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Abstract. A touching triangle graph (TTG) representation of a planar
graph is a planar drawing Γ of the graph, where each vertex is represented
as a triangle and each edge e is represented as a side contact of the tri-
angles that correspond to the end vertices of e. We call Γ a proper TTG
representation if Γ determines a tiling of a triangle, where each tile corre-
sponds to a distinct vertex of the input graph. In this paper we prove that
every 3-connected cubic planar graph admits a proper TTG representa-
tion. We also construct proper TTG representations for parabolic grid
graphs and the graphs determined by rectangular grid drawings (e.g.,
square grid graphs). Finally, we describe a fixed-parameter tractable de-
cision algorithm for testing whether a 3-connected planar graph admits
a proper TTG representation.

1 Introduction

Planar graphs are of interest in theory and in practice as they correspond to
naturally occurring structures, such as skeletons of convex polytopes and du-
als of maps, and contain subclasses of interest, such as trees and grids. While
traditionally graphs are represented by node-link diagrams, alternative represen-
tations also have a long history. There is a large body of work about representing
planar graphs as contact graphs, i.e., graphs whose vertices are represented by
geometric objects with edges corresponding to two objects touching in some
specified fashion. Early results, such as Koebe’s 1936 theorem [9] that all planar
graphs can be represented by touching disks, deal with point contacts. Similarly,
de Fraysseix et al. [5] construct representation of planar graphs with vertices as
triangles, where the edges correspond to point contacts between triangles.

In this paper, we consider side contact representations of graphs, where ver-
tices are represented by simple polygons, with an edge occurring whenever two
polygons have non-trivially overlapping sides. Side contact representations of
planar graphs have been studied by representing vertices with octagons [8,10]
and hexagons [6].
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Certain subclasses of planar graphs admit even simpler side contact represen-
tations. Buchsbaum et al. [2] give an overview on the state of the art concerning
rectangle contact graphs, which are often referred to as rectangular layouts.
Graphs allowing rectangular layouts have been fully characterized [2,12,13] with
linear-time constructive algorithms.

The simplest side-contact representation of a graph, in terms of the complexity
of polygons used, is the triangle contact representation. Gansner et al. [7] show
certain necessary and sufficient conditions for such representations, however a
complete characterization turns out to be surprisingly difficult and is not yet
known. It is known that every outerplanar graph admits a TTG representation
that may not be proper, and every graph that is a weak dual of some maximal
planar graph admits a proper TTG representation [7].

In this paper we examine only the proper TTG representations, i.e., the TTG
representation must determine a tiling of some triangle and every tile must
correspond to a distinct vertex of the input graph; see Figs. 1(a–b). Phillips [11]
enumerates all possible tilings of a triangle into five subtriangles, which helps
us to list all non-isomorphic connected planar graphs with less than six vertices
that do not admit proper TTG representations; see Fig. 1(g).

Our Contributions: We give an algorithm to construct proper TTG represen-
tations of 3-connected cubic planar graphs. We then show that parabolic grid
graphs and the graphs determined by rectangular grid drawings (e.g., square grid
graphs) have proper TTG representations. Finally, we describe a fixed-parameter
tractable decision algorithm for testing whether a 3-connected planar graph with
n vertices admits a proper TTG representation. We use the maximum degree
Δ, the number of outer vertices and the number of inner vertices with degree
greater than three as fixed parameters. Specifically, if Δ = 4, then this can be
done in O∗(4k16k2) time1, where k1 is the number of degree-4 inner vertices and
k2 is the number of vertices on the outerface, which results in a polynomial-time
algorithm when k1 + k2 = O(log n).

2 Preliminaries

A weak dual of a planar graph G is a subgraph induced by the vertices of the dual
graph of G that correspond to the inner faces of G. The weak dual D of every
maximal planar graph M is a subcubic planar graph, where only three vertices
of D have degree two. Therefore, by definition any straight-line drawing of M is
a proper TTG representation of D. Constructing a proper TTG representation
for a 3-connected cubic planar graph G may initially seem easy since it differs
from the dual of a maximal planar graph by only one vertex. But a careful
look at Figs. 1(c–f) reveals that it is not obvious how to construct a proper
TTG representation of a 3-connected cubic planar graph from its corresponding
maximal planar graph.

A straight-line drawing Γ of a planar graph G is a planar drawing of G,
where each vertex is drawn as a point and each edge is drawn as a straight line

1 O∗ ignores the polynomial terms [14, Section 2].
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Fig. 1. (a) A planar graph G. (b) A proper TTG representation of G. (c) A 3-connected
cubic planar graph G′. (d) The dual graph M of G′, where G is shown in dotted lines.
(e) A straight-line drawing of M is a proper TTG representation of its own weak dual.
(f) A proper TTG representation of G′. (g) All planar graphs with less than six vertices
that do not admit proper TTG representations.

segment. A path v1, v2, . . . , vk is stretched in Γ if all the vertices on the path
are collinear in Γ . Two paths are non-crossing if they do not have an internal
vertex in common. A path covering of G is an edge covering of G by non-crossing
edge-disjoint paths.

Theorem 1 (de Fraysseix and de Mendez [3]). A path covering P of a
plane graph G is stretchable if and only if each subset S of P with at least two
paths has at least three free vertices, where a free vertex in the graph H induced
by S is a vertex on the outerface of H that is not internal to any path of S.
By a k-cycle in G we denote a cycle of k vertices in G. By len(f) we denote the
length (i.e., the number of vertices on the boundary) of a face f of G.

Throughout the paper we only examine the proper touching triangle repre-
sentations. We also assume that the combinatorial embedding of the input graph
is fixed, i.e., a plane graph.

3 Proper TTG Representations of Cubic Graphs

In this section we describe an algorithm for constructing a proper TTG repre-
sentation of a 3-connected cubic planar graph. In particular, every 3-connected
cubic planar graph G can be constructed starting with a K4 and then applying
one of the three “growth” operations [1]; see Figs. 2(a–c). We use this inductive
construction of G to construct its TTG representation. While constructing G,
we maintain a plane graph G′ that corresponds to the TTG representation of
G. We also define a path covering P (G′) of G′ such that any planar embedding
of G′ with every path in P (G′) stretched, is a TTG representation of G.
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Fig. 2. (a–c) Growth operations 1–3; (d) G, its proper TTG representation; (e) G′

We start with G = K4, and the graph G′ that corresponds to the TTG
representation of G; see Figs. 2(d–e). Throughout the algorithm G′ will have
exactly three inner faces incident to its three outer edges, each of which is a 4-
cycle. We call these faces the quads of G′. For every quad we will define a stick,
which is a path of three vertices on the corresponding quad. No two sticks in G′

will have an edge in common. All the inner faces of G′ other than the quads will
be 3-cycles, which we call the ordinary faces.

In Fig. 2(e), the 4-cycles [a, b, f, d], [b, c, e, f ] and [c, a, d, e] are the quads of
G′, where 〈a, d, f〉, 〈b, f, e〉 and 〈c, e, d〉 are their sticks, respectively. The path
covering P (G′) consists of the sticks and all the edges of G′ that are not covered
by the sticks, i.e., P (G′) = {〈a, d, f〉, 〈b, f, e〉, 〈c, e, d〉, 〈a, b〉, 〈b, c〉, 〈c, a〉}.

Assume inductively that we have a 3-connected cubic planar graph G, its
corresponding graph G′ and path covering P (G′), where one of the three growth
operations of Figs. 2(a–c) on G produces the input graph G. In Lemmas 1–3 we
show how to construct the graph G′ and its path covering P (G′).

Lemma 1. Assume that G is produced from G by an application of Operation 1.
Then the graph G′ and its path covering P (G′) can be constructed by a constant
number of insertion/deletion on G′ and P (G′), respectively.

Proof. First consider the case when vertex v of G, on which we apply Operation
1, corresponds to an ordinary face T of G′. We then add a vertex x inside T
and connect the vertex with the three vertices on the boundary of T . Let the
resulting graph be G′. It is easy to verify that the vertices on the cycle that
replaces v correspond to the three new ordinary faces in G′; see Figs. 3(a–b).
The path cover P (G′) consists of all the paths of P (G′) along with the three
paths that correspond to the three new edges incident to x.

Next consider the case when vertex v of G, on which we apply Operation 1,
corresponds to a quad T = [a, b, c, d] of G′. Without loss of generality assume
that the stick of T is 〈a, d, c〉 and the outer edge of T is (b, c). We then add a
vertex x inside T and add the edges (a, x), (b, x) and (d, x); see Figs. 3(c–d). Let
the resulting graph be G′. The 4-cycle [b, x, d, c] is a quad in G′ and 〈b, x, d〉 is
its stick. Since G′ contains exactly three quads, G′ also contains exactly three
quads (i.e., [b, x, d, c] replaces [a, b, c, d] and all other quads remain the same).
The path cover P (G′) consists of all the paths of P (G′) \ 〈a, d, c〉 along with the
paths 〈a, d〉, 〈d, c〉, 〈a, x〉, 〈b, x, d〉. ��
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Fig. 3. (a–d) Illustration for Operation 1. G and G are shown in dotted lines as weak
duals of G′ and G′, respectively.

Since the path covering P (G′) consists of the sticks and all the edges of G′ that
are not covered by the sticks, in Lemmas 2 and 3, we will only define the sticks
in G′, instead of defining P (G′) explicitly.

Lemma 2. Assume that G is produced from G by an application of Operation 2.
Then the graph G′ and its path covering P (G′) can be constructed by a constant
number of insertion/deletion on G′ and P (G′), respectively.

Proof. Assume that the vertices v and u of G on which we apply Operation 2
correspond to two faces T1 and T2 of G′. Then T1 and T2 must share an edge,
which we denote by e′. We distinguish three cases.

Case 1 (T1 and T2 are ordinary faces): Here we subdivide e′ with a vertex
x and connect x with the vertices on T1 and T2 that are not already adjacent to
x. The resulting graph is G′; see Figs. 4(a–b). The new faces are ordinary, and
hence the quads and sticks of G′ coincide with the quads and sticks of G′.

Case 2 (Exactly one of T1 and T2 is a quad): Without loss of generality
assume that the outer boundary of the union of T1 and T2 is a, b, c, d, e, T1 is the
quad and 〈a, c, d〉 is its stick; see Fig. 4(c). We now subdivide e′ with a vertex
x. If (d, e) is the outer edge, then we add the edges (x, b), (x, e). Otherwise (a, e)
is the outer edge and we add the edges (x, b), (x, d). The resulting graph is G′;
see Figs. 4(c)–(f). The quad [a, c, d, e] of G′ does not determine quad for G′. The
new quad of G′ is [x, c, d, e] (resp., [a, x, d, e]), where 〈x, c, d〉 (resp., 〈a, x, d〉)
is its stick, as shown in Fig. 4(d) (resp., Fig. 4(f)). The four new faces in G′

correspond to the four vertices of the cycle that replace u and v of G.
Case 3 (Both T1 and T2 are quads): Without loss of generality assume that
the outer boundary of the union of T1 and T2 is a, b, c, d, e, f , and 〈a, d, e〉, 〈b, c, d〉
are the sticks of T1, T2, respectively. By induction, every quad in G′ contains an
outer edge. Since b and e are distinct vertices, both (a, b) and (e, f) cannot be
the outer edges of G′. Consequently, (a, b) and (a, f) are the outer edges of T1

and T2, respectively; see Fig. 4(g).
We now subdivide e′ with a vertex x and add the edges (x, c), (x, e); see

Fig. 4(h). The quads [a, b, c, d] and [a, d, e, f ] of G′ are not the quads for G′. The
quads of G′ are [a, b, c, x] and [a, x, e, f ], where 〈b, c, x〉 and 〈a, x, e〉 are their
corresponding sticks. ��
The following lemma examines Operation 3, whose proof is omitted due to space
constraints.
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Fig. 4. (a–h) Illustration for Operation 2. G and G are shown in dotted lines as weak
duals of G′ and G′, respectively.

Lemma 3. Assume that G is produced from G by an application of Operation 3.
Then the graph G′ and its path covering P (G′) can be constructed by a constant
number of insertion/deletion on G′ and P (G′), respectively.

Theorem 2. Every 3-connected cubic planar graph admits a proper TTG rep-
resentation.

Proof. Let G be the input graph. We use Lemmas 1–3 to construct the corre-
sponding graph G′ and path covering P (G′). Since G′ contains G as its weak
dual, if G′ admits a straight-line drawing Γ , where all the faces are drawn as
triangles, then Γ must be a proper TTG representation of G.

By construction G′ has exactly three inner faces that are of length four (i.e.,
the quads). All the other faces are of length three. Consequently, if G′ admits a
straight-line drawing Γ , then all the inner faces except the three quads must be
drawn as triangles. If the three sticks of G′ are stretched in Γ , then every face
of Γ must be a triangle, and hence Γ must be a proper TTG representation of
G. In other words, any planar embedding of G′, where every path in P (G′) is
stretched, must be a proper TTG representation of G.

It now suffices to prove that G′ admits a planar embedding, where each path
in P (G′) is stretchable. It is straightforward to verify that each subset of P (G′)
with at least two paths has at least three free vertices. Hence by Theorem 1, G′

admits a planar drawing, where every path in P (G′) is stretched; such a drawing
can be computed by solving a barycentric system [3]2. ��

4 Proper TTG Representations of Grid Graphs

In this section we give an algorithm to construct proper TTG representations for
square grid graphs and parabolic grid graphs. Note that Gansner et al. [7] gave an

2 The authors believe that instead of relying on de Fraysseix and de Mendez’s result [3],
one can adapt well known straight-line planar graph drawing techniques (e.g. shift
method [4]) to construct such a drawing of G′ on an integer grid with small area.
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algorithm to construct TTG representations for square grids and its subgraphs,
where the outerface takes the shape of an astroid, (also called cubocycloid),
and hence the TTG representations were not proper. On the other hand, our
algorithm constructs proper TTG representations.

A square grid graph Gm,n, where m,n ≥ 1, is the graph determined by an
integer grid I of dimension m×n. By a vertex ux,y of Gm,n we denote the vertex
that corresponds to the point (x, y) of I. See Fig. 5(a), where u2,1 corresponds
to the point c. By x(v) (respectively, y(v)) we denote the x-coordinate (respec-
tively, y-coordinate) of the point v. Let v1, v2, . . . , vk be a polygonal chain such
that x(v1) < x(v2) < . . . < x(vk), y(v2) > y(v3) > . . . > y(vk) > y(v1) and
v2, v3, . . . , vk, v2 forms a strictly convex polygon; see Fig. 5(b). We call such a
polygonal chain a ripple of k vertices and denote it by Rk.

Theorem 3. Every Gm,n, m,n ≥ 1, admits a proper TTG representation.

Proof. We first constructGm,1 as follows. Construct a ripple Rm+2 = (v1, v2, . . . ,
vm+2). Then add a point b below Rm+2 and draw straight line segments from
b to each vertex in Rm+2. We make sure that such that x(b) = x(vm+2) +
ε, ε > 0, and the drawing is planar. Now add a point t above Rm+2 with x(t) =
x(v2) and draw straight line segments from t to each vertex in Rm+2. We place
t with sufficiently large y-coordinate so that the drawing remains planar and
the vertices t, vm+2, b become collinear. The resulting drawing is a proper TTG
representation of Gm,1; see Fig. 5(c). Assume inductively that Gm,i, i < n,
admits a proper TTG representation such that the following conditions hold.

(a) The topmost vertex t in the drawing is adjacent to a ripple Rm+2 and the
triangles incident to t correspond to the vertices of the ith row of Gm,i.
(b) The triangle below the edge (vj , vj+1), 1 ≤ j ≤ m + 1, corresponds to the
vertex uj−1,i−1 of Gm,i.
(c) The bottommost vertex b of the drawing has the largest x coordinate in the
drawing and it is adjacent to the leftmost and the rightmost vertices of Rm+2.
(d) One can decrease the y coordinate of b and redraw its adjacent edges to
obtain another proper TTG representation of Gm,i.

The above conditions hold for the base case. We now construct the proper TTG
representation of Gm,n from the proper TTG representation Γ of Gm,n−1.

Let Rm+2=(v1, v2, . . . , vm+2) be the ripple that is adjacent to the topmost
vertex t. Delete t from Γ to obtain another drawing Γ ′. Now draw another ripple
R′

m+2=(v′1(= v1), v
′
2, . . . , v

′
m+2(= vm+2)) such that x(v′2) = x(v2), y(v

′
2) > y(v2)

and v′j , 2 < j < m+ 2, is the midpoint of the line segment v′j−1vj ; see Fig. 5(d).
The triangles incident to R′

m+2 correspond to a new row of m vertices, i.e,
the (n − 1)th row Gm,n. We now add a point t′ above R′

m+2 with x(t′)=x(v′2)
and draw straight line segments from t′ to each vertex in R′

m+2. Conditions (c)
and (d) help us to install t′ with sufficiently large y-coordinate such that the
drawing remains planar and the vertices t′, vm+2 and the bottommost point b
become collinear; see Fig. 5(e). Observe that the resulting drawing is the proper
TTG representation of Gm,n for which the conditions (a)–(d) hold. ��
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Fig. 5. (a) G3,2. (b) R5. (c) Proper TTG representation of Gm,1. (d) Construction of
the triangles for the (n− 1)th row of Gm,n. R

′
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A rectangular grid drawing Gm,n is a planar drawing of some graph, where each
vertex is drawn as a point on the m × n grid, each edge is drawn as either a
horizontal or a vertical straight line segment and each face takes the shape of a
rectangle. We now generalize the proof of Theorem 3 to prove the following.

Theorem 4. Let G be a planar graph with only four vertices of degree two. If G
admits a rectangular grid drawing, then G admits a proper TTG representation.

Proof. Let Gm,n, m,n>1, be a rectangular grid drawing and let Gm,j, j≤n, be
the subgraph of Gm,n induced by the vertices of the jth row and all the rows
below it. A vertex u is unsaturated in Gm,j if u has a neighbor in Gm,n that does
not belong to Gm,j. Otherwise, u is saturated in Gm,j .

We first construct a ripple Rk, where k is the number of vertices in the lowest
row of Gm,n. Observe that Rk is a TTG representation (not necessarily proper)
of Gm,0. We then incrementally construct the TTG representation Γm,i (not
necessarily proper) for Gm,i, i<n, and finally add the triangles for the nth row
such that the resulting drawing becomes a proper TTG representation of Gm,n.
While constructing Γm,i, i<n, we maintain the following invariants.

(a) Let u1, u2, . . . , ut be the unsaturated vertices of Gm,i. Then the outer bound-
ary of Γm,i while walking clockwise from the leftmost to the rightmost ver-
tex of Γm,i is a ripple Rt+1=(v1, v2, . . . , vt+1). The triangle below the edge
(vj , vj+1), 1 ≤ j ≤ t, corresponds to the vertex uj .
(b) The bottommost vertex b of the drawing has the largest x coordinate in the
drawing and it is adjacent to the leftmost and the rightmost vertices of Rt+1.

(c) One can decrease the y coordinate of b and redraw its adjacent edges to
obtain another TTG representation (not necessarily proper) of Gm,i.

Observe that the invariants are similar to invariants we used in the proof of
Theorem 3. Consequently, we can install the nth row in a similar way. ��
A parabolic grid of n lines is the graph determined by the arrangement of line
segments l0, l1, . . . , ln, where li, 1 ≤ i ≤ n − 1, has endpoints at (0, i) and
(n− i, 0), and the endpoints of l0 and ln are (0, 0), (n−1, 0) and (0, n−1), (0, 0),
respectively. We now have the following theorem whose proof is omitted.
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Theorem 5. Every parabolic grid graph admits a proper TTG representation.

5 Fixed-Parameter Tractability

Let G be a 3-connected plane graph with maximum degree four. We give an
O∗(4k16k2)-time algorithm to decide whether G admits a proper TTG represen-
tation, where k1 and k2 are the number of inner vertices of degree four and the
number of outer vertices in G, respectively.

Here is an outline of our algorithm. Given a 3-connected max-degree-4 plane
graph G, we first construct a set of graphs D such that every graph H ∈ D
contains G as its weak dual. We then prove that G admits a proper TTG rep-
resentation if and only if some graph H ∈ D admits a straight-line drawing,
where each face of H is a triangle; see Lemma 4. For each H we construct a set
of feasible path coverings such that H admits a straight-line drawing with each
face of H as a triangle if and only if one of these path coverings is stretchable; see
Lemma 5. We show that the stretchability of each path covering can be tested
in polynomial time; see Lemma 6. We show that |D| = O∗(2k2) and the number
of path coverings is O∗(4k13k2). Therefore, the algorithm takes O∗(4k16k2) time.

Let w1, w2, . . . , wt be the outer vertices of G in clockwise order. Construct
a graph G′ by inserting G into a cycle c1, c2, . . . , ct of t vertices and adding
the edges (ci, wi), 1 ≤ i ≤ t. Let G∗ be the weak dual of G′; see Fig. 6(a).
Consider now the set of graphs D that are obtained by contracting at most t− 3
outer edges of G∗. Since G is 3-connected, D contains all the 3-connected plane
graphs that contain G as their weak dual. For every graph D′ ∈ D, we construct
a set D′

i, i ∈ {0, 1, 2, 3}, of (k2

i

)
graphs that are obtained from D′ by subdividing

i outer edges of D′ (with one division vertex per edge); see Figs. 6(b–c). Let
D =

⋃
∀D′∈D(D′

0 ∪ D′
1 ∪ D′

2 ∪ D′
3). Observe that every graph that satisfies the

following conditions belongs to D.

(a) At most three outer vertices of H are of degree two.
(b) For every outer vertex v of degree two in H , if we contract an edge that

is incident to v, then the resulting plane graph H ′ must be a 3-connected
planar graph that contains G as its weak dual.

We now have the following lemma, whose proof is omitted due to space con-
straints.

Lemma 4. G admits a proper TTG representation if and only if some graph
H ∈ D admits a straight-line drawing, where each face of H is a triangle.

Let Γ be a straight line drawing of a plane graph H and let f be a face in Γ .
By a corner at v in f we denote the angle at v interior to f , which is formed by
the edges incident to v on f . A corner at v is bold if v is an internal vertex in
Γ . A corner at v is stretched in Γ , if the corresponding angle is equal to 180◦.
A corner at v is concave in Γ , if the corresponding angle is greater than 180◦.
We call an inner face f a semi-outer face of H , if f contains an outer vertex on
its boundary. Otherwise, f is a full-inner face of H . See Fig. 6.



208 S.G. Kobourov, D. Mondal, and R.I. Nishat

(a) (d)

a

b

c d

e

f

g h

(b) (c)

Fig. 6. (a) G and G∗, where G is shown in dashed lines. (b) A member D′ of D. (c) A
member of D′

2. (d) A straight-line drawing Γ , where a concave and a stretched corner
is shown at vertex a and h, respectively. Every corner in Γ that is incident to an inner
vertex (i.e., f, g or h) is a bold corner. All the inner faces in Γ are semi-outer except
the shaded face, which is a full inner face.

Observe that for every H ∈ D, if f is a semi-outer face in H , then len(f) ∈
{3, 4, 5, 6}; Fig. 6(c) shows an example where each of these values appears at least
once. For every other inner face f , len(f) ∈ {3, 4}. Moreover, if Γ is a straight-
line drawing of H , where all the faces are drawn as triangles, then every face f in
Γ contains exactly len(f)− 3 stretched corners. The following lemma computes
an upper bound on the number of ways the corners of H can be stretched to
have such a straight-line drawing.

Lemma 5. The number of ways in which the corners of H can be stretched to
obtain a straight-line drawing Γ such that every face f in Γ contains len(f)− 3
stretched corners is O∗(4k13k2), where k1 and k2 are the number of inner vertices
of degree four and the number of outer vertices in Γ , respectively.

Every candidate of Lemma 5, marks some of the corners of H as “stretched”.
The following lemma shows how to test the feasibility of such a marking.

Lemma 6. Let H be a graph that belongs to D. Assume that for every face f in
H, exactly len(f)− 3 corners of f are marked “stretched”. Then one can decide
in polynomial time whether H admits a straight-line drawing Γ , where all the
corners marked “stretched” are stretched.

Proof. If two different corners at the same vertex are marked stretched, then H
cannot have a straight-line drawing such that both of those corners are stretched
simultaneously. We thus assume that every vertex can have at most one corner
that is marked stretched. We now construct a set P of paths, as follows.

- The three corners that are not marked on the outer face of H must be concave
corners. Let the corresponding vertices be u, v and w in clockwise order on
the outer face of H . Let Suv be the path on the boundary of the outer face
between the vertices u and v. Define Svw and Swu in a similar way. We add
the paths Suv, Svw and Swu to P .

- For every corner φ that is marked “stretched”, we do the following. Let the
vertex and edges that correspond to φ be v and (v, x), (v, y), respectively. We
add the path x, v, y to P .
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- For every edge (x, y) of H , if (x, y) does not belong to any path of P , then we
add the path x, y to P .

- For any two paths u1, u2, . . . , uk−1, uk and v1, v2, . . . , vt−1, vt in P , if uk−1 = v1
and uk = v2, then we delete those paths from P and add the path u1, u2,
. . . , uk−1(= v1), uk(= v2), . . . , vt−1, vt to P . We assume that u1, u2, . . . , vt−1, vt
do not create a cycle. Otherwise, each of the vertices on the cycle will contain
a stretched corner and H will not have a straight-line drawing.

Observe that every edge in G is contained in a path of P . Furthermore, if H
admits the required drawing Γ , then every path in P must be stretched in Γ . In
the rest of the proof we show that every pair of paths in P is non-crossing and
edge-disjoint, i.e., P is a path covering of H , and hence we can use Theorem 1
to test whether H admits the required drawing in polynomial time. ��
Theorem 6. Let G be a 3-connected plane graph with maximum degree four.
Then one can decide in O∗(4k16k2)-time whether G admits a proper TTG rep-
resentation, where k1 and k2 are the number of inner vertices of degree four and
the number of outer vertices in G, respectively.

One can adapt the decision algorithm of this section for more general classes
of plane graphs as follows. Let G be 3-connected plane graph of max-degree-Δ.
Then one can construct a set of graphs D such that every graph H ∈ D contains
G as its weak dual, andG admits a proper TTG representation if and only if some
graph H ∈ D admits a straight-line drawing, where each face of H is a triangle.
Observe that the cardinality of such a set is independent ofΔ and |D| = O∗(2k2).
Since the proof of Lemma 6 does not depend on Δ, we can use the same lemma
to construct necessary path coverings and to test the stretchability of those
path coverings. Observe that the number of path coverings of H that we need to
check is bounded by the number of ways we can mark the corners of H such that
for every face f in H , exactly len(f) − 3 corners of f are marked “stretched”.
Since len(f) ≤ Δ+2, the number of path coverings is O(Δ3(k1+k2)), where k1 is
the number of inner vertices with degree greater than three. Consequently, the
running time of the modified algorithm is O∗(2k2Δ3(k1+k2)), which is polynomial
if Δ=O(1) and k1+k2=O(log n).

Theorem 7. Let G be a 3-connected n-vertex plane graph with maximum degree
Δ. Then one can decide in O∗(2k2Δ3(k1+k2)) time whether G admits a proper
TTG representation, where k1 and k2 are the number of inner vertices of degree
greater than three and the number of outer vertices in G, respectively.

6 Conclusion and Open Problems

We presented algorithms for constructing proper TTG representations for 3-
connected cubic planar graphs, and some grid graphs. Our results are strong in
the sense that there exist 2-connected and 3-connected graphs with maximum
degree four that do not admit proper TTG representations; see Fig. 1(g). We
also described a fixed-parameter tractable decision algorithm for deciding proper
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TTG representations. In all these cases, one can obtain the proper TTG rep-
resentation (if it exists) by solving a barycentric system using the result of de
Fraysseix and de Mendez [3]. Finding such representations on an integer grid
with small area may be an interesting avenue to explore. The main open prob-
lem is of course whether recognizing graphs having proper TTG representation
is NP-hard, for general planar graphs, or whether there exists a polynomial-time
algorithm.
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