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Abstract. Lovász conjectured that every connected 4-regular planar
graphG admits a realization as a system of circles, i.e., it can be drawn on
the plane utilizing a set of circles, such that the vertices of G correspond
to the intersection and touching points of the circles and the edges of G
are the arc segments among pairs of intersection and touching points of
the circles. In this paper, (a) we affirmatively answer Lovász’s conjecture,
if G is 3-connected, and, (b) we demonstrate an infinite class of connected
4-regular planar graphs which are not 3-connected and do not admit a
realization as a system of circles.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Given
a graph G, we denote by V [G] and E[G] the set of vertices and edges of G,
respectively. If G is regular, we denote by d(G) its degree.

Definition 1. Let G be a connected 4-regular planar graph. We say that G ad-
mits a realization as a system of circles, if it can be drawn on the plane using
a set of circles such that (see Figures 1b-1d): (1) The vertex set V [G] is given
by the intersection and touching points of the circles, (2) the edge set E[G] is
defined by all circular arcs between the intersection and touching points of the
circles. In the special case where intersection points are not allowed, we say that
G admits a realization as a system of touching circles (see Figures 1b and 1c).

Lovász [7, pp.1175],[11, pp.426] conjectured that every simple connected 4-regular
planar graph admits a realization as a system of circles. To the best of our knowl-
edge this conjecture remained unanswered. Touching points are necessary, since
if we use only crossings, we have an even number of vertices, but there are
4-regular planar graphs with odd number of vertices [14].
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(a) (b) (c) (d)

Fig. 1. (a) A straight-line drawing of the octahedron graph Goct. (b)-(d) Different
realizations of the octahedron graph Goct as system of circles

In this paper, we prove that using touching points of circles as vertices is
indeed sufficient in order to affirmatively answer Lovász’s conjecture in the case
of 3-connected graphs. If the input graph is not 3-connected, we demonstrate by
an example that a realization as a system of circles is not always possible.

2 Related Work

Closely related to the problem we study is the contact graph representation
problem. A contact graph is a graph whose vertices are represented by geomet-
ric objects and its edges correspond to two objects touching in some specific
predefined way. There is a rich literature on contact graphs (cf. [9,8]), dating
back to 1936 in Koebe’s theorem [10] which states that any planar graph can be
represented as a contact graph of disks in the plane.

Lombardi drawings, which attempt to capture some of the visual aesthetics
used by the American artist Mark Lombardi, are also closely related to our
problem. Two features that stand out in Lombardi’s work are the use of circular-
arc edges and their even distribution around vertices. Such even spacing of edges
around each vertex (also known as perfect angular resolution) together with the
usage of circular arc edges, formally define Lombardi drawings of graphs [6,5,4].

Connected 4-regular planar graphs is a well studied class of graphs. Manca [14]
proposed four operations to generate all connected 4-regular planar graphs from
the octahedron graph. As noted by Lehel [11], Manca’s construction could not
generate all connected 4-regular planar graphs, however, an additional operation
could fix this problem. Broersma et. al [3] showed that all 3-connected 4-regular
planar graphs can also be generated from the octahedron, using three operations.

In the context of graph drawing, 4-regular planar graphs have a long tradition,
dating back to VLSI layouts and floor-planning applications. The main goal
in this context is to produce drawings (referred to as orthogonal drawings) in
which each vertex corresponds to a point on the integer grid and each edge is
represented by a sequence of horizontal and vertical line segments. Pioneering
work on orthogonal drawings was done in relation to VLSI-design by Valiant
[17], Leiserson [13] and Leighton [12] and later on, in relation to graph drawing
by Tamassia [15], Tamassia and Tollis [16], and Biedl and Kant [1].
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3 The Case of 3-Connected 4-Regular Planar Graphs

We first prove that a 3-connected 4-regular planar graph admits a realization as
a system of touching circles. It is well known that a connected planar graph is
Eulerian if and only if its dual is bipartite [2, pp.172]. Let G be an embedded
4-regular planar graph. Since G is Eulerian, its dual G∗ is bipartite. Hence, we
can color the faces of G using two colors, say gray and white, so that any two
adjacent faces are of different colors. For convenience, we assume that the outer
face of G is always colored white. We proceed to construct a new graph IL(G)
as follows. We associate a vertex of IL(G) with every gray face of G. We join
two vertices of IL(G) with an edge if and only if the corresponding faces of G
have at least one vertex in common (refer to the black colored graph of Fig.2a).

(a) (b)

Fig. 2. (a) Constructing graph IL(G). (b) A realization of G as system of circles.

Lemma 1. If G is simple 3-connected 4-regular planar, then IL(G) is simple.

Proof. Suppose that G is 3-connected and assume to the contrary that IL(G)
is not simple. W.l.o.g., we further assume that IL(G) contains a multiple edge,
say a double edge between f and g, where f, g ∈ V [IL(G)] (see Fig.3). The
case where IL(G) contains selfloops is treated similarly. By definition, f and
g correspond to gray faces of G that have exactly two common vertices, say
u, v ∈ V [G]. Then, u, f , v and g define a separating simple closed curve which
intersects G at exactly two vertices. Note that since G is simple there is at least
one vertex of G that lies in the interior of this curve and one on its exterior; a
clear contradiction. ��

Theorem 1. Every simple 3-connected 4-regular planar graph admits a realiza-
tion as a system of touching circles.

Proof. By Lemma 1, IL(G) is simple. So, by applying Circle-Packing theo-
rem [10] on it, we obtain a drawing in which each gray-colored face of G corre-
sponds to a circle and two circles meet at a point if and only if the corresponding
faces are vertex-adjacent. Hence, the points where the circles meet define the ver-
tices of G and the arc segments between them correspond to the edges of G. ��
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Fig. 3. Vertices u, f , v and g define a separating simple closed curve

4 The General Case of Connected 4-Regular Planar
Graphs

In this section, we will demonstrate an infinite class of connected 4-regular planar
graphs that do not admit a realization as a system of circles. Hence, Lovász’s
conjecture does not hold for every simple connected 4-regular planar graph. Note
that in the case where G is not 3-connected, IL(G) is not necessarily simple.
Hence, the Circle-Packing theorem cannot be applied directly.

The base of our constructive proof is the octahedron graph Goct (see Fig.1a),
which is a simple 3-connected 4-regular planar graph. Hence, Theorem 1 suggests
that it admits a realization as a system of touching circles. The following lemma
describes all different realizations of Goct as a system of circles.

Lemma 2. The octahedron graph has exactly three different realizations as a
system of circles, which are demonstrated in Figures 1b-1d.

Proof. In general, there are certain restrictions concerning the number of circles
that participate in a realization of a graph as a system of circles. Two circles may
have at most two vertices in common (two crossing points if they intersect, one
touching point if they are tangent, or none if they are separated), there are at
least three vertices on every circle (since we consider only simple graphs), and,
every vertex belongs to exactly two circles (since every vertex has degree 4).

Translating these properties back to the octahedron graph Goct, we obtain
the following: If every pair of circles contributes exactly two vertices, we may
have a minimum of three circles, since the octahedron graph consists of six
vertices. Refer to Fig.1d for such a realization. On the other hand, if every circle
has exactly three vertices, and therefore defines exactly three edges, we have
a maximum of four circles, since the octahedron graph consists of 12 edges.
Figures 1b and 1c depict such realizations.

From the above, it follows that any realization of Goct as a system of circles
consists of either three or four circles. This implies, that there exist exactly three
different realizations of Goct as a system of circles: one representation using three
circles, and two representations using four circles, depending on whether the
outerface is bounded by a circle or not. ��
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(a) Attaching gadget-subgraphs on e = (u, v). (b) The resulting graph Gaug
oct .

Fig. 4. Each dashed edge corresponds to the gadget-subgraph of Fig.5

Initially, we will demonstrate a specific connected 4-regular planar graph that
does not admit a realization as a system of circles. This graph will be constructed
based on the octahedron graph Goct, augmented by appropriately “attaching”
a specific gadget-subgraph to its edges, leading thus to a graph, say Gaug

oct , that
contains cutvertices and separation pairs (note that any connected 4-regular
planar graph is bridgeless [18, pp.34]). The gadget-subgraph, shown in Fig.5a,
contains exactly two vertices of degree two, namely v1 and v2, which are its
endpoints. We replace every edge e = (u, v) of Goct by a path consisting of 8
vertices. Let u → z1 → . . . → z8 → v be the path replacing (u, v). We associate
four copies of the gadget-subgraph having vertices z1, . . . , z8 as their endpoints
(see Fig.4a). More precisely, the first gadget-subgraph connects vertices z1 and
z6, the second connects z2 and z5, the third connects z3 and z8 and the last
connects z4 and z7. Fig.4b depicts the resulting graph Gaug

oct . Since the produced
graph is planar and each edge (u, v) of Goct lies on the boundary of two distinct
faces, the first two gadget-subgraphs attached at (u, v) lie in one face and the
other two lie in the other.

The outerface of the gadget-subgraph consists of vertices v1, v2, w1, w2 and w
(see Fig.5). If we remove the edges of the outerface, the remaining graph consists
of three isolated vertices (namely v1, v2 and w) and two disjoint graphs that are
subdivisions of the octahedron graph (refer to the gray-shaded graphs of Fig.5a).
The properties of the gadget-subgraph, that we will investigate in this section
are independent of these two graphs, i.e., any simple planar graph satisfying the
following degree condition can be used instead: Every vertex is of degree 4 except
for exactly one vertex on the outerface that is of degree 2 (refer to vertices w1

and w2 of the gray-shaded graphs of Fig.5a). The general situation is shown in
Fig.5b, where the subgraphs are drawn as self-loops at vertices w1 and w2. For
convenience, we will refer to these subgraphs as loop-subgraphs.

Lemma 3. Suppose that there is a realization of Gaug
oct as a system of circles.

Then, any gadget-subgraph in this realization contributes two tangent circles C1

and C2, so that circle Ci contains vertices {vi, wi, w}, i = 1, 2, and, vertex w is
defined by their tangent point.
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(a) The gadget-subgraph. (b) Abstraction of the gadget-subgraph.

Fig. 5. Illustrations of the gadget-subgraph

Proof. Suppose that there is a realization of Gaug
oct as a system of circles and

consider a copy of the gadget-subgraph in this realization. Since every vertex is
defined by exactly two circles, and wi is a cutvertex, it follows that the edges
(vi, wi) and (wi, w) belong to the same circle, i = 1, 2. Let Ci be the circle that
contains (vi, wi) and (wi, w) and C′

i the circle that contains (vi, w), i = 1, 2. We
claim that Ci = C′

i, i = 1, 2. Indeed, suppose that C1 �= C′
1. Since vertex w is

defined by exactly two circles, we have that {C1, C
′
1} = {C2, C

′
2}, which also

implies that C2 �= C′
2. Then, C1 and C′

1 have at least three points in common,
namely vertices v1, v2 and w, which suggests that C1 = C′

1; a contradiction. ��
From the above, it follows that each gadget-subgraph has unique realization as
a system of circles in the realization of Gaug

oct (ignoring the different realizations
of the loop-subgraph as system of circles, and the relative positions of the two
touching circles C1 and C2), which is illustrated in Figure 6.

(a) (b)

Fig. 6. Realizations of the gadget-subgraph as system of circles

Lemma 4. Let e = (u, v) be an arbitrary edge of Goct. Augment Goct by re-
placing edge e with a path of length two, say u → v1 → v2 → v, and attach a
gadget-subgraph, so that v1 and v2 are its endpoints. Then, in any realization of
the produced graph as a system of circles, the realization of the gadget-subgraph
and the realization of Goct are independent, i.e., any circle contains edges that
belong exclusively either to the gadget-subgraph or to Goct.
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Proof. Refer to Fig.7a. By Lemma 3, it follows that edges (vi, wi), (vi, w) and
(wi, w) belong to the same circle, say Ci, i = 1, 2. Then, the edges (u, v1), (v1, v2)
and (v2, v) belong to a third circle, say C, for which C �= Ci, i = 1, 2. Therefore,
if we remove C1 and C2 and the circles representing the loop-subgraphs of the
gadget-subgraph, we obtain a representation of the remaining graph (namely of
graph Goct), as a system of circles. ��

(a) (b)

Fig. 7. (a) Configuration considered in proof of Lemma 4. (b) An embedded triangular
face of Gaug

oct , in which each dashed edge corresponds to the gadget-subgraph.

Corollary 1. In any realization of Gaug
oct as a system of circles, the realizations

of each gadget-subgraph and the realization of Goct are independent.

Corollary 1 is the key element of our proof. It states that in any realization of
Gaug

oct the circles of the gadget-subgraphs are independent of the circles that form
Goct, i.e., they only have to touch each other at the endpoints of the gadget-
subgraphs, and do not share any other points. This implies that the drawing of
the subgraph where all vertices of the gadget-subgraphs are removed except for
their endvertices, will have one of the realizations of Goct depicted in Figures 1b-
1d, and the vertices where the gadget-subgraphs are connected to will lie on the
corresponding arcs segments implied by these realizations.

The different realizations of the octahedron graph as a system of circles assure
that there is always a triangular face that shares no vertex and no edge with
the outerface. Hence, there is always a “triangular” face with gadgets that has
an embedding similar to that of Fig.7b and all gadget-subgraphs attached to its
edges cannot admit a realization as the one of Fig.6b. Note that from the em-
bedding shown in Fig.7b, one can easily determine all possible such embeddings:
For any quadruple of gadget-subgraphs on one edge, we can swap the two pairs
of gadget-subgraphs, so that each pair lies in the other face defined by the edge
of the octahedron. In the following, we state two useful geometric results.

Lemma 5. Let C1(O1, r1) and C2(O2, r2) be two circles, so that C1 is tangent to
C2 at point p1 and C2 lies entirely in the interior of C1. Let C(O, r) be another
circle that is tangent to C1 at point p2 (p2 �= p1), tangent to C2 and lies in the

interior of C1 (see Fig.8a). If φ is the angle ̂p1O1p2, then the radius r of C is
an increasing function of φ, φ ∈ (0, π].
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(a) (b)

Fig. 8. (a) Configuration considered in Lemma 5. (b) Configuration considered in
Lemma 6.

Proof. W.l.o.g., we assume that O1 coincides with the origin of the cartesian
coordinate system and point p1 lies on the x-axis, i.e., at point (r1, 0). Then, the
center of circle C2 is at point (r1 − r2, 0), while the center of circle C is at point
((r1 − r) cosφ, (r1 − r) sin φ), as shown in Fig.8a. Since C2 and C are tangent
the distance between their centers equals to the sum of their radii, i.e.:

[(r1 − r) cosφ− (r1 − r2)]
2 + [(r1 − r) sin φ]2 = (r2 + r)2

⇒ (r1 − r2)
2 + (r1 − r)2 − 2(r1 − r2)(r1 − r) cosφ = (r2 + r)2

⇒ r = r1 − 2r1r2
r1+r2−(r1−r2) cosφ

By the above equation, when φ is increasing in the interval (0, π], cosφ is decreas-
ing and r is increasing. Hence, circle C has maximum radius for angle φ = π. ��
Lemma 6. Let C1(O1, r1) and C2(O2, r2) be two circles, so that C1 is tangent to
C2 at point p1 and C1 lies entirely in the exterior of C2. Let C(O, r) be another
circle that is tangent to C1 at point p2 (p2 �= p1), tangent to C2 and lies in the

exterior of C1 (see Fig.8b). If φ is the angle ̂p1O1p2, then the radius r of C is
an increasing function of φ, φ ∈ (0, arccos( r1−r2

r1+r2
)].

Proof. The proof of Lemma 6 is similar to the one of Lemma 5. So, we omit
the details. We simply mention the corresponding equation for r, which is the
following:

r = 2r1r2
r2−r1+(r2+r1) cosφ

− r1.

Note that circle C does not always exist. For an example, refer to Fig.8b, when
φ = π/2 and r1 > r2. In particular, for given radii r1 and r2, angle φ is bounded
from above by value arccos( r1−r2

r1+r2
), which corresponds to the angle in the extreme

case where circle C is of infinite radius and is therefore reduced to the common
tangent of circles C1 and C2. ��
Lemma 7. Consider a circle C(O, r) and an arc

�

AB of C with ̂AOB = φ < π.
Let C1(O1, r1) and C2(O2, r2) be two tangent circles, that are both tangent to
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(a) (b)

Fig. 9. Configurations used in Lemma 7

C at points A and B respectively (see Fig.9). Let another such pair of tangent
circles C′

1(O
′
1, r

′
1) and C′

2(O
′
2, r

′
2) that are tangent to C at points A′ and B′

respectively (with A′ and B′ on the arc between A and B), so that the two pairs
of circles have no crossing and no touching points. Then,

�

A′B′ <
�

AA′ and
�

A′B′ <
�

B′B

Proof. By Lemmas 5 and 6, it follows that r′i < rj , i, j ∈ {1, 2}. Consider the

circle C′
1. Since r′2 < r1, the previous lemmas assure that ̂A′OB′ < ̂AOA′.

Similarly ̂A′OB′ < ̂B′OB. So,
�

A′B′ <
�

AA′ and
�

A′B′ <
�

B′B, as desired. ��
Note that Lemma 7 is still true when the four circles lie either in the interior
or on the exterior of circle C. Let e = (u, v) be an edge of the innermost interior
face of the octahedron graphGoct, as shown in Fig.7b. Assume that in a realization
of the octahedron as a system of circles, e is drawn as an arc of a circle C(O, r),

with ̂uOv = φ < π. The next lemma proves that this assumption leads to a con-
tradiction to the existence of a realization of graph Gaug

oct as a system of circles.

Lemma 8. Consider a circle C(O, r) and assume that edge e = (u, v) ∈ E[Goct]

is drawn as an arc segment
�
uv of C such that ̂uOv = φ < π. If we attach two

pairs of gadget-subgraphs along e, as shown in Fig.4a, then the resulting subgraph
of Gaug

oct does not admit a realization as a system of circles.

Proof. The existence of only one possible realization of the gadget-subgraphs
as system of circles, implies that each gadget-subgraph is drawn as a pair of
tangent circles that are also tangent to their endpoints zi, zj along the arc

�
uv.

By applying Lemma 7 to the pair of gadget-subgraphs with endpoints z1, z6 and
z2, z5, we have:

�
z2z5 <

�
z1z2 and

�
z2z5 <

�
z5z6

Similarly, for the pair of gadget-subgraphs with endpoints z3, z8 and z4, z7, we
have:

�
z4z7 <

�
z3z4 and

�
z4z7 <

�
z7z8
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Combining those inequalities and the fact that
�
zizj ≤ �

zi′zj′ for i
′ ≤ i ≤ j ≤ j′,

we have:
�

z4z7 <
�

z3z4 ≤ �
z2z5 <

�
z5z6 ≤ �

z4z7

that is
�

z4z7 <
�

z4z7, which is a contradiction. ��
In order to complete the proof that graph Gaug

oct does not admit a realization as
a system of circles, it suffices to show that in any realization of Goct, at least
one edge of the innermost interior face meets the requirements of Lemma 8.

Lemma 9. In any realization of the octahedron as a system of circles, at least
one edge, say e = (u, v), of the innermost interior face is drawn as an arc of a

circle C(O, r) so that ̂uOv = φ < π.

Proof. For the first two representations of Fig.1, the result is almost straight-
forward. More precisely, let C1(O1, r1), C2(O2, r2) and C3(O3, r3) be the cir-
cles (white-colored in Fig.1b) that define the innermost interior face (refer to
the innermost gray-shaded face of Fig.1b) of the first representation. The three
points of this face lie on the edges of the triangle defined by points O1, O2 and
O3, since circles C1, C2 and C3 are mutually tangent. Then, at least one of
the angles of the triangle is less than π, as desired. In the second representa-
tion, the innermost interior face is a circle (refer to the innermost gray-shaded
circle of Fig.1c) with three distinct points on its boundary. Trivially, at least
one of the arcs defined by those points corresponds to an angle that is smaller
than π.

(a) (b)

Fig. 10. Configurations considered in Lemma 9

We now turn our attention to the case where the realization of the octahedron
graph as a system of circles is implied by three mutually crossing circles (refer
to Fig.1d). First, consider two intersecting circles C1(O1, r1) and C2(O2, r2) at
points A and B and assume w.l.o.g. that their centers lie along the x-axis, such
that O1 is to the left of O2 (see Fig.10). We are interested in the angles that
correspond to the two arcs of C1 and C2 that “confine” the common points of
the two circles (refer to the dashed drawn arcs incident to A and B in Fig.10).

It is not difficult to see that ̂AO1B and ̂AO2B cannot be both greater than
π. Consider now two of the crossing circles of the realization of the octahedron
of Fig.1d. From the above, it follows that at least one of the two arcs that
“confine” their common points, corresponds to an angle that is less than π.
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Since the innermost interior face is also confined by the two arcs, it follows that
at least one edge of the innermost interior face has the desired property. ��
Theorem 2. There exists a simple connected 4-regular planar graph that does
not admit a realization as a system of circles.

Proof. Lemma 9 states that in any realization of the octahedron graph as a
system of circles, at least one edge of the innermost interior face is drawn as an
arc segment of length less than π. Hence, by Lemma 8 it follows that Gaug

oct does
not admit a realization as a system of circles. ��
Theorem 3. There exists an infinite class of simple connected 4-regular planar
graphs that do not admit a realization as a system of circles.

Proof. Recall that in order to obtain Gaug
oct , each edge of the octahedron graph

was augmented by two pairs of gadget-subgraphs. However, Theorem 2 trivially
holds if more than two pairs of gadget-subgraphs are attached to each edge of
Goct, defining thus an infinite class of connected 4-regular planar graphs that
do not admit a realization as a system of circles. An alternative (and more
interesting) class of such graphs can be derived by replacing the octahedron
graph of the loop-subgraph of each gadget-subgraph by any 4-regular planar
graph, in which one of the edges on its outerface is replaced by a path of length
two and the additional vertex implied by this procedure is identified by vertices
w1 and/or w2 of the gadget-subgraph (refer to Fig.5). ��

5 Conclusion - Open Problems

In this paper, we proved that every 3-connected 4-regular planar graph admits
a realization as a system of touching circles. We also demonstrated that there
exist simple 4-regular planar graphs which are not 3-connected and do not admit
realizations as system of circles. However, our work raises several open problems.

What is the computational complexity of the corresponding decision problem,
i.e., does a given connected 4-regular planar graph admit a realization as a system
of circles? Which is the smallest connected 4-regular planar graph not admitting
a realization as a system of circles? Is Lovász’s conjecture true for biconnected
graphs? The octahedron graph admits different realizations as system of circles,
in which the number of circles participating in the corresponding realizations
also differs. In general, an n-vertex 4-regular planar graph needs at least (1 +√
1 + 4n)/2 and at most 2n/3 circles in order to be realized as a system of circles.

What is the minimum number of circles needed in order to realize a given (3-
connected) 4-regular planar graph as a system of circles? In the context of graph
realizations as system of circles, it would be interesting to study the classes of
Eulerian and/or 2k-regular planar graphs, for k > 2. Obviously, for these classes
of graphs each vertex is defined as the intersection of more than two circles.
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8. Hlinený, P.: Classes and recognition of curve contact graphs. J. of Combinatorial
Theory, Series B 74(1), 87–103 (1998)
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