about 5.6 GB/sec . The estimation of the potential performance of the ful- GPU
implementation is based on the number of floating point operations for entire
shallow mode computation cycle (FLOP N), obtained OLS Per formanse and
COMM Bandwidth, and was calculated by the formula (2):

Per formance = FLOP N/(COMM time + time on GPU), (2)

where COM M time = transfered memory/COMM Bandwidth,
transfered memory = 64 x ((2 + (grid level — regionevel)?)?), Bytes,
time on GPU = FLOP N/OLSPerforman?e

Size of the transferred memory depends on the grid dimension and, therefore,
a function of the grid level and region level parameters. The formulas above
estimate performance for any configuration of the problem size. Results are pre-
sented on the Figure @ b). It is shown that the performance of the multi-GPU
implementation potentially achieve 7 TFLOPS on 217 nodes, which is 4.5x higher
than performance for the parallel CPU implementation. The performance model
results were compared to the experimental ones (see section 6). We have observed
that the model predictions match to the experimental results, which indicates
that proposed model is valid and efficient.
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6 Experimental Evaluation

In this work we have presented results of multi-GPU implementation of NICAM
code on TSUBAME 2.0 supercomputer.

6.1 Environment

TSUBAME 2.0 consist of 1408 compute nodes of two Intel Xeon Westmere-EP
2.9 GHz CPUs and three NVIDIA M2050 GPUs with 52GB and 3GB of system
and GPU memory, running SUSE Linux Enterprise Server 11 SP1. Each node
has 2 sockets, 12 cores/node. We have used PGI CUDA Fortran compiler for the
GPU code and PGI mpich2 compiler for the code on CPUs.

6.2 Results of the Multi-GPU Implementation

We have compared maximum performance, which is possible to get from each
node, for the original MPI-parallel implementation of the code with the one for
our multi-GPU implementation in our experiments. We have presented results
for the grid levels 9, 10 and 11, which correspond to 2621440, 10485762 and
41943042 number of elements accordingly.

Due to the fact that we have 2 sockets per node, 6 cores per each socket and
3 GPUs per node, we have used 12 CPU cores per node for the CPU implemen-
tation and 3 CPU+GPU hybrid cores per node for the GPU version of the code.
Initial NICAM code has a limitation in the number of MPI processes, which
should be a division of the number of regions. The number of regions can be
calculated by the formula (1) and only next numbers of processes are available:
1, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80 and so on. According to the statements
above we have used following configurations: we have compared 14 nodes with
160 CPU cores for the CPU implementation versus 40 CPU+GPU hybrid cores
for the multi-GPU one; 27 nodes with 320 CPU cores versus 80 CPU+GPU
hybrid cores; 54 nodes with 640 CPU cores versus 160 CPU+GPU hybrid cores,
and 107 nodes with 1280 CPU cores versus 320 CPU+GPU hybrid cores. The
results are presented on Figures 3] [

We present performance breakdown results for a GPU implementation in the
FigureBla). It is shown that about 30-40% of the overall time of the GPU imple-
mentation is spent for CPU-GPU communications. This ratio is quite significant,
which signify that communication overheads are the bottleneck for the described
implementation. It was shown in the previous section that we achieve higher per-
formance by increasing computational intensity on GPU. Therefore, we suppose
that we will get much better results when we switch from the 2D case to the 3D
one, because computation intensity on GPU for a 3D case is significantly higher
than for a 2D implementation. We compare overall computation time for GPU
implementation with the one for initial MPI-parallel version on the Figure B b)
It is shown that our multi-GPU implementation is up to 3 times faster then the
initial parallel CPU code. At the same time, we can observe that for smaller grid
sizes (e.g. gl 09) acceleration is slightly lower and we have smaller execution time
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difference between parallel CPU and multi-GPU implementations, which can be
explained by lower computation intensity per node. Thus, the GPU implemen-
tation is more efficient for grid levels higher than 9, which is the lowest grid level
required by the NICAM model to produce relatively ”realistic” results.
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Fig. 3. Average running time for MPI-parallel CPU version versus time multi-GPU
implementation of NICAM as a function of the number of nodes

Performance as a function of the number of nodes for a multi-GPU imple-
mentation and initial NICAM version is shown on the figure Figure [h). The
results are similar to the ones on the Figure Bl b) and performance for a GPU
implementation is up to 3 times higher than for a MPI-parallel version.

Figure [ b) compares performance we obtained for the proposed GPU im-
plementation with the theoretical one, estimated by the performance model de-
scribed at the section 5. According to the formulas from the section 5 and due
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versus multi-GPU implementation. b) Theoretical and experimental performances
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to the fact, that increasing the grid level by 1 we 4x time increase computational
intensity and transferred data size, theoretical performance is the same for any
configuration of the problem. From the graph we can see, that the higher grid
dimension the closer experimental performance to the theoretical one. This in-
dicates that our theoretical model better fit to the real-size problem, due to we
have higher computational intensity for a fine-grained tasks and less overheads.
It can be observed that for the grid level 11 up to 54 nodes the experimental
performance close to the theoretical one, which validates the proposed perfor-
mance model. A little difference of the experimental performance for the 107
nodes with the theoretical one can be explained by the reduced computation
intensity per node, which reduces efficiency of the GPU implementation. We
have also performed some additional experiments to compare our performance
model estimations with the experimental results. It was observed, that the model
is well matching tho the experiments for such a large-scale model as NICAM.
So, we believe that we can use the model for the purpose to estimate reliable
performance results for a reasonable sized problem configuration.

7 Conclusion

Climate changes becoming a critical topic in everyday life and, therefore, an
interest to climate simulation models is rapidly increasing. The climate models
are tools that demand high performance computations to achieve reliable accu-
racy of the results. Heterogeneous systems are emerging as attractive computing
platforms for HPC applications. Large-scale parallelism available on multi-node
GPU environment gives us an opportunity to get better performance for many
kinds of scientific computations.

In this paper we have presented results of the multi-GPU implementation
of the Nonhydrostatic ICosahedral Atmospheric Model on a big heterogeneous
system. We have ported the most time-consuming module of the initial code to
GPUs by using PGI CUDA Fortran. We have demonstrated that our multi-GPU
implementation gives 3 times higher performance comparing with the maximum
performance of the MPI-parallel version. It was also shown, that performance
of the proposed GPU implementation is almost optimal for ”reasonable-sized”
problems. We have developed a performance model for a full-GPU implementa-
tion. Estimation results show 7 TFLOPS potential performance on 217 nodes for
a multi-GPU implementation, which is 4.5x times higher than the performance
of the parallel CPU version. The model was validated and shows a good match-
ing to the experimental results. The results above prove that proposed method is
highly efficient and we can recommend it for many kinds of climate simulations.

We intend to apply described GPU implementation of NICAM shallow wa-
ter code for a tree-dimensional NICAM climate simulation model, which would
give us higher performance results due to increasing computational intensity
per node. Also we plan to investigate performance of the NICAM code with
OpenACC and compare it with the one, we obtained with PGI CUDA Fortran.
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