Exploring Heterogeneous Scheduling
Using the Task-Centric Programming Model

Artur Podobas, Mats Brorsson, and Vladimir Vlassov

Royal Institute of Technology, KTH
{podobas, matsbror, vladv}ekth.se

Abstract. Computer architecture technology is moving towards more heteroge-
neous solutions, which will contain a number of processing units with different
capabilities that may increase the performance of the system as a whole. How-
ever, with increased performance comes increased complexity; complexity that is
now barely handled in homogeneous multiprocessing systems. The present study
tries to solve a small piece of the heterogeneous puzzle; how can we exploit
all system resources in a performance-effective and user-friendly way? Our pro-
posed solution includes a run-time system capable of using a variety of different
heterogeneous components while providing the user with the already familiar
task-centric programming model interface. Furthermore, when dealing with non-
uniform workloads, we show that traditional approaches based on centralized or
work-stealing queue algorithms do not work well and propose a scheduling algo-
rithm based on trend analysis to distribute work in a performance-effective way
across resources.

Keywords: Task-Centric run-time systems, Heterogeneous computing,
TilePRO64 tasks, GPU tasks, OmpSs.

1 Introduction

As technology advances computers are becoming more and more difficult to program;
especially when aiming to utilize all the chips’ features. The current direction concern-
ing processor architecture is to accumulate as many processor cores as possibly on the
chip to get so-called multi- or many-core processors. Primarily this direction is driven
by the power and thermal limitations of the technology scaling; more transistors on a
smaller area create larger power densities putting greater stress on the cooling mecha-
nisms. Furthermore, multi- and many-core processors are slowly evolving to be more
heterogeneous in nature. And hardware vendors are already starting to tape-out het-
erogeneous devices such as the AMD Fusion and ARM bigLITTLE. We cannot say
much about the future but it is likely that the current trend of increasing heterogeneity
will continue; and software developers are already now struggling keeping the pace with
homogeneous multi- and many-core technology. How do we write parallel software that
targets several heterogeneous systems so that it is portable, scalable and user-friendly?
One solution is to provide the software programmer with a set of libraries that maintains
and handles the parallelism that the programmer exposes. The library should provide
functions for exposing and synchronizing parallel work. A programming paradigm that

L. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 133-[144] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

134 A. Podobas, M. Brorsson, and V. Vlassov

has the potential of supporting these features is called the task-centric programming
paradigm. The task-centric paradigm abstracts the user away from managing threads.
Instead, the programmer focuses on exposing parallel work in the form of tasks. Tasks
can be of any granularity, ranging from an entire application to a simple calculation.
To clarify this further, a task is a sequential part of the application that can be ex-
ecuted concurrently with other tasks. Tasks are dynamic in nature; a task can create
several new tasks to further decompose the work and increase the parallelism. There
are many benefits of choosing a task-centric over a thread-centric framework, such
as improved load-balancing (resource-utilization) , portability and user-friendliness.
Notable task-centric libraries include: Cilk+ (based on Cilk-5 [7]]) focusing on determin-
ism, Nanos++ on user friendliness and versatility, Threading-Build Block on Object-
Oriented-Programming, Wool [6] on fine-grained parallelism, StarPU [1]] on GPUs. In
the present paper, our primary contributions are:

— A task-centric run-time system capable of handling several types of heterogeneous
processing units with distributed memory spaces, clock frequency, core count and
ISA.

— A scheduling algorithm that is based around linear regression with user-provided
feedback concerning tasks’ properties. The regression technique is very dynamic;
it is continuously calculated and used on-line while the application is running.

The rest of the paper is organized in the following way: Section [2] describes some re-
lated and similar work. Section[3 gives an introduction to the task-centric programming
style and sectiond] shows how our run-time system deals with heterogeneity. Sections[3]
and [@] give information about the scheduling policies we have developed as well as in-
formation concerning the benchmark and the system-under-test. We finish with sections
[7land[8] that shows the experimental results and the conclusion.

2 Related Work

A lot of work have been done to enable heterogeneous multiprocessing. Labarta et al.
[3U1144] introduced Cell/StarSs, a task-centric programming model and run-time sys-
tem the enables heterogeneous multiprocessing using Cell’s seven processors as well as
GPUs. Duran et al [5] merged the functionality of StarSs with an OpenMP base to create
the OmpSs programming model which contains support for both OpenMP- and StarSs-
like syntax. As with StarSs, the OmpSs programming model and its run-time system
Nanos++ both support GPUs. Both StarSs and OmpSs are a product of Barcelona Su-
percomputing Center (BSC). Augonnet et al. introduces the StarPU [[1]] run-time system
that focuses on exploiting multi-heterogeneous systems, primarily GPUs. The program-
ming model concepts are similar to StarSs/OmpSs in that they convey information con-
cerning the tasks memory usage to the run-time system. Augonnet et al.[2] evaluated
StarPU using a series of different scheduler with the most popular one being HEFT
(Heterogeneous Earliest First) which, similar to our work tries to predict the execution
time of tasks. O’Brien et al. [9] evaluated possible support to run OpenMP-annotated
programs using the IBM Cell processor. They used similar mechanism as the ones de-
scribed in this paper, including double buffering and software caching to hide latencies.

Exploring Heterogeneous Scheduling Using the Task-Centric Programming Model 135

Analysis of performance was done using Paraver [10] and speedup figures of up to 16%
could be obtained compare to the hand-written benchmark or up to 35x compared to the
sequential version when using 8 SPEs. Liu et al. [8]] introduces OpenMP extension for
heterogeneous SoC architectures. They extended the OpenMP clauses to support their
3SOC architecture thus hiding the complexity of the architecture from the program-
mer. They evaluated their approach with Matrix Multiplication, SparseLU and FFT and
showed linear speedup compared to the sequential version and up-to 30x speedup when
using the 3S0oC’s DSE (Digital Signal Engine). At first glance, the present paper resem-
bles the ideas presented in StarPU [1]]. Although there are some small difference, such
as the present paper concerns many types of heterogeneous processors perhaps the most
notable difference is in the performance model. In StarPU, the performance model
assumes that the execution time is independent from the content of the data that
a task will use. This is not true in a lot of application where the task’s data size does
not correlate well with the task’s complexity (or execution time). Our model uses the
information from the user (whatever that may be) to forecast task’s with complexity
not-seen yet.

3 The Task-Centric Programming Model

The Task-Centric programming model allows a programmer to exploit parallelism
within a sequential application by annotating parts of the application source code. Tasks
within this programming model should not be confused with other notions of tasks, such
as OS tasks or a-prio known tasks or task-graphs. Tasks (and the work within tasks) in
the task-centric programming model are dynamic, and they can themselves spawn ad-
ditional tasks. There is no direct limitation to the complexity of a task; they can range
from ten instructions to several millions of instructions. The important property is that
tasks can be executed in parallel. Most current task-centric run-time system requires
the user to insert task synchronization points in their program. However, there is a way
to relax this constraint and let the run-time system itself insert dependencies between
tasks; this is done by requiring the programmer to give information about what and how
the task will access the memory. Examples of existing run-time systems that supports
this implicit way of managing dependencies include the *Ss family (e.g. CellSs[4] and
OmpSs[3])). Our run-time system, which is described in section [also supports it.

1 #pragma omp task input(A) output (D)
do work (A,D);

3 #pragma omp task input(D) output(E)
do work (D,E);

5 #pragma omp task input(A) output(B)
do work (A,B);

Fig. 1. OmpSs extended clauses to support automatic dependency insertion transparent to the
programmer

136 A. Podobas, M. Brorsson, and V. Vlassov

Figure [IIshows an OmpSs enabled code which does some work on an array. Tasks
are annotated using compiler directive (#pragma omp for C) which follows the OpenMP
standard. Functions calls or compound statement annotated with the task directive will
become task’s able to run in parallel. The work is distributed across three tasks that
will consume (input) and produce (output) different memory regions. Unlike traditional
task-centric models (Cilk,OpenMP....), an OmpSs supporting run-time system will exe-
cute the third task before the second task since the there is no memory dependency be-
tween the first (or second) and the third allowing more parallelism to be exposed. This
differ from the classical OpenMP approach where a #pragma omp taskwait statement
would have to be inserted before the last spawned task to ensure consistency.

4 Integration of Heterogeneity in Task-Centric Programming
Models

We created a run-time system called UnMP that is capable of supporting the OmpSs
programming model. Memory regions specified to be used as input/output/inout are
handled by the run-time system which ensures sequential correctness of the parallelized
code by preserving data-dependencies between parallel tasks. The run-time system sup-
ports i1386/x86-64 as a host-device, and GPU(s) or TilePRO64(s) devices as slaves.

Heterogeneity Support

Most of the heterogeneity support within the run-time system is contain within the in-
ternal threading system. At the lowest abstraction layers, we are using POSIX-threads
(we call them PHYysical-threads) to control each of the processing units available at
the host system. However, since there is no native or OS control over the external het-
erogeneous devices, we decided to add another abstract layer called LOGical-threads.
A LOG-thread is a thread that represents a processor from the run-time systems point
of view. For each type of LOG-thread, there is set of API functions that control the se-
lected type. For example, a LOG-thread that represents a GPU will have API functions
that starts, finished and prepares a task for the GPU. Using this methodology, we can es-
sentially hide the complexity of using the different units since they look the same from
a scheduling point of view. Furthermore, we have support for mapping a LOG-thread
to several PHY-threads. This means that we can literally have two different host proces-
sors (PHY-threads) controlling the same GPU; should a PHY-thread be busy performing
work, another PHY-thread can start-up any work on the GPU improving the resource
utilization of the system. The difference between previous work, such as OmpSs[3] and
StarPU [1] is also that we focus on adding a third heterogeneous system: TilePRO64.
At first glance, it may seem that we use the TilePRO64 as a GPU accelerator. They
do bear a resemblance, however, while using a GPU allows access to a primitive bare-
metal interface, where the performance relies on the programmer’s skill to produce
well-behaved code, our implementation open up several user-transparent optimiza-
tions on the TilePRO64. For example, branch-divergence does not have as big negative
impact on performance on the TilePRO64 as it would have on the GPU due to how our
TilePRO64 scheduler works. Furthermore, this opens up for a treasure of future work

Exploring Heterogeneous Scheduling Using the Task-Centric Programming Model 137

where we can adopt several locality or energy related techniques on the TilePRO64
side; something that cannot be done on the GPU due to its bare-metal interface.

Amortizing Transfer Costs

One bottleneck of using current heterogeneous devices is that they usually sit on the
PCI-express bus which, compared to RAM, has a relatively low bandwidth.To amortize
(hide) transfer costs, the UnMP run-time system uses techniques that either reduces or
removes overheads related to memory transfers. Double buffering enables the run-time
system to transfer data associated with the next task to execute while the current task is
running. This enables the run-time system to hide the latency associated with upcoming
tasks. Another method is to emply a software cache that monitors where valid copies
exist in our distributed heterogeneous system, as well as properly invalidating the copies
when they are overwritten, we can exploit temporal locality found in the application and
reduce the memory transfer overhead. The software cache behaves as a SI-cache, with
each memory region being either Shared or Invalid, similar to [3U11}4]. Other variations
of the protocol includes the MSI protocol employed by StarPU[1]].

Writing Heterogeneous Code

The application developer is responsible for creating the different versions of each of
the task if heterogeneity support is to be used as well as specifying the task’s data
usage. Spawning a task with dependencies and with heterogeneous support is concep-
tually shown in figure 2Jusing the device and implements proposed by [5]. The device
clause specifies the different architectures that the task have been implemented for and
implements specifies which function this implements. In this example, the task has 3
versions: a host version, a TilePRO64 version and a GPU version. Creating task for
the TilePRO64 processor is conceptually very similar to using OpenMP #pragma omp
parallel directives, enabling SPMD execution. A GPU task should invoke the kernel
that implements that particular function. For both the TilePRO64 and GPU case, the
memories are maintained and allocated by the run-time system, relieving the program-
mer from managing them. Figure [2lalso show the code-transformation of when a task
is spawned. The (#pragma omp task) statement is transformed into a series of library
function calls that create a task, sets the memory dependencies and arguments and fi-
nally submits the task to be scheduled onto the system resources. We did also include
functionality for hinting the run-time system about a task’s complexity. The complexity
is a single-value number that can be anything as long as it reflects the parameter that has
a profound impact on the task’s execution time. Examples of such parameters would be
the block-size in matrix multiplication or the amount of rays to cast in a ray tracing
program. The complexity clause is used as shown below:

#pragma omp task complexity (N)
matmul block (A,B,N);

The complexity, although relatively primitive in its current state have a lot of potential.
A smart compiler could theoretically derive the complexity itself by analyzing the in-

138 A. Podobas, M. Brorsson, and V. Vlassov

GPU)
2 #pragma omp task device(gpu) implements(inc arr)
void cuda inc arr(int xA, int x*B)

4 A
cuda inc array kernel <<<4,256>>>(A,B);
6 }
TilePRO64)

2 #pragma omp task device(tilera) implements(inc arr)
void tilera inc arr(int *A,int *B)
4 A

#pragma omp parallel

6
int i = omp get thread num ();
8 Bli] += A[il;
}
10 }

Task Spawn)
2 #pragma omp task input(A) output(B) target(tilera ,gpu,host)
inc arr(&A[0], &B[0]);

1 Code—Transformation)

3 unmp task xtsk = unmp create task ();
tsk arg xarg = (tsk arg *) malloc (...);

5 arg—A = &A[0];
arg—B = &B[0];

7 unmp fan input (tsk , &A[0] , ...):
unmp fan output (tsk , &B[O0] , ...);

9 unmp set task host(tsk, &x86 inc arr, arg);
unmp set task gpu(tsk, &cuda inc arr, arg);

11 unmp set task tilera(tsk, &tilera inc arr , arg);
unmp submit task (tsk);

Fig. 2. Three different tasks

termediate representation of the task’s them self. We consider it future work to improve
upon this metric.

5 Heterogeneous Task Scheduling

We developed and implemented the FCRM (ForeCast-RegressionModel) scheduler,
which is a new scheduling algorithm presented in this paper. We also implemented

Exploring Heterogeneous Scheduling Using the Task-Centric Programming Model 139

three well-known scheduling algorithms in our run-time system to evaluate and com-
pare our FCRM scheduler against: Random, Work-Steal, Weighted-Random. All the
four scheduling policies have per-core private task-queues and the major main differ-
ence is in the work-dealing strategy.

Random. The Random scheduling policy will send task at random to different process-
ing units. It is an architecture- and workload oblivious work-dealing algorithm which
we use as a baseline due to its familiarity and simplicity.

Work-Steal. The Work-Steal is a greedy policy that creates and puts work into the
creator’s private queue. Load-balancing is achieved by randomly selecting victims to
steal work from when the own task-queue is empty. Work-Steal scheduling is a popular
policy used in run-time systems such as Wool, Cilk and TBB as well as several OpenMP
implementations.

Weighted-Random. The Weighted-Random is a work-dealing that distributes work
according to each processors weight. The weights were estimated offline using test-
runs of the benchmarks on different processing units running in isolation.

FCRM. The FCRM scheduler uses segmented regression to estimate trends concerning
the execution time of task on different heterogeneous processors. The idea is to estimate
the time a certain task takes on all available processing units and use that information to
derive weights according to the estimation. More specifically, we adopt linear regression
to fit our data-points (observed task execution time). Should the linear regression fail to
fit the entire data-point set to a single linear function, it will segment the data-points so
that several function cover the entire fit:

a1 +b1xU whenU < BP;
as+byxU whenU > BP, andU < BP,
r() =4 *

ap +b,*U whenU > BP,,_1

Where BP, are the calculated break-points for the n segments and U is a task’s com-
plexity. For each task, and every processor, we calculate the regressed segmented func-
tion. We denote it: fp,.(U) where P is the processor, and 7T is the task and U is the
complexity. To estimate the execution of a task whose complexity has not yet been
seen, we have to take where the data is into account:

trr, = frr(U) + gp(T)
where:

gp (T) = Bme * Tqata—use + BWPf,.om * Tdata—produce
BWp,, = Measured bandwidth to device for processor P
BWp,,,,, =Measured bandwidth from device for processor P
Tdata—use = Data needed by task 7, taking the software cache into account.
Tdata—produce = Data produced by task T’

140 A. Podobas, M. Brorsson, and V. Vlassov

The FCRM scheduler extends the Weighted-Random scheduling policy by calculating
the weight on-line, adapting the any anomalities that were found by the regression.
It does also takes the information in the software cache into account when deriving
the weights. The entire forecast is recalculated on a miss-prediction (large deviation
between predicted and observed time) known after a task have been executed on a par-
ticular device; this dynamic re-calculation also allows for adaptation when a certain
processing units becomes overloading due to external interference, such as other ther-
mal properties(performance throttling) and other processes sharing that also uses the
processor.

6 Experimental Setup

System Specification

We performed the experimental evaluation using a single socket, Quad-Core Intel pro-
cessor. The processor is connected to a TilePRO64, which is a 64-core chip multipro-
cessor targeting the embedded market. The system do also contain nVidia Quadro FX
570 CUDA enabled GPU. Both Quadro FX and TilePRO64 sit on the PCI slots.

Benchmark Selection

We selected benchmarks that are well-known and very parallel. This was done inten-
tionally to show that even if the benchmarks themselves are very parallel, when ho-
mogeneity stop being a property, even these benchmarks will fail to scale well using
well-known scheduling strategies; especially if the tasks are non-uniform concerning
the amount of work they perform. In their original form, for each benchmark, the work
is divided into segments that can be executed in parallel.

— Multiple-List-Sort - Synthetic benchmark that simulates incoming packets which
contains several lists that needs to be sorted. In the present examples, we assume
that the packets are already there, but must be processed one at the time. Each task
contains a number of lists, and the lists themselves are of various sizes. The lists
are sorted using the Odd-Even sorting mechanism for all architectures. The Odd-
Even sort is of O(n?) complexity and while we understand that the algorithm is not
the optimal one for the individual platforms, it is meant to show the benefits and
efficiency of various schedulers on this type of application.

— Matrix Multiplication - Multiplies two input matrixes A and B to produce matrix
C. Matrix multiplication is best suited for GPUs as a long as the matrix block size
is enough to keep as many of the GPUs threads busy.

— n-Body - Simulation of celestial bodies based on classical Newtonian physics. Our
implementation is based on the detailed model which O(n?) in complexity (not the
Barnes-Hut algorithm). Tasks are generated to work on subsets of all the celestial
bodies; these subsets are of varying length to pronounce the different complexities
of tasks.

Exploring Heterogeneous Scheduling Using the Task-Centric Programming Model 141

7 Experimental Results

7.1 Experimental Results

We evaluated our run-time system together with difference scheduling approach under a
configuration consisting of three x86-64 processors, one CUDA-enabled GPU and one
TilePRO64. For the speedup comparison, the execution time for the schedulers running
a certain benchmark were normalized to the serial execution time running on one x86-
64 processor. We also included the processor with the best individual performance as
a reference point. For each scheduler, and for different parameters, we executed the
benchmark ten times taking the median to represent the performance. For the Weighted-
Random scheduler, the weights were calculated according to the different processors
execution time when running in isolation for one particular set of parameters. For the
FCRM scheduler we evaluated both when the scheduler is used without any pre-loaded
trend estimation function and when a trend estimation function (FCRM-PRELOAD)
have been established from a previous run. Figure [3] shows the performance when
executing the MLS (Multiple-List-Sort). We evaluated two cases where the total amount
of sorted elements varied. For both the cases, we notice that the FCRM-PRELOAD
scheduler that uses a trend-regression function from a previous runs performs much
better than the other schedulers. The Weighted-Random scheduler performs slightly
worse than the Work-Steal in this case. The reason Weight-Random scheduler and the
Random scheduler do not perform well is due to the pushing of work to the GPU, which
is the slow processor in benchmark.

Multiple-List-Sort benchmark

Il Random

E Work-Steal

I Weighted-Random

FCRM

¥4 FCRM-PRELOAD

B Homogeneous (4 x86-64 cores)

Speedup normalized to sequential

Aggregated elements sorted

Fig. 3. Multiple-List-Sort benchmark performance and speedup relative sequential execution
time. Four x86-64 cores showed as reference point.

Figure Hlshows the performance of the schedulers when running a blocked matrix
multiplication. There is only a slight difference between Weighted-Random scheduling
policy and the FCRM scheduler that is using an already established estimation func-
tion and the different is primarily in that the FCRM also takes the locality of the tasks
into account when deciding upon the weight; something that the Weighted-Random
scheduling policy does not. Also notice that even for a uniform benchmark such as ma-
trix multiplication neither the Random nor Work-Steal perform any good. The reason

142 A. Podobas, M. Brorsson, and V. Vlassov

Matrix Multiplication

40

—O— Random

—— Work-Steal
—/\—— Weighted-Random
—><¢— FCRM

—j¢— FCRM-PRELOAD
—O— GPU (reference)

Speedup normalized to sequential

2000 3000 4000
Matrix dimension

Fig. 4. Matrix multiplication speedup amongst schedulers with the GPU as a reference point

for this due to the work being stolen by the TilePRO64 thread as soon as it is idle, and
the TilePROG64 is the slowest processor to execute the matrix multiplication code in this
benchmark.

N-Body simulation for various input sizes

-
'

"
N

;4\
E

—— Random
—/{F— Work-Steal
—/— Weighted-Random

6 —<— FCRM
—¢— FCRM-PRELOAD
_— — O — —O— GPU (reference)
4] N — 4
—s— e ———— — T ——

Speedup normalized to sequential

6000 8000 10800 12600 14800 16600
Number of bodies

Fig. 5. N-body speed-up for 30 time-step iterations with GPU as a reference point

Figure [5shows the performance of the schedulers when running the simulation of
N-Body. Our implementation of N-Body is highly non-uniform, making the weights
calculated for the Weight-Random scheduler near useless as it does not take the com-
plexity of tasks into account. For example, a task that calculates the gravitational force
of 10 bodies have equally high chance of being scheduled on the TilePRO64 as a task
that computes 1000 bodies; even though the latter should instead be placed onto the
GPU to reduce the critical path. The FCRM scheduler without an initial estimation
function performs slightly worse than Weighted-Random. This is one of the drawbacks
on using the FCRM scheduler without an initial estimate function on small applications
(with few iterations).

Exploring Heterogeneous Scheduling Using the Task-Centric Programming Model 143

N-Body Timestep Simulation

14
uiu " " "

ek ¥ ¥ ¥ ¥

=

=

=

]

g 10 —_———

2 e T

= o

g’ <

&

® - —A— Weighted-Random
E & - —— FCRM

S)q/ ——— FCRM-PRELOAD
3

o

S

s 4

Q A A — S — — N — —p— — —A

& ——

#

0 500 1000 1500 2000
Simulated Timesteps

Fig. 6. Impact of application length on FCRM with and without preloaded regression function

However, when we increase the duration (figure [6) of the application, we see that
the FCRM scheduler without the initial estimate function slowly converges to the result
of the scheduler with an initial estimate function.

8 Conclusions

In the present paper, we showed how to utilize heterogeneity that differs in several as-
pects: frequency, core count and core type. We presented a task-centric run-time system
capable of handling the OmpSs programming model as well as extensions for improving
the transfers by utilizing software caching and overlapped memories. We further gave
example of a scheduler capable of both adapting-to and improving the execution time
of a series of benchmark; benchmarks that are highly dynamic in nature. This dynamic
nature makes scheduling a large workload on a bad processor very inefficient, which
we have captured by extending the Weighted-Random scheduling approach with trend
analysis for weight estimation. We have shown that our scheduler performs significantly
better than the original Weighted-Random, and far better than Random Work-Stealing
approach which is a well-known and embraced scheduling policy for homogeneous
cores and workloads.

Acknowledgements. The research leading to these results has received fund-
ing from the European Community’s Seventh Framework Programme [FP7/2007-
2013] under the ENCORE Project (www.encore-project.eu), grant agreement nr.
248647. The authors are members of the HIPEAC European network of Excellence
(http://www.hipeac.net). We would like to thank Alejandro Rico and the team at BSC
for reference designs that uses the data-driven task-extensions of OmpSs.

144

A. Podobas, M. Brorsson, and V. Vlassov

References

10.

11.

. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: STARPU: A Unified Platform for

Task Scheduling on Heterogeneous Multicore Architectures. In: Sips, H., Epema, D., Lin,
H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863—874. Springer, Heidelberg (2009)

. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: Starpu: A unified platform for task

scheduling on heterogeneous multicore architectures. Concurrency and Computation: Prac-
tice and Experience 23(2), 187-198 (2011)

. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Orti, E.S.: An Ex-

tension of the StarSs Programming Model for Platforms with Multiple GPUs. In: Sips, H.,
Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 851-862. Springer, Hei-
delberg (2009)

. Bellens, P, Perez, J., Badia, R., Labarta, J.: Cellss: a programming model for the cell be

architecture. In: SC 2006 Conference, Proceedings of the ACM/IEEE, p. 5. IEEE (2006)

. Duran, A., Ayguadé, E., Badia, R., Labarta, J., Martinell, L., Martorell, X., Planas, J.: Ompss:

A proposal for programming heterogeneous multi-core architectures. Parallel Processing
Letters 21(2), 173-193 (2011)

. Faxén, K.: Wool-a work stealing library. ACM SIGARCH Computer Architecture

News 36(5), 93-100 (2009)

. Frigo, M., Leiserson, C., Randall, K.: The implementation of the cilk-5 multithreaded lan-

guage. ACM Sigplan Notices 33(5), 212-223 (1998)

. Liu, F.,, Chaudhary, V.: Extending openmp for heterogeneous chip multiprocessors. In: Pro-

ceedings of the 2003 International Conference on Parallel Processing, pp. 161-168. IEEE
(2003)

. O’Brien, K., O’Brien, K., Sura, Z., Chen, T., Zhang, T.: Supporting openmp on cell. Interna-

tional Journal of Parallel Programming 36(3), 289-311 (2008)

Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualise and analyze parallel
code. In: Proceedings of WoTUG-18: Transputer and occam Developments, vol. 44, pp. 17—
31 (1995)

Planas, J., Badia, R., Ayguadé, E., Labarta, J.: Hierarchical task-based programming with
starss. International Journal of High Performance Computing Applications 23(3), 284-299
(2009)

	Exploring Heterogeneous Scheduling Using the Task-Centric Programming Model
	Introduction
	Related Work
	The Task-Centric Programming Model
	Integration of Heterogeneity in Task-Centric Programming Models
	Heterogeneous Task Scheduling
	Experimental Setup
	Experimental Results
	Experimental Results

	Conclusions
	References

