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An n-Venn diagram is a collection of n simple closed curves in the plane with
the following properties: (a) Each of the 2n different intersections of the open
interiors or exteriors of the curves is a non-empty connected region; (b) there are
only finitely many points where the curves intersect. If each of the intersections
is of only two curves, then the diagram is said to be simple. The purpose of
this poster is to highlight how we discovered the first simple symmetric 11-Venn
diagram.

A n-Venn diagram is symmetric if it is left fixed (up to a relabeling of the
curves) by a rotation of the plane by 2π/n radians. Interest in symmetric Venn
diagrams was initiated by Henderson in a 1963 paper in which he showed that
symmetric n-Venn diagrams do not exist when n is a composite number [6].
Of course, it is easy to draw symmetric 2- and 3-Venn diagrams using circles
as the curves, but it was not until 1975 that Grünbaum [3] published a simple
symmetric 5-Venn diagram, one that could be drawn using ellipses. Some 20 years
later, in 1992, simple symmetric 7-Venn diagrams were discovered independently
by Grünbaum [4] and by Edwards [1]. Hamburger [5] was the first to discover
a (non-simple) symmetric 11-Venn diagram in 2002 and later Griggs, Killian
and Savage (GKS) showed how to construct symmetric, but highly non-simple,
n-Venn diagrams whenever n is prime [2].

Part of the interest in Venn diagrams is due to the fact that their geometric
dual graphs are planar spanning subgraphs of the hypercube; furthermore, if the
Venn diagram is simple then the subgraph is maximum in the sense that every
face is a quadrilateral. Symmetric drawings of Venn diagrams imply symmetric
drawings of certain spanning subgraphs of the hypercube.

We define a crosscut of a Venn diagram as a segment of a curve which sequen-
tially “cuts” every other curve without repetition. A symmetric n-Venn diagram
is crosscut-symmetric if aside from the innermost face and the outermost face, it
can be partitioned into n congruent connected collection of regions, each of size
(2n − 2)/n which we call it a cluster ; such that for any curve C not containing
the crosscut, the sequence of curves crossing C in the cluster is palindromic.
Figure 1(a) is a simple crosscut-symmetric 7-Venn diagram with a cluster has
been shaded. The cluster is redrawn in Figure 1(b) such that a central shaded
section has a reflective symmetry about the crosscut. The sequence of curves
intersecting C5 for example, is [C4, C6, C3, C6, C4, C1, C4, C6, C3, C6, C4].

AVenn diagram ismonotone if it is drawable in the plane with all curves convex.
Given π as the permutation of curve labels along a ray emanating from the centre
of a monotone simple symmetric n-Venn diagram, we use a sequence of length
2n− 2 of integers which we call it crossing sequence to represent the diagram . An
entry of value i, 1 ≤ i < n, of the crossing sequence indicates the intersection of
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Fig. 1. (a) A simple symmetric monotone 7-Venn diagram. (b) A cluster of the diagram,
showing the reflective aspect of crosscut symmetry.

curves π(i) and π(i + 1). For example, the 7-Venn diagram of Figure 1(a) could
be represented by the crossing sequence 1, 3, 2, 5, 4

︸ ︷︷ ︸

ρ

, 3, 2, 3, 4
︸ ︷︷ ︸

α

, 6, 5, 4, 3, 2
︸ ︷︷ ︸

δ

, 5, 4, 3, 4
︸ ︷︷ ︸

αr+

.

Theorem 1. A simple monotone rotationally symmetric n-Venn diagram is
crosscut symmetric if and only if it can be represented by a crossing sequence of
the form ρ, α, δ, αr+ where

– ρ is 1, 3, 2, 5, 4, . . . , n− 2, n− 3 and δ is n− 1, n− 2, . . . , 3, 2.
– α and αr+ are two sequences of length (2n−1 − (n − 1)2)/n such that αr+

is obtained by reversing α and adding 1 to each element; that is, αr+[i] =
α[|α| − i + 1].

Using an exhaustive search of α sequences, we found more than 200, 000 sim-
ple monotone symmetric Venn diagrams which settles a long-standing open
problem in this area. The search algorithm is of the backtracking variety; for
each possible case of α, we construct the crossing sequence S = ρ, α, δ, αr+

checking along the way whether it currently satisfies the Venn diagram con-
straints, and then doing a final check of whether S represents a valid symmetric
Venn diagram. Some illustrations of our first 11-Venn diagram may be found at
http://webhome.cs.uvic.ca/~ruskey/Publications/Venn11/ Venn11.html.
Following Anthony Edwards’ tradition of naming symmetric diagrams [1], we
named it Newroz which means ”the new day” or “the new sun” in Kurdish;
for English speakers, Newroz sounds also like “new rose”, perhaps also an apt
description. Below is the α sequence of Newroz.
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