MRBS: Towards Dependability Benchmarking
for Hadoop MapReduce

Amit Sangroya, Damidn Serrano, and Sara Bouchenak

University of Grenoble - LIG - INRIA, Grenoble, France
{Amit.Sangroya,Damian.Serrano,Sara.Bouchenak}@inria.fr

Abstract. MapReduce is a popular programming model for distributed
data processing. Extensive research has been conducted on the reliability
of MapReduce, ranging from adaptive and on-demand fault-tolerance to
new fault-tolerance models. However, realistic benchmarks are still miss-
ing to analyze and compare the effectiveness of these proposals. To date,
most MapReduce fault-tolerance solutions have been evaluated using mi-
crobenchmarks in an ad-hoc and overly simplified setting, which may not
be representative of real-world applications. This paper presents MRBS,
a comprehensive benchmark suite for evaluating the dependability of
MapReduce systems. MRBS includes five benchmarks covering several
application domains and a wide range of execution scenarios such as
data-intensive vs. compute-intensive applications, or batch applications
vs. online interactive applications. MRBS allows to inject various types
of faults at different rates and produces extensive reliability, availability
and performance statistics. The paper illustrates the use of MRBS with
Hadoop clusters.

Keywords: Benchmark, Dependability, MapReduce, Hadoop.

1 Introduction

MapReduce has become a popular programming model and runtime environment
for developing and executing distributed data-intensive and compute-intensive
applications [1I. It offers developers a means to transparently handle data parti-
tioning, replication, task scheduling and fault-tolerance on a cluster of commod-
ity computers. Hadoop [2], one of the most popular MapReduce frameworks,
provides key fault-tolerance features.

There has been a large amount of work towards improving fault-tolerance solu-
tions in MapReduce. Several efforts have explored on-demand fault-tolerance [3],
replication and partitioning policies [4], [5], adaptive fault-tolerance [6], [7], and
extending MapReduce with other fault-tolerance models [8], [9]. However, there
has been very little in the way of empirical evaluation of MapReduce depend-
ability. Evaluations have often been conducted in an ad-hoc manner, such as
turning off a node in the MapReduce cluster or killing a task process. Recent
tools, like Hadoop fault injection framework offer the ability to emulate non-
deterministic exceptions in the distributed filesystem. Although they provide a

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 3-[[2] 2013.
© Springer-Verlag Berlin Heidelberg 2013

4 A. Sangroya, D. Serrano, and S. Bouchenak

means to program unit tests for HDFS, such low-level tools are meant to be used
by developers who are familiar with the internals of HDFS, and are unlikely to
be used by end-users of MapReduce systems. MapReduce fault injection must
therefore be generalized and automated for higher-level and easier use. Not only
it is necessary to automate the injection of faults, but also the definition and
generation of MapReduce faultloads. A faultload describes what fault to inject
(e.g. anode crash), where to inject it (e.g. which node of the MapReduce cluster),
and when to inject it (e.g. five minutes after the application started).

This paper presents MRBS (MapReduce Benchmark Suite), for evaluating
the dependability of MapReduce systems. MRBS enables automatic faultload
generation and injection in MapReduce. This covers different fault types, in-
jected at different rates, which will provide a means to analyze the effectiveness
of fault-tolerance in a variety of scenarios. Three different aspects of load are
considered: dataload, workload and faultload. MRBS allows to quantify depend-
ability levels provided by MapReduce fault-tolerance systems, through an em-
piric evaluation of the availability and reliability of such systems, in addition to
performance and cost metrics. Moreover, MRBS covers five application domains:
recommendation systems, business intelligence, bioinformatics, text processing,
and data mining. It supports a variety of workload and dataload characteristics,
ranging from compute-oriented to data-oriented applications, batch applications
to online interactive applications. Indeed, while MapReduce frameworks were
originally limited to offline batch applications, recent works are exploring the
extension of MapReduce beyond batch processing [10].

MRBS shows that when running the Bioinformatics workload and inject-
ing a faultload that consists of a hundred map software faults and three node
faults, Hadoop MapReduce handles these failures with high reliability (94%
of successful requests) and high availability (96% of the time). We wish to
make dependability benchmarking easy to adopt by end-users of MapReduce
and developers of MapReduce fault-tolerance systems. MRBS allows automatic
deployment of experiments on private or public clouds being independent of
any particular infrastructure. MRBS is available as a software framework to
help researchers and practitioners to better analyze and evaluate the depend-
ability and performance of MapReduce systems. It can be downloaded from
http://sardes.inrialpes.fr/research/mrbs.

2 Background on Hadoop Fault Tolerance

MapReduce is a programming model and a software framework introduced by
Google in 2004 to support distributed computing and large data processing on
clusters of commodity machines [I]. MapReduce supports a wide range of ap-
plications such as image analytics, next-generation sequencing, recommendation
systems, search engines, social networks, business intelligence, and log analysis.

There are many implementations of MapReduce among which the popular
open-source Hadoop framework, which is also available in public clouds such
as Amazon EC2 or Open Cirrus. A Hadoop cluster consists of a master node

MRBS: Towards Dependability Benchmarking for Hadoop MapReduce 5

and slave nodes. Users (i.e. clients) of a Hadoop cluster submit MapReduce jobs
to the master node which hosts the JobTracker daemon that is responsible of
scheduling the jobs. Each slave node hosts a TaskTracker daemon that periodi-
cally communicates with the master node to indicate whether the slave is ready
to run new tasks. If it is, the master schedules appropriate tasks on the slave.

Hadoop framework also provides a distributed filesystem (HDFS) that stores
data across cluster nodes. HDF'S architecture consists of a NameNode and DataN-
odes. The NameNode daemon runs on the master node and is responsible of
managing the filesystem namespace and regulating access to files. A DataNode
daemon runs on a slave node and is responsible of managing storage attached to
that node. HDF'S is thus a means to store input, intermediate and output data
of Hadoop MapReduce jobs. Furthermore, for fault tolerance purposes, HDFS
replicates data on different nodes.

One of the major features of Hadoop MapReduce is its ability to tolerate
failures of different types, as described in the following.

Node Crash: In case of a slave node failure, the JobTracker on the master node
stops receiving heartbeats from the TaskTracker on the slave for an interval of
time. When it notices the failure of a slave node, the master removes the node
from its pool and reschedules ongoing tasks on other nodes.

Task Process Crash: A task may also fail because a map or reduce task process
suddenly crashes, e.g., due to a transient bug in the underlying (virtual) machine.
Here again, the parent TaskTracker notices that a task process has exited and
notifies the JobTracker for possible task retries.

Task Software Fault: A task may fail due to errors and runtime exceptions in
map or reduce functions written by the programmer. When a TaskTracker on a
slave node notices that a task it hosts has failed, it notifies the JobTracker which
reschedules another execution of the task, up to a maximum number of retries.

Hanging Tasks: A map or reduce task is marked as failed if it stops sending
progress updates to its parent TaskTracker for a period of time (indicated by
mapred.task.timeout Hadoop property). If that occurs, the task process is killed,
and the JobTracker is notified for possible task retries.

3 Dependability Benchmarking for Hadoop MapReduce

To use MRBS, three main steps are needed: (i) build a faultload (i.e. fault sce-
nario) to describe the set of faults to be injected, (ii) conduct fault injection
experiments based on the faultload, and (iii) collect statistics about dependabil-
ity levels of the MapReduce system under test. This is presented in Figure [I

The evaluator of the dependability of a MapReduce system chooses an ap-
plication from MRBS’ set of benchmarks, depending on the desired application
domain and whether he/she targets compute-oriented or data-oriented appli-
cations. MRBS injects (possibly default) workload and dataload in the system
under test. MRBS also allows the evaluator to choose specific dataload and work-
load, to stress the scalability of the MapReduce system (see Sections[B.3land B4
for more details).

6 A. Sangroya, D. Serrano, and S. Bouchenak

workload dataload

| |

MapReduce benchmark application

J /\ (Recomm. sys., Bioinformatics, ...)

MRBS faultload \
builder
MRBS

l MapReduce framework
—{ dependability

(Hadoop) analysis
faultioad /'

MRBS fault Cluster
fiseten (Amazon EC2, Azure, ...)

tester

Fig. 1. Overview of MRBS dependability benchmarking

3.1 Faultload Builder

A faultload in MRBS is described in a file, either by extension, or by intention. In
the former case, each line of the faultload file consists of the following elements:
the time at which a fault occurs , the type of fault that occurs and, option-
ally, where the fault occurs. A fault belongs to one of the fault types handled
by Hadoop MapReduC. Another way to define a more concise faultload is to
describe it by intention. Here, each line of the faultload file consists of: a fault
type, and the mean time between failures (MTBF) of that type. Thus, testers
can explicitly build synthetic faultloads representing various fault scenarios.

A faultload description may also be automatically obtained, either randomly
or based on previous application runs’ traces. The random faultload builder pro-
duces a faultload description where, with each fault type, is associated a random
MTBF between 0 and the length of the experiment. Similarly, the random fault-
load builder may produce a faultload by extension, where it generates the - line
of the faultload file as follows: < time stamp;, fault type;, fault location; >,
with time stamp; being a random value between time stamp;—1 (or 0 if i = 1)
and the length of the experiment, fault type; and fault location; random values
in the set of possible values. A faultload description may also be automatically
generated based on traces of previous runs of MapReduce applications.

MRBS faultload builder is relatively portable: its two first variants — explicit
faultload builder and random faultload builder — are general enough and do not
rely on any specific platform. The trace-based faultload builder is independent
from the internals of the MapReduce framework, and produces a faultload de-
scription based on the structure of the MapReduce framework’s logs; it currently
works on Hadoop MapReduce framework.

1 Other types of faults, such as network disconnection, may be emulated by MRBS,
although we do not detail them in this paper.

MRBS: Towards Dependability Benchmarking for Hadoop MapReduce 7

3.2 Fault Injection

The output of the MRBS faultload builder is passed to the MRBS fault injector.
The MRBS fault injector divides the input faultload into subsets of faultloads:
one crash faultload groups all crash faults that will occur in all nodes of the
MapReduce cluster (i.e. node crash, task process crash), and one per-node fault-
load groups all occurrences of other types of faults that will occur in one node
(i.e. task software faults, hanging tasks).

The MRBS fault injector runs a daemon that is responsible of injecting the
crash faultload. In the following, we present how the daemon injects these faults,
in case of a faultload described by extension, although this can be easily gener-
alized to a faultload described by intention. Thus, for the -** fault in the crash
faultload, the daemon waits until time stamp; is reached, then calls the fault in-
jector of fault type; (see below), on the MapReduce cluster node corresponding
to fault location;. This fault injector is called as many times as there are occur-
rences of the same fault at the same time. The fault injection daemon repeats
these operations for the following crash faults, until the end of the faultload file
is reached or the experiment finishes.

The MRBS fault injector handles the per-node faultloads differently. A per-
node faultload includes faults that occur inside tasks. MRBS intercepts task cre-
ation to check whether a fault must be injected in that task, in which case the
fault injector corresponding to the fault type is called (see below). MRBS does
not require the modification of the source code of the MapReduce framework.
Instead, it synthesizes a new version of the MapReduce framework library us-
ing aspect-oriented techniques. The synthetic MapReduce library has the same
API as the original one, but underneath this new library includes task creation
interceptors that encode the fault injection logic.

Node Crash Injection: A node crash is simply implemented by shutting down
a node. This fault injector uses the API of the underlying cloud infrastruc-
ture to implement such a fault. For example, in case of a public cloud such as
Amazon EC2, a node crash consists in a premature termination of an Ama-
zon EC2 instance. However, if a tester wants to conduct multiple runs of the
same dependability experiment, and if faults are implemented by shutting down
machines, new machines must be acquired from the cloud at the beginning
of each run, which may induce a delay. For efficiency purposes, we propose
an implementation of MapReduce node fault which kills all MapReduce dae-
mons running on that node. Specifically, in the case of Hadoop these include
the TaskTracker and DataNode daemons running in a slave nodd3. The time-
out to detect a MapReduce node failure is set to 30 seconds, a value set in
mapred.task.tracker.expiry.interval Hadoop property.

Task Process Crash Injection: This type of fault is implemented by killing the
process running a task on a MapReduce node.

2 A node crash is not injected to the MapReduce master node since this node is not
fault-tolerant.

8 A. Sangroya, D. Serrano, and S. Bouchenak

Task Software Fault Injection: A task software fault is implemented as a runtime
exception thrown by a map task or a reduce task. This fault injector is called
by the interceptors injected into the MapReduce framework library by MRBS.

Provoking Hanging Tasks: A task is marked as hanging if it stops sending
progress updates for a period of time. This type of fault is injected into a
map task or a reduce task through the interceptors that make the task sleep
a longer time than the maximum period of time for sending progress updates
(mapred.task.timeout Hadoop property).

The MRBS faultload injector is relatively portable: it is independent from the
internals of the MapReduce framework and the per-node faultload injectors are
automatically integrated within the framework based upon its API. The current
version of the MRBS faultload injector works for Hadoop MapReduce; porting
to new platforms is straightforward.

3.3 Benchmark Suite

Conceptually, a benchmark in MRBS implements a service that provides differ-
ent types of operations, which are requested by clients. The benchmark service is
implemented as a set of MapReduce programs running on a cluster, and clients
are implemented as external entities that remotely request the service. Depend-
ing on the complexity of a client request, the request may consist of one or
multiple successive MapReduce jobs. A benchmark has two execution modes:
interactive mode or batch mode. In interactive mode, concurrent clients share
the MapReduce cluster at the same time (i.e. have their requests executed con-
currently). On the other hand, requests from different clients are executed in
FIFO order (one after another) in batch mode.

A benchmark run has three successive phases: a warm-up phase, a run-time
phase, and a slow-down phase, which length may be chosen by the end-user of
the benchmark. The end-user may also choose the number of times a bench-
mark is run, to produce average statistics. MRBS benchmark suite consists of
five benchmarks covering various application domains such as recommendation
systems, business intelligence, bioinformatics, text processing, and data mining.
The user can choose the actual benchmark.

Recommendation System: Recommendation systems are widely used in e-
commerce sites. MRBS implements an online movie recommender system. It
builds upon a set of movies, a set of users, and a set of ratings and reviews users
give for movies to indicate whether and how much they liked or disliked the
movies.

Business Intelligence: The Business Intelligence benchmark represents a de-
cision support system for a wholesale supplier. It implements business-oriented
queries that examine large volumes of data, execute queries with a high degree
of complexity, and give answers to critical business questions. It uses Apache
Hive on top of Hadoop, a data warehouse that facilitates ad-hoc queries using a
SQL-like language called HiveQL.

MRBS: Towards Dependability Benchmarking for Hadoop MapReduce 9

Bioinformatics: The benchmark includes a MapReduce-based implementa-
tion of DNA sequencing. The data used in the benchmark are publicly available
genomes. Currently, the benchmark allows to analyze several genomes of organ-
isms such as the pathogenic organisms Salmonella typhi, Rhodococcus equi, and
Streptococcus suis.

Text Processing: Text processing is a classical application of MapReduce.
MRBS provides a MapReduce text processing-oriented benchmark, with three
types of operations allowing clients to search words or word patterns in text
documents, to know how often words occur in text documents, or to sort the
contents of documents. The benchmark uses synthetic input data that consist of
randomly generated text files of different sizes.

Data Mining: This benchmark provides two types of data mining operations:
clustering and classification. MRBS benchmark considers the case of classify-
ing newsgroup documents into categories. Furthermore, the benchmark provides
canopy clustering operations.

3.4 Using MRBS

MRBS comes with a configuration file that involves several parameters among
which the following: the actual benchmark to use, the length of the benchmark
warm-up phase, runtime phase, and slow-down phase, the size of the bench-
mark input data set, the size of the MapReduce cluster, the cloud infrastructure
that will host the cluster, in addition to workload and faultload characteris-
tics described in the previous section. To keep the use of MRBS simple, these
parameters have default values that may be adjusted by MRBS user.

MRBS produces various runtime statistics related to performance and de-
pendability. These include client request response time, throughput, financial
cost, failed client requests vs. successful requests, availability, and reliability.
MRBS also provides low-level MapReduce statistics related to the number,
length and status (i.e. success or failure) of MapReduce jobs; tasks; the size
of data read from or written to the distributed file system, etc. These low-level
statistics are built using Hadoop counters. Optionally, MRBS can generate charts
plotting continuous-time results. More details on MRBS can be found in [I1].

4 Evaluation

4.1 Experimental Setup

We conducted several experiments with MRBS on Hadoop clusters running in
Amazon EC2 and Grid’5000, but due to space limitation we only present one
case study in this paper. The experiments presented in this section were con-
ducted in a cluster running in Grid’5000, a French geographically distributed
infrastructure used to study large-scale parallel and distributed systems. The
hardware configuration consists of 4-core 2-CPU, 2.5 GHz Intel Xeon E5420 QC

10 A. Sangroya, D. Serrano, and S. Bouchenak

CPU, 8 GB memory, 160 GB SATA storage (per node) and 1 GB Ethernet net-
work. The cluster consists of one node hosting MRBS and emulating concurrent
clients, and a set of nodes hosting the MapReduce cluster.

Financial cost is $0.34 per instance-hour. In the following, each experiment is
run three times to report average and standard deviation results. The operating
system of the nodes is Debian Linux 6 with kernel v2.6.32. The MapReduce
framework is Apache Hadoop v0.20.2, and Hive v0.7, on Java 6.

4.2 Experimental Results

In this section, we illustrate the use of MRBS to evaluate the fault-tolerance of
Hadoop MapReduce. Here, a ten-node Hadoop cluster runs the Bioinformatics
benchmark, used by 20 concurrent clients. The experiment is conducted during a
run-time phase of 60 minutes, after a warm-up phase of 15 minutes. We consider a
synthetic faultload that consists of software faults and hardware faults as follows:
first, 100 map task software faults are injected 5 minutes after the beginning of
the run-time phase, and then, 3 node crashes are injected 25 minutes later.

Table 1. Reliability, availability, and cost

Reliability Availability Cost (dollars/request)
94% 96% 0.008 (+14%)

Although the injected faultload is aggressive, the Hadoop cluster remains
available 96% of the time, and is able to successfully handle 94% of client requests
(see Table[Il). This has an impact on the request cost which is 14% higher than
the cost obtained with the baseline (non-faulty) system.

To better explain the behavior of the MapReduce cluster, we will analyze
MapReduce statistics, as presented in Figures and Figure presents
successful MapReduce jobs and failed MapReduce jobs over time. Note the log-
arithmic scale of the right side y-axis. When software faults occur, few jobs
actually fail. On the contrary, node crashes are more damaging and induce a
higher number of job failures, with a drop of the throughput of successful jobs
from 16 jobs/minute before node failures to 5 jobs/minute after node failures.

Figure shows the number of successful MapReduce tasks and the number
of failed tasks over time, differentiating between tasks that fail because they
are unable to access data from the underlying filesystem (i.e. I/O failures in
the Figure), and tasks that fail because of runtime errors in all task retries
(i.e. task failures in the Figure). We notice that software faults induce task
failures that appear at the time the software faults occur, whereas node crashes
induce I/O failures that last fifteen minutes after the occurrence of node faults.
Actually, when some cluster nodes fail, Hadoop must reconstruct the state of
the filesystem, by re-replicating the data blocks that were on the failed nodes
from replicas in other nodes of the cluster. This explains the delay during which
I/0 failures are observed.

MRBS: Towards Dependability Benchmarking for Hadoop MapReduce 11

25 = 1000 1000
v ~ successful jobs 100 ~ successful tasks
l - failed jobs = tasks failures
20 4 node faults — 1/O failures
/ \ ‘ v _software faults »/\[W

#1/0s

#faults
#tasks

e SRR
I P /L

/ : 10 10

AN

#jobs
W
—_—
[—— -<=">_
~
—_—

5 A, | A
0 1 1 /\ 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (min) time (min)
(a) jobs (b) tasks

Fig. 2. Successful vs. failed MapReduce jobs and tasks

600 10
[= successful requests | - sulccessful requests
500 e ¢ A /\\ - failed requests
- VA
<400 g ~—-
I - 2
9300 2 \ /
2 ! Sl
g E ’\ /L
N 2
L £l
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (min) time (min)
(a) response time (b) throughput

Fig. 3. Client request response time and throughput

Figure shows the response time of successful client requests. With soft-
ware faults, there is no noticeable impact on response times. Conversely, response
time sharply increases when there are node faults, and while Hadoop is rebuild-
ing missing data replicas. Similarly, Figure presents the impact of failures
on client request throughput. Interestingly, when the Hadoop cluster looses 3
nodes, it is able to fail-over, however, at the expense of a higher response time
(+30%) and a lower throughput (-12%).

5 Conclusions and Perspectives

To evaluate the dependability of MapReduce systems, MRBS allows to char-
acterize a faultload, generate it, and inject it in an online Hadoop MapReduce
cluster. MRBS performs an empirical evaluation of the availability and reliabil-
ity of such systems, to quantify their dependability levels. MRBS is available
as a software framework to help researchers and practitioners to better analyze
and evaluate the fault-tolerance of MapReduce systems. Important perspectives

12

A. Sangroya, D. Serrano, and S. Bouchenak

of this work is the addition of security evaluation that supports data security
attacks injection scenarios.

Acknowledgments. This work was partly supported by the Agence Nationale
de la Recherche, the French National Agency for Research, under the MyCloud
ANR project, and the University of Grenoble. Part of the experiments were
conducted on the Grid’5000 experimental testbed, developed under the INRIA
ALADDIN development action with support from CNRS, RENATER and sev-
eral Universities as well as other funding bodies.

References

10.

11.

Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: OSDI (2004)

Apache Hadoop, http://hadoop.apache.org

Fadika, Z., Govindaraju, M.: LEMO-MR: Low Overhead and Elastic MapReduce
Implementation Optimized for Memory and CPU-Intensive Applications. In: IEEE
CloudCom (2010)

Ananthanarayanan, G., Agarwal, S., Kandula, S., Greenberg, A., Stoica, 1., Harlan,
D., Harris, E.: Scarlett: Coping with Skewed Content Popularity in MapReduce
Clusters. In: European Conf. on Computer Systems (EuroSys) (2011)

Eltabakh, M., Tian, Y., Ozcan, F., Gemulla, R., Krettek, A., McPherson, J.: Co-
Hadoop: Flexible Data Placement and Its Exploitation in Hadoop. In: VLDB
(2011)

Jin, H., Yang, X., Sun, X.H., Raicu, I.. ADAPT: Availability-Aware MapRe-
duce Data Placement in Non-Dedicated Distributed Computing Environment. In:
ICDCS (2012)

Lin, H., Ma, X., Archuleta, J., Feng, W.C., Gardner, M., Zhang, Z.: MOON:
MapReduce On Opportunistic eNvironments. In: HPDC (2010)

Bessani, A.N., Cogo, V.V., Correia, M., Costa, P., Pasin, M., Silva, F., Arantes,
L., Marin, O., Sens, P., Sopena, J.: Making Hadoop MapReduce Byzantine Fault-
Tolerant. In: DSN, Fast abstract (2010)

Ko, S.Y., Hoque, I., Cho, B., Gupta, I.: Making Cloud Intermediate Data Fault-
Tolerant. In: ACM Symp. on Cloud Computing (SoCC) (2010)

Liu, H., Orban, D.: Cloud MapReduce: A MapReduce Implementation on Top of
a Cloud Operating System. In: CCGRID (2011)

Sangroya, A., Serrano, D., Bouchenak, S.: MRBS: A Comprehensive MapReduce
Benchmark Suite. Research Report RR-LIG-024, LIG, Grenoble, France (February
2012)

http://hadoop.apache.org

	MRBS: Towards Dependability Benchmarking for Hadoop MapReduce
	Introduction
	Background on Hadoop Fault Tolerance
	Dependability Benchmarking for Hadoop MapReduce
	Faultload Builder
	Fault Injection
	Benchmark Suite
	Using MRBS

	Evaluation
	Experimental Setup
	Experimental Results

	Conclusions and Perspectives
	References

