
clOpenCL - Supporting Distributed

Heterogeneous Computing in HPC Clusters�

Albano Alves1, José Rufino1, António Pina2, and Lúıs Paulo Santos2

1 Polytechnic Institute of Bragança, Bragança, Portugal
{albano,rufino}@ipb.pt

2 University of Minho, Braga, Portugal
{pina,psantos}@di.uminho.pt

Abstract. Clusters that combine heterogeneous compute device archi-
tectures, coupled with novel programming models, have created a true
alternative to traditional (homogeneous) cluster computing, allowing to
leverage the performance of parallel applications. In this paper we in-
troduce clOpenCL, a platform that supports the simple deployment and
efficient running of OpenCL-based parallel applications that may span
several cluster nodes, expanding the original single-node OpenCL model.
clOpenCL is deployed through user level services, thus allowing OpenCL
applications from different users to share the same cluster nodes and their
compute devices. Data exchanges between distributed clOpenCL compo-
nents rely on Open-MX, a high-performance communication library. We
also present extensive experimental data and key conditions that must
be addressed when exploiting clOpenCL with real applications.

Keywords: Heterogeneous/Cluster/GPGPU Computing, OpenCL.

1 Introduction

Clusters of heterogeneous computing nodes provide an opportunity to signifi-
cantly increase the performance of parallel and High-Performance Computing
(HPC) applications, by combining traditional multi-core CPUs coupled with ac-
celerator devices, interconnected by high throughput and low latency networking
technologies. However, developing efficient applications to run in clusters that
integrate GPUs and other accelerators often requires a great effort, demand-
ing programmers to follow complex development methodologies in order to suit
algorithms and applications to the new heterogeneous parallel environment.

Cluster nodes with GPUs are usually exploited by an hybrid approach: MPI is
used to distribute the application across multiple CPUs, and OpenCL or CUDA
are used to run specific routines (kernels) on GPU(s) at each node [1,2]; more

� This work is funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by Na-
tional Funds through the FCT (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-010067.

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 112–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



clOpenCL 113

complex approaches have also been experimented [3], where OpenMP exploits
CPU parallelism inside each MPI process and CUDA takes advantage of GPUs.

The former examples show that porting single-node-multi-GPU applications
to a multi-node-multi-GPU execution environment is not straightforward. Thus,
the benefits of a platform that would allow to efficiently run the same and
unmodified program, whether in a single-node-multi-accelerator or a multi-node-
multi-accelerator scenario are obvious.

Our initial goal was to contribute to the efficient implementation of a par-
allel path tracer, by improving the BVH operation [4], but we now target a
more general one: to boost the performance of existing solutions by exploiting
the hardware of an heterogeneous cluster. In this paper we introduce clOpenCL
(cluster OpenCL), an integrated, transparent and efficient approach to take ad-
vantage of compute devices spread across an heterogeneous cluster.

The remaining of the paper is organized as follows: section 2 reviews some
related work; section 3 describes the architecture of clOpenCL; section 4 presents
and discusses a preliminary evaluation scenario based on matrix multiplication;
finally, section 5 concludes and points out directions for future work.

2 Scaling Up OpenCL

2.1 The OpenCL Model

OpenCL is an open standard for programming different kinds of computing de-
vices [5]. An OpenCL application comprises a host program and a set of kernels
intended to run on compute devices; the OpenCL specification defines a language
for kernel programming, and an API for transferring data between the host and
devices (and to execute kernels on the later). Currently there are three ma-
jor implementations of the OpenCL specification, supporting different compute
devices: i) AMD APP SDK (for CPUs and AMD GPUs), ii) Nvidia’s implemen-
tation (for NVIDIA GPUs only) and iii) Intel OpenCL SDK (for CPUs only).

But OpenCL poses a major problem: applications can only utilize the local
devices present on a single machine. Thus, the number of OpenCL devices avail-
able to an application may be rather limited. For instance, the number of PCIe
bus slots in a machine limits the number of usable GPUs. And although it would
be possible to increase the number of slots through the use of bus extenders, the
only way to achieve a scalable platform is to use a cluster of nodes, each one
with its own (limited) set of computing devices.

Since in the original OpenCL model an application runs on a single node, a
new/modified model is then required for OpenCL applications to be able to use
several nodes. In the new model, the host application must be able to trans-
fer/share data to/with remote devices.

2.2 Related Work

Running unmodified OpenCL applications on clusters with GPUs has been a
common goal of several projects. Different approaches have been undertaken,



114 A. Alves et al.

but the fact is that none combines the simplicity and the performance required
for heterogeneous clusters shared by distinct users (usually operated in batch).

The Many GPUs Package (MGP) [6] can run extended OpenMP, C++ and
unmodified OpenCL applications transparently on clusters with many GPU de-
vices. It provides a simple API and the illusion of a single (virtual) host with
many GPUs (single-system-image). The whole system uses the MOSIX VCL
layer [7] to create the abstraction of a global OpenCL platform combining all
GPUs present in a cluster (the CPU part of the application runs in a single
node). Communications rely on TCP sockets and only binaries are distributed.

The Hybrid OpenCL [8] project integrates the network layer in the OpenCL
runtime, translating in a ”bridge program” (service) per cluster node. The sys-
tem was developed for a particular device independent OpenCL implementation
(FOXC OpenCL) which currently supports only x86 CPUs, thus preventing it
to exploit high performance GPUs. Data exchanges are RPC based.

dOpenCL (distributed OpenCL) [9] has resemblances to clOpenCL: both
support transparent multi-node-multi-accelerator OpenCL applications and com-
bine a wrapper client library with remote services. However, dOpenCL is oriented
to general distributed environments, uses a TCP/UDP based communication
framework, and devices may not be concurrently shared. In turn, clOpenCL
targets HPC clusters, uses Open-MX to maximize the utilization of commodity
Gigabit Ethernet links, and devices are fully shareable. Both approaches work
on top of any OpenCL platform and so are able to exploit many device types.

CUDA applications may also benefit from similar approaches. With rCUDA
[11], applications may use CUDA-compatible GPUs installed in remote comput-
ers as if they were local. rCUDA follows the client-server model: clients use a
wrapper library and a GPU network service listens for TCP requests.

In GVirtuS [10], a different approach is taken, in order to fill the gap between
in-house hosted computing clusters (equipped with custom devices) and pay-for-
use high performance virtual clusters (deployed via public or private computing
clouds). GVirtuS allows a virtual machine to access CUDA powered GPGPUs in
a transparent way, with an overhead slightly greater than a real machine setup.

However, in addition to the limited number of compute devices that CUDA
can handle (NVIDIA only), none approach takes explicit advantage of the high
performance interconnection technologies available in modern clusters.

3 Our Approach: clOpenCL

3.1 General Concept

The clOpenCL platform comprises a wrapper library and a set of user-level dae-
mons. Every call to an OpenCL primitive is intercepted by the wrapper library
which redirects its execution to a specific daemon at a cluster node or to the
local OpenCL runtime. clOpenCL daemons are simple OpenCL programs that
handle remote calls and interact with local devices. A typical clOpenCl applica-
tion starts running at a particular cluster node and will create OpenCl contexts,
command queues, buffers, programs and kernels across all cluster nodes.



clOpenCL 115

For the exchange of data between the wrapper library and remote daemons, we
adopted Open-MX, an open-source message passing stack over generic Ethernet
[12], which provides low-level communication mechanisms at user-level space and
allows to achieve low latency communication and low CPU overhead.

Figure 1 presents a) the software/hardware layers of the host component of
an clOpenCL application, and b) the clOpenCL operation model upon which
the host component interacts with multiple compute devices (local or remote).

OpenCL Open−MX

Ethernet NIC

OpenCL Application

Compute Device

OpenCL librarycl

(a) layers

Compute Devices

Daemon

Compute Devices

Daemon

Compute Devices

Daemon
Host App.

Compute
Devices

...

(b) operation model

Fig. 1. clOpenCL architecture

3.2 Distributed Operation

Running a clOpenCL application requires the prior launching of clOpenCL per-
user daemons at specific cluster nodes; each user may then choose the node
(sub-)set to be effectively used by the application; different users may exploit
distinct configurations, sharing or not particular nodes and compute devices.

When the host program starts, the clOpenCL wrapper library (which also
wraps main) discovers all daemons by interacting with the Open-MX mapper
service. This mapper creates a distributed directory that registers each pro-
cess with an opened Open-MX end-point (along with the user id of the process
owner).

In a traditional OpenCL application, the programmer has only to manipulate
objects returned by the OpenCL API, namely: platform and device identifiers,
contexts, command queues, buffers, images, programs, kernels, events and sam-
plers. These objects are in fact pointers to complex OpenCL data structures,
whose internals are hidden from the programmer. In a distributed/parallel en-
vironment, where OpenCL primitives are executed in multiple daemons, these
pointers cannot be used to uniquely identify objects, because each daemon has
its own address space. Thus, for each object created by OpenCL, the wrapper
library returns a “fake pointer” used as a global identifier, and stores the real
pointer along with the corresponding daemon location.

Each time the wrapper library redirects an OpenCL primitive, its parameters
are packed in an Open-MX frame and sent to the remote daemon that will exe-
cute the primitive. Any parameters that reference OpenCL objects are previously
mapped into their real pointers and the daemon is determined accordingly.



116 A. Alves et al.

The library and daemons do not keep any information about calls to OpenCL
primitives, i.e., they are stateless. Any data needed for subsequent primitive calls
is kept by the OpenCL runtime at each cluster node. As such there’s no need to
manage complex data structures related to OpenCL operation and state.

3.3 Using clOpenCL

Porting OpenCL programs to clOpenCL only requires linking with both the
OpenCL and clOpenCL libraries. This is accomplished by taking advantage of
the -Xlinker --wrap GCC directives for function wrapping in link-time.

Typically, an OpenCL application starts by querying the runtime for platforms
and devices which, by design, are local (i.e., provided by the node where the host
application component is started). In clOpenCL such discovery returns the local
platforms and devices (if any, once clOpenCL doesn’t strictly require local ones),
and also returns the set of remote platforms and devices provided by the cluster
nodes where the user-specific clOpenCL services are running.

In order to know to which cluster node a certain platform belongs, we have
extended the OpenCL primitive clGetPlatformInfo with the special attribute
CL PLATFORM HOSTNAME. Having the possibility of selecting specific cluster nodes
where to run the OpenCL kernels may be useful, e.g., for load balancing.

Currently, we do not support the mapping of buffer and image objects. How-
ever, at its current state, the clOpenCL platform is enough to meet the purpose
of testing its general concept, including running basic OpenCL applications.

4 Evaluation

4.1 Testbed Cluster

The testbed is a small Linux commodity cluster of 4 nodes, with an Intel Q9650
CPU (3GHz 4-core with 12 Mb of L2 cache), 8Gb of RAM (DDR3 1333MHz)
and two Ethernet 1Gbps NICs (on-board Intel 82566DM-2 and a PCI64 SysKon-
nect SK-9871), per node. The nodes are also fitted with NVIDIA GTX 460
GPUs (1GB of GDDR5 RAM): one node (node-0) has 2 GPUs and three nodes
(node-{1,2,3}) have 1 GPU each. The OpenCL platforms used were AMD
SDK 2.6 (for CPU devices) and CUDA 4.1.28 (for the NVIDIA GPUs). Open-
MX 1.5.2 was used with the SysKonnect NICs, interconnected via a dedicated
ethernet network using a gigabit switch with jumbo frames (mtu 9000) enabled.

4.2 Test Application

We chose the matrix product as the test application because it’s a simple and
“embarrassingly parallel” case study, enough to verify the correctness and scal-
ability of clOpenCL (our aim is not to offer a reference HPC implementation).

We narrowed our study to square matrices of order n ∈ {8K, 16K, 24K} and
single-precision (floats) elements. These 3 different orders were chosen to support



clOpenCL 117

a minimal scalability study and, at the same time, to allow all the 3 matrices
involved (the operands A and B, and the result C = AB) to be fully instantiated
in the RAM (8Gb) of the node with the application host component (node-0);
in the worst case (n = 24K) each matrix uses 2.25 Gb, for a total of 6.75 Gb.

The matrix product operation was parallelized using a block-based approach:
A (B) was partitioned in horizontal (vertical) blocks subA (subB) of order slice×
n (n× slice), so that subC = subA subB is a block, of order slice× slice, of C.

The OpenCL kernel used to produce a subC block is shown in Figure 2. It is
a “naive” implementation, not optimized to exploit advanced OpenCL features.

_kernel void sbmp(const int n, const int slice, __global float *subA,

__global float *subB, __global float *subC){

int i, j, k; float v=0;

i = get_global_id(0); j = get_global_id(1);

for(k=0; k<n; k++)

v += subA[i*n+k] * subB[j*n+k];

subC[i*slice+j] = v;

}

Fig. 2. sbmp - a simple kernel for single-precision block-based matrix product

Producing a subC requires slice2 kernel executions (or work-items); this is
achieved by the parameter int global work size[2]={slice,slice} of the
OpenCL function that triggers the kernel execution (clEnqueueNDRangeKernel).

We set slice = 1K, 2K, 4K when multiplying matrices of order n = 8K, 16K,
24K, respectively. The slice values were chosen to allow any device to be able
to fully store the triplet < subA, subB, subC >; in the worst case, with n = 24K
and slice = 4K, subA and subB need 384 Mb each and subC needs 64 Mb, for
a total of 832 Mb, still less than the 1 Gb of RAM of any GPU. At the same
time, the values of slice also ensure enough blocks for a fine-grain load-balancing
among the various OpenCL devices; this comes from the observation that, in our
cluster, a GPU is approximately twice as fast as a CPU when executing the sbmp
kernel; thus, with 5 GPUs and 4 CPUS, we need at least 2× 5 + 4 = 14 kernel
runs (one per subC) to keep all devices busy; by requiring at least two kernel
runs per device, we need at least 28 kernel runs overall; finally, slice comes by
solving (n/slice)2 ≥ 28 where (n/slice)2 is the total number of kernel runs.

The test application is multi-threaded (PThreads) and follows a dynamic
model of work (auto-)assignment: a thread is created for each OpenCL de-
vice involved in the matrix product; the threads select mutually exclusive pairs
< subA, subB >, send them to their devices, trigger the kernel run and collect
the results subC. Data transfers and kernel runs for remote devices are mediated
by clOpenCL but, for local devices, they are direct (no daemon is involved).



118 A. Alves et al.

4.3 Test Configurations

The test application was always started in the cluster node with the most per-
formant set of OpenCL devices. That way, the utilization of that device set is
maximized, once communication with its devices is purely local. In our testbed
cluster, the node that fits this criterion is node-0, with 1 CPU and 2 GPUs.

Overall, under the constraints of our testbed cluster, there are 74 combina-
tions of OpenCL devices, where node-0 is always used (with at least one device),
and zero or more remote nodes are used (with at least one device). All combina-
tions were evaluated, but Table 1 shows only the subset that provides the best
performance, for a certain number of CPUs (#C) and GPUs (#G) used; in each
combination, the CPUs are denoted by C and the GPUs by G; they are repre-
sented in comma separated groups, with one group per each cluster node used to
support the combination; in each combination, the 1st group of devices is from
node-0 and the next (eventual) groups are from node-1 to node-3 respectively.

Table 1. Performance Optimal Combinations of OpenCL Devices

����#C
#G

0 1 2 3 4 5

0 G GG GG,G GG,G,G GG,G,G,G

1 C GC GGC GGC,G GGC,G,G GGC,G,G,G

2 C,C GC,C GGC,C GGC,G,C GGC,G,G,C GGC,GC,G,G

3 C,C,C GC,C,C GGC,C,C GGC,G,C,C GGC,GC,G,C GGC,GC,GC,G

4 C,C,C,C GC,C,C,C GGC,C,C,C GGC,GC,C,C GGC,GC,GC,C GGC,GC,GC,GC

All combinations of Table 1 obey to the same general rule: they use the max-
imum possible number of local devices (on node-0) and scatter as much as
possible the remote devices necessary (through node-1 to node-3). Moreover,
our tests showed that this rule is valid, regardless the order n of the matrices.

4.4 Test Results

Figure 3.a) represents the time took by the matrix product for n=24K, for all
device combinations of Table 1. Times range from a maximum of ≈4800s, when
using a single local CPU (combination C), to a minimum of ≈469s, when using
all 5 GPUs of the cluster but only 3 CPUs (in the combination GGC,GC,GC,G)1.
Figure 3.b) zooms in Figure 3.a), for combinations where #C≥1 and #G≥2.

Figure 4.a) shows the speedups of all combinations, relative to combination
GGC (with speedup = 1). Figure 4.b) zooms in figure 4.a) for #C≥1 and #G≥2.

The point of coordinates #C=1 and #G=2, that marks the lower end of
the range defined by #C≥1 and #G≥2, translates to the combination GGC,
meaning that all local devices of the starting node (node-0) are used. From such
point onwards, the only way to increase performance is to use remote devices,

1 Using all 4 CPUs (combination GGC,GC,GC,GC) takes ≈489s.



clOpenCL 119

Fig. 3. Execution time for n=24K (a) all combinations; b) #C≥1 and #G≥2)

1,99 
1,99 

2,31 
2,22 

1,0 

1,2 

1,4 

1,6 

1,8 

2,0 

2,2 

2,4 

2 3 4 5 

Speedup : 

#G: 

1 
2 
3 
4 

#C : 

b) 

Fig. 4. Speedup for n=24K (a) all combinations; b) #C≥1 and #G≥2)

but the speedups will be modest, as shown in Figure 4.b). Such demonstrates
the importance of the combination GGC: if one wants to minimize the number
of cluster nodes involved in the application execution, while maximizing perfor-
mance, then using a node holding the device combination GGC is mandatory,
and that node should be the one where the application starts. Moreover, GGC
is the best scenario that a traditional OpenCL approach could exploit and so it
makes sense to use it as the starting point to deploy clOpenCL applications.

Figures 5 to 6 show similar graphics for matrices of order 16K and 8K. As
expected, the matrix product times decrease (ranging from ≈1422s to ≈157s for
n = 16K, and from ≈179s to ≈22s for n = 8K). Moreover, speedup values also
decrease (with peek-values of 2.15 and 1.76 for orders 16K and 8K, against 2.31
for order 24K), showing that the scalability improves with the problem size.
Differently from order 24K, orders 16K and 8K achieve the best times when
using all the 4 CPUs and 5 GPUs of the cluster (combination GGC,GC,GC,GC).

Real Speedup versus Ideal Speedup. An alternative (and perhaps more
objective) measure of the merits of our approach results from the comparison of
the maximum speedups achieved by clOpenCl (real speedups) with the maximum
speedups theoretically achievable under ideal conditions (ideal speedups).

For order 24K, we recall that the worst execution time is T(C)≈4800s, for
a single CPU, and the best is T(GGC,GC,GC,G)≈469s, when 5 GPUs and 3
CPUs are involved. The evaluation of the execution times also reveals that a



120 A. Alves et al.

Fig. 5. Execution time (all combinations) for a) n=16K; b) n=8K

Fig. 6. Speedup (all combinations) for a) n=16K; b) n=8K

single GPU takes T(G)≈2403s, which is approximately half of T(C). Thus, the
time that a CPU takes to process a single work slice (Tslice(C)), is twice the time
that a GPU would take (Tslice(G)). Or, conversely, the rate at which a GPU
can process work slices (λslice(G)) is approximately twice the rate of a CPU
(λslice(C)). So, if it were possible to host, in the same cluster node, 5 GPUs and
3 CPUs, then, for a time interval of duration Tslice(C), we would have 5 × 2
= 10 work slices being processed by the 5 GPUS, and 3 × 1 = 3 work slices
by the 3 CPUs, for a total of 13 work slices. It then follows that the maximum
theoretical speedup is Sidealmax =13 (this assumes that there are enough work slices
to keep all devices simultaneously busy). Now, the maximum effective speedup
is Srealmax = T(C) / T(GGC,GC,GC,G) = 10.23. Finally, Srealmax / Sidealmax = 78.72%.

For n=16K, the worst and best execution times are T(C)≈1422s and T(GGC,
GC,GC,GC)≈157s, respectively. Also, T(G)≈840s, which is 59% of T(C), rela-
tively near from the 50% ratio achieved with n=24K. However, with 5 GPUs and
4 CPUs, the maximum theoretical speedup is now Sidealmax ≈14 and the maximum
effective speedup is Srealmax = T(C) / T(GGC,GC,GC,GC) = 9.05. Then, Srealmax /
Sidealmax = 64.69%, a smaller ratio in comparison to the one with n=24K.

Finally, for n=8K, the worst time is T(C)≈179s and the best is T(GGC,GC,
GC,GC)≈22s. Also, T(G)≈91s, which is ≈50% of T(C). Again, with 5 GPUs
and 4 CPUs, the maximum theoretical speedup is Sidealmax ≈14. The maximum
effective speedup is now Srealmax = T(C) / T(GGC,GC,GC,GC) = 8.21. Thus,
Srealmax / Sidealmax = 58.68%, a smaller ratio in comparison to the one with n=16K.



clOpenCL 121

The above Srealmax / Sidealmax ratios shed new light on the (somehow) modest
speedups apparently achieved by clOpenCL against the best pure OpenCL sce-
nario (GGC). In particular, they prove that for bigger problem sizes (as illus-
trated by the matrix product of order 24K), clOpenCL exhibits good scalability.

5 Conclusions

We have presented the design and implementation details of a new platform that
facilitates the execution of OpenCL applications in heterogeneous clusters. Other
projects have also focused on the same objective, but clOpenCL has two main
advantages: it is able to take full advantage of commodity networking hardware
through Open-MX, and programmers/users do not need special privileges neither
exclusive access to scarce resources to deploy the desired running environment.

We used an embarrassingly parallel program to evaluate clOpenCL, with
different problem sizes and cluster device combinations. Results show that
clOpenCL is useful for exploiting multi-node-multi-GPU environments: port-
ing previous OpenCL applications is straightforward and performance gains are
attractive.

In the future, we will expand the set of OpenCL primitives supported by
clOpenCL. Also, adding BSD sockets as an alternative communication layer to
Open-MX will allow for clOpenCL to be used in more distributed scenarios.

References

1. Lawlor, O.: Message Passing for GPGPU Clusters: cudaMPI. In: IEEE Cluster
PPAC Workshop, pp. 1–8 (2009)

2. Stefanski, T., Chavannes, N., Kuster, N.: Hybrid OpenCL-MPI parallelization of
the FDTD method. In: International Conference on Electromagnetics in Advanced
Applications (ICEAA), pp. 1201–1204 (2011)

3. Yang, C.-T., Huang, C.-L., Lin, C.-F.: Hybrid CUDA, OpenMP, and MPI parallel
programming on multicore GPU clusters. Computer Physics Communications 182,
266–269 (2011)

4. Goldsmith, J., Salmon, J.: Automatic creation of object hierarchies for ray tracing.
IEEE Computer Graphics & Applications 7(5), 14–20 (1987)

5. Munshi, A.: The OpenCL Specification. Khronos OpenCL Working Group (2009)
6. Barak, A., Ben-nun, T., Levy, E., Shiloh, A.: A Package for OpenCL Based Het-

erogeneous Computing on Clusters with Many GPU Devices. Science, 1–7 (2010)
7. Barak, A., Shiloh, A.: The Virtual OpenCL (VCL) Cluster Platform. In: Proc.

Intel European Research & Innovation Conference, p. 196 (2011)
8. Aoki, R., Oikawa, S., Nakamura, T., Miki, S.: Hybrid OpenCL: Enhancing OpenCL

for Distributed Processing. In: IEEE 9th International Symposium on Parallel and
Distributed Processing with Applications Workshops, pp. 149–154 (2011)

9. Kegel, P., Steuwer, M., Gorlatch, S.: dOpenCL: Towards a Uniform Program-
ming Approach for Distributed Heterogeneous Multi-/Many-Core Systems. In: 26th
IEEE Int. Parallel and Distributed Processing Symposium Workshops, pp. 174–186
(2012)



122 A. Alves et al.

10. Giunta, F., Montella, R., Laccetti, G., Isaila, F., Blas, F.: A GPU Accelerated High
Performance Cloud Computing Infrastructure for Grid Computing Based Virtual
Environmental Laboratory. In: Advances in Grid Computing (2011)

11. Duato, J., Peña, A., Silla, F., Mayo, R., Quintana-Ort́ı, E.: Reducing the number of
GPU-based accelerators in high performance clusters. In: International Conference
on High Performance Computing and Simulation, pp. 224–231 (2010)

12. Goglin, B.: High-Performance Message Passing over generic Ethernet Hardware
with Open-MX. Elsevier Journal of Parallel Comp. (PARCO) 37(2), 85–100 (2011)


	clOpenCL - Supporting Distributed Heterogeneous Computing in HPC Clusters
	Introduction
	Scaling Up OpenCL
	The OpenCL Model
	Related Work

	Our Approach: clOpenCL
	General Concept
	Distributed Operation
	Using clOpenCL

	Evaluation
	Testbed Cluster
	Test Application
	Test Configurations
	Test Results

	Conclusions
	References




