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Abstract. Gennaro et al. (Crypto 2010) introduced the notion of non-
interactive verifiable computation, which allows a computationally weak
client to outsource the computation of a function f on a series of in-
puts x(1), . . . to a more powerful but untrusted server. Following a pre-
processing phase (that is carried out only once), the client sends some
representation of its current input x(i) to the server; the server returns
an answer that allows the client to recover the correct result f(x(i)),
accompanied by a proof of correctness that ensures the client does not
accept an incorrect result. The crucial property is that the work done by
the client in preparing its input and verifying the server’s proof is less
than the time required for the client to compute f on its own.

We extend this notion to the multi-client setting, where n computa-
tionally weak clients wish to outsource to an untrusted server the com-
putation of a function f over a series of joint inputs (x

(1)
1 , . . . , x

(1)
n ), . . .

without interacting with each other. We present a construction for this
setting by combining the scheme of Gennaro et al. with a primitive called
proxy oblivious transfer.

1 Introduction

There are many instances in which it is desirable to outsource computation from
a relatively weak computational device (a client) to a more powerful entity or
collection of entities (servers). Notable examples include:

– Distributed-computing projects (e.g., SETI@Home or distributed.net), in
which idle processing time on thousands of computers is harnessed to solve
a computational problem.

� Portions of this work were done while at the University of Maryland.
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– Cloud computing, where individuals or businesses can purchase computing
power as a service when it is needed to solve some difficult task.

– Outsourcing computationally intensive operations from weak mobile devices
(e.g., smartphones, sensors) to a back-end server or some other third party.

In each of the above scenarios, there may be an incentive for the server to try
to cheat and return an incorrect result to the client. This may be related to
the nature of the computation being performed — e.g., if the server wants to
convince the client of a particular result because it will have beneficial conse-
quences for the server — or may simply be due to the server’s desire to minimize
the use of its own computational resources. Errors can also occur due to faulty
algorithm implementation or system failures. In all these cases, the client needs
some guarantee that the answer returned from the server is correct.

This problem of verifiable (outsourced) computation has attracted many re-
searchers, and various protocols have been proposed (see Section 1.3). Recently,
Gennaro et al. [13] formalized the problem of non-interactive verifiable compu-
tation in which there is only one round of interaction between the client and the
server each time a computation is performed. Specifically, fix some function f
that the client wants to compute. Following a pre-processing phase (that is car-
ried out only once), the client can then repeatedly request the server to compute
f on inputs x(1), . . . of its choice via the following steps:

Input Preparation: In time period i, the client processes its current input x(i)

to obtain some representation of this input, which it sends to the server.
Output Computation: The server computes a response that encodes the cor-

rect answer f(x(i)) along with a proof that it was computed correctly.
Output Verification: The client recovers f(x(i)) from the response provided

by the server, and verifies the proof that this result is correct.

The above is only interesting if the input-preparation and output-verification
stages require less time (in total) than the time required for the client to com-
pute f by itself. (The time required for pre-processing is ignored, as it is assumed
to be amortized over several evaluations of f .) Less crucial, but still important,
is that the time required for the output-computation phase should not be much
larger than the time required to compute f (otherwise the cost to the server
may be too burdensome). Gennaro et al. construct a non-interactive verifiable-
computation scheme based on Yao’s garbled-circuit protocol [25] and any fully
homomorphic encryption scheme.

1.1 Our Results

The scheme presented in [13] is inherently single-client. There are, however,
scenarios in which it would be desirable to extend this functionality to the
multi-client setting, e.g., networks made up of several resource-constrained nodes
(sensors) that collectively gather data to be used jointly as input to some com-
putation. In this work we initiate consideration of this setting. We assume n
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(semi-honest) clients wish to outsource the computation of some function f over

a series of joint inputs (x
(1)
1 , . . . , x

(1)
n ), . . . to an untrusted server.

A trivial solution to the problem would be for the last n−1 clients to send their
inputs to the first client, who can then run a single-client verifiable-computation
scheme and forward the result (assuming verification succeeded) to the other
clients. This suffers from several drawbacks:

– This solution requires the clients to communicate with each other. There
may be scenarios (e.g., sensors spread across a large geographical region)
where clients can all communicate with a central server but are unable to
communicate directly with each other.1

– This solution achieves no privacy since the first client sees the inputs of all
the other clients.

Addressing the first drawback, we consider only non-interactive protocols in
which each client communicates only with the server. A definition of soundness in
the non-interactive setting is subtle, since without some additional assumptions
(1) there is no way for one client to distinguish another legitimate client from a
cheating server who tries to provide its own input xi, and (2) there is nothing
that “binds” the input of one client at one time period to the input of another
client at that same time period (and thus the server could potentially “mix-and-
match” the first-period input of the first client with the second-period input
of the second client). We address these issues by assuming that (1) there is a
public-key infrastructure (PKI), such that all clients have public keys known to
each other, and (2) all clients maintain a counter indicating how many times they
have interacted with the server (or, equivalently, there is some global notion of
time). These assumptions are reasonable and (essentially) necessary to prevent
the difficulties mentioned above.

Addressing the second drawback, we also define a notion of privacy of the
clients’ input from each other that we require any solution to satisfy. This is in
addition to privacy of the clients’ inputs from the server, as in [13].

In addition to defining the model, we also show a construction of a protocol
for non-interactive, multi-client verifiable computation. We give an overview of
our construction in the following section.

1.2 Overview of Our Scheme

Our construction is a generalization of the single-client solution by Gennaro et
al., so we begin with a brief description of their scheme.

Single-Client Verifiable Computation. We first describe the basic idea. Let
Alice be a client who wishes to outsource computation of a function f to a server.
In the pre-processing phase, Alice creates a garbled circuit that corresponds to f ,

1 Note that having the clients communicate with each other by routing all their mes-
sages via the server (using end-to-end authenticated encryption, say) would require
additional rounds of interaction.
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and sends it to the server. Later, in the online phase, Alice computes input-wire
keys for the garbled circuit that correspond to her actual input x, and sends these
keys to the server. The server evaluates the garbled circuit using the input-wire
keys provided by Alice to obtain the output keys of the garbled circuit; if the
server behaves honestly, these output keys correspond to the correct output f(x).
The server returns these output keys to Alice, who then checks if the key received
from the server on each output wire is a legitimate output key (i.e., one of the
two possibilities) for that wire. If so, then Alice determines the actual output
based on the keys received from the server. Loosely speaking, verifiability of
this scheme follows from the fact that evaluation of a garbled circuit on input-
wire keys corresponding to an input x does not reveal information about any
output-wire keys other than those that correspond to f(x). (See also [3].)

The scheme described above works only for a single evaluation of f . To ac-
commodate multiple evaluations of f , Gennaro et al. propose the use of fully
homomorphic encryption (FHE) in the following way. The pre-processing step
is the same as before. However, in the online phase, Alice generates a fresh pub-
lic/private key pair for an FHE scheme each time she wants the server to evalu-
ate f . She then encrypts the input-wire keys that correspond to her input using
this public key, and sends these encryptions (along with the public key) to the
server. Using the homomorphic properties of the encryption scheme, the server
now runs the previous scheme to obtain encryptions of the output-wire keys cor-
responding to the correct output. The server returns the resulting ciphertexts to
Alice, who decrypts them and then verifies the result as before. Security of this
scheme follows from the soundness of the one-time scheme described earlier and
semantic security of the FHE scheme.

Multi-client Verifiable Computation. In the rest of the overview, we discuss
how to adapt the solution of Gennaro et al. to the multi-client setting. In our
discussion, we consider the case where only the first client gets output. (The more
general case is handled by simply having the clients run several executions of the
scheme in parallel, with each client playing the role of the first in one execution.)
We discuss the case of two clients here for simplicity, but our solution extends
naturally to the general case.

Suppose two clients Alice and Bob want to outsource a computation to a
server. Applying a similar idea as before, say Alice creates a garbled circuit which
it sends to the server in the pre-processing phase. During the online phase, Alice
will be able to compute and send to the server input-wire keys that correspond
to her input. However, it is unclear how the server can obtain the input-wire keys
corresponding to Bob’s input. Recall that we are interested in a non-interactive
solution and Alice does not know the input of Bob; moreover, Alice cannot send
two input-wire keys for any wire to the server or else soundness is violated.

We overcome this difficulty using a gadget called proxy oblivious transfer
(proxy OT) [22]. In proxy OT, there is a sender that holds inputs (a0, a1),
a chooser that holds input bit b, and a proxy that, at the end of the protocol,
learns ab and nothing else. Since we are ultimately interested in a non-interactive
solution for multi-client verifiable computation, we will be interested only in non-
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interactive proxy-OT schemes. We show a construction of a non-interactive proxy
OT from any non-interactive key-exchange protocol.

Coming back to the multi-client verifiable-computation scheme described ear-
lier, we can use proxy OT to enable the server to learn the appropriate input-wire
label for each wire that corresponds to Bob’s input. In more detail, let (w̃0, w̃1)
denote the keys for input-wire w in the garbled circuit that was created by Alice
in the pre-processing phase. Alice acts as the sender with inputs (w̃0, w̃1) in a
proxy OT protocol, and Bob acts as the chooser with his actual input bit b
for that wire. The server is the proxy, and obtains output w̃b. The server learns
nothing about w̃1−b and so, informally, soundness is preserved. The rest of the
protocol proceeds in the same way as the single-client protocol. The extension
to accommodate multiple evaluations of f is done using fully homomorphic en-
cryption as described earlier.

A Generic Approach to Multi-client Outsourcing. It is not hard to see
that our techniques can be applied to any single-client, non-interactive, verifiable-
computation scheme that is projective in the following (informal) sense: the
input-preparation stage generates a vector of pairs (w1,0, w1,1), . . . , (w�,0, w�,1),
and the client sends w1,x1 , . . . , w�,x�

to the server.

1.3 Related Work

The problems of outsourcing and verifiable computation have been extensively
studied. Works such as [9,16,17] have focused on outsourcing expensive crypto-
graphic operations (e.g., modular exponentiations, one-way function inversion)
to semi-trusted devices. Verifiable computation has been the focus of a long line
of research starting from works on interactive proofs [2,15], and efficient argu-
ment systems [19,21,20]. In particular, Micali’s work [21] gives a solution for
non-interactive verifiable computation in the random oracle model. Goldwasser,
Kalai, and Rothblum [14] give an interactive protocol to verify certain computa-
tions efficiently; their solution can be made non-interactive for a restricted class
of functions.

Gennaro et al. [13] formally defined the notion of non-interactive verifiable
computation for general functions and gave a construction achieving this no-
tion. Subsequent schemes for non-interactive verifiable computation of general
functions include [10,1]. Other works have focused on improving the efficiency of
schemes for verifiable computation of specific functions [5,24,12,23], or in slightly
different models [7,8,11,6]. To the best of our knowledge, our work is the first (in
any setting) to consider verifiable computation for the case where multiple par-
ties provide input. Kamara et al. [18] discuss the case of multi-client verifiable
computation in the context of work on server-aided multi-party computation,
but leave finding a solution as an open problem.

2 Multi-client Verifiable Computation

We start by introducing the notion of multi-client, non-interactive, verifiable
computation (MVC). Let κ denote the security parameter. Suppose there are
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n clients that wish to evaluate a function f multiple times. Without loss of
generality, we assume that each client Pj contributes an �-bit input and that

the output length of f is �, that is, we have f : {0, 1}n�→{0, 1}�. We abuse
notation and let f also denote the representation of the function within some

computational model (e.g., as a boolean circuit). Let x
(i)
j denote client Pj ’s input

in the ith execution. For simplicity, we assume that only one client (the first)
learns the output; however, we can provide all clients with output by simply
running anMVC scheme in parallel n times (at the cost of increasing the clients’
computation by at most a factor of n).

Syntax. An n-partyMVC scheme consists of the following algorithms:

– (pkj , skj)←KeyGen(1κ, j). Each client Pj will run this key generation algo-

rithm KeyGen and obtain a public/private key pair (pkj , skj). Let
−→
pk denote

the vector (pk1, . . . , pkn) of the public keys of all the clients.
– (φ, ξ)← EnFunc(1κ, f). The client P1 that is supposed to receive the output

will run this function-encoding algorithm EnFunc with a representation of
the target function f . The algorithm outputs an encoded function φ and the
corresponding decoding secret ξ. The encoded function will be sent to the
server. The decoding secret is kept private by the client.

– (χ
(i)
1 , τ (i))←EnInput1

(

i,
−→
pk, sk1, ξ, x

(i)
1

)

. When outsourcing the ith computa-
tion to the server, the first client P1 will run this input-encoding algorithm

EnInput1 with time period i, the public keys
−→
pk, its secret key sk1, the secret

ξ for the encoded function, and its input x
(i)
1 . The output of this algorithm

is an encoded input χ
(i)
1 , which will be sent to the server, and the input

decoding secret τ (i) which will be kept private by the client.

– χ
(i)
j ←EnInputj

(

i,
−→
pk, skj , x

(i)
j

)

. When outsourcing the ith computation to
the server, each client Pj (with j �= 1) will run this input-encoding algorithm

EnInputj with time period i, the public keys
−→
pk, its secret key skj , and its

input x
(i)
j . The output of this algorithm is an encoded input χ

(i)
j , which will

be sent to the server. We let χ(i) denote the vector (χ
(i)
1 , . . . , χ

(i)
n ) of encoded

inputs from the clients.

– ω(i)←Compute(i,
−→
pk, φ,χ(i)). Given the public keys

−→
pk, the encoded function

φ, and the encoded inputs χ(i), this computation algorithm computes an
encoded output ω(i).

– y(i)∪{⊥}←Verify(i, ξ, τ (i), ω(i)). The first client P1 runs this verification al-
gorithm with the decoding secrets (ξ, τ (i)), and the encoded output ω(i). The

algorithm outputs either a value y(i) (that is supposed to be f(x
(i)
1 , . . . , x

(i)
n )),

or ⊥ indicating that the server attempted to cheat.

Of course, to be interesting anMVC scheme should have the property that the
time to encode the input and verify the output is smaller than the time to com-
pute the function from scratch. Correctness of anMVC scheme can be defined
naturally, that is, the key generation, function encoding, and input encoding
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algorithms allow the computation algorithm to output an encoded output that
will successfully pass the verification algorithm.

2.1 Soundness

Intuitively, a verifiable computation scheme is sound if a malicious server cannot
convince the honest clients to accept an incorrect output. In our definition, the
adversary is given oracle access to generate multiple input encodings.

Definition 1 (Soundness). For a multi-client verifiable-computation scheme
MVC, consider the following experiment with respect to an adversarial server A:
Experiment Expsound

A [MVC, f, κ, n]
For j = 1, . . . , n:

(pkj , skj)←KeyGen(1κ, j),
(φ, ξ)← EnFunc(1κ, f).
Initialize counter i := 0

ω∗←AIN (·)(
−→
pk, φ);

y∗← Verify(i, ξ, τ (i), ω∗);

If y∗ �∈ {⊥, f(x(i)
1 , . . . , x

(i)
n )},

output 1;
Else output 0;

Oracle IN (x1, . . . , xn):
i := i+ 1;

Record (x
(i)
1 , . . . , x

(i)
n ) := (x1, . . . , xn).

(χ
(i)
1 , τ (i))←EnInput1

(

i,
−→
pk, sk1, ξ, x

(i)
1

)

For j = 2, . . . , n:

χ
(i)
j ←EnInputj

(

i,
−→
pk, skj , x

(i)
j

)

.

Output (χ
(i)
1 , . . . , χ

(i)
n ).

A multi-client verifiable computation scheme MVC is sound if for any n =
poly(κ), any function f , and any PPT adversary A, there is a negligible function
negl such that:

Pr[Expsound
A [MVC, f, κ, n] = 1] ≤ negl(κ).

Selective Aborts. OurMVC construction described in Section 5 inherits the
“selective abort” issue from the single-client scheme of Gennaro et al. [13]; that
is, the server may be able to violate soundness if it can send ill-formed responses
to the first client and see when that client rejects. In our definition we deal with
this issue as in [13] by assuming that the adversary cannot tell when the client
rejects. In practice, this issue could be dealt with by having the first client refuse
to interact with the server after receiving a single faulty response.

Adaptive Choice of Inputs. As in [13], we define a notion of adaptive sound-
ness that allows the adversary to adaptively choose inputs for the clients af-
ter seeing the encoded function. (The weaker notion of non-adaptive soundness
would require the adversary to fix the clients’ inputs in advance, before see-
ing the encoded function.) Bellare et al. [3] noted that the proof of adaptive
soundness in [13] is flawed; it appears to be non-trivial to resolve this issue
since it amounts to proving some form of security against selective-opening at-
tacks. Nevertheless, it is reasonable to simply make the assumption that Yao’s
garbled-circuit construction satisfies the necessary criterion (namely, aut!, as de-
fined in [3]) needed to prove adaptive security. Similarly, we reduce the adaptive
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security of our scheme to adaptive authenticity (aut!) of the underlying garbling
scheme. Alternately, we can prove non-adaptive soundness based on standard
assumptions.

2.2 Privacy

We consider two notions of privacy.

Privacy against the First Client. In our schemes, clients other than the
first client clearly do not learn anything about each others’ inputs. We define
the requirement that the first client not learn anything (beyond the output of
the function), either. Namely, given any input vectors x0 = (x1, x2, . . . , xn) and
x1 = (x1, x

′
2, . . . , x

′
n) with f(x1, x2, . . . , xn) = f(x1, x

′
2, . . . , x

′
n), the view of the

first client when running an execution of the protocol with clients holding inputs
x0 should be indistinguishable from the view of the first client when running an
execution with clients holding inputs x1.

Privacy against the Server. Next, we consider privacy against the server;
that is, the encoded inputs from two distinct inputs should be indistinguishable
to the server.

Definition 2 (Privacy against the Server). For a multi-client verifiable
computation scheme MVC, consider the following experiment with respect to
a stateful adversarial server A:
Experiment Exppriv

A [MVC, f, κ, n, b]:
(pkj , skj)←KeyGen(1κ, j), for j = 1, . . . , n.
(φ, ξ)← EnFunc(1κ, f).
Initialize counter i := 0

((x0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n))←AIN (·)(

−→
pk, φ);

Run (χ
(i)
1 , . . . , χ

(i)
n )←IN (xb

1, . . . , x
b
n);

Output AIN (·)(χ
(i)
1 , . . . , χ

(i)
n );

We define the advantage of an adversary A in the experiment above as:

Advpriv
A (MVC, f, κ, n) =

∣

∣

∣

∣

Pr[Exppriv
A [MVC, f, κ, n, 0] = 1]

−Pr[Exppriv
A [MVC, f, κ, n, 1] = 1]

∣

∣

∣

∣

MVC is private against the server if for any n = poly(κ), any function f , and
any PPT adversary A, there is a negligible function negl such that:

Advpriv
A (MVC, f, κ, n) ≤ negl(κ).

3 Building Blocks for MVC
3.1 (Projective) Garbling Schemes

Bellare et al. [4] recently formalized a notion of garbling schemes that is meant
to abstract, e.g., Yao’s garbled-circuit protocol [25]. We follow their definition,
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since it allows us to abstract the exact properties we need. For completeness, we
present their definition below.

A garbling scheme [4] is a five-tuple of algorithms G = (Gb,En,De,Ev, ev) with
the following properties:

– y := ev(f, x). Here, f is a bit string that represents a certain function map-
ping an �-bit input to anm-bit output. (We require that � andm be extracted
from f in time linear in |f |.) For example, f may be a circuit description
encoded as detailed in [4]. Hereafer, we abuse the notation and let f also de-

note the function that f represents. Given the description f and x ∈ {0, 1}�
as input, ev(f, x) returns f(x). A garbling scheme is called a circuit garbling
scheme if ev = evcirc is the canonical circuit-evaluation function.

– (F, e, d)←Gb(1κ, f). Given the description f as input, Gb outputs a garbled
function F along with an encoding function e and a decoding function d.

– X := En(e, x). Given an encoding function e and x ∈ {0, 1}� as input, En
maps x to a garbled input X . Our scheme will use a projective garbling
scheme, i.e., the string e encodes a list of tokens, one pair for each bit in
x ∈ {0, 1}�. Formally, for all f ∈ {0, 1}∗, κ ∈ N, i ∈ [�], x, x′ ∈ {0, 1}� s.t.
xi = x′

i, it holds that

Pr

⎡

⎣

(F, e, d)←Gb(1κ, f),
(X1, . . . , X�) := En(e, x),
(X ′

1, . . . , X
′
�) := En(e, x′)

: Xi = X ′
i

⎤

⎦ = 1.

For a projective garbling scheme G, it is possible to define an additional deter-
ministic algorithm Enproj. Let (X

0
1 , . . . , X

0
� ) := En(e, 0�), and (X1

1 , . . . , X
1
� ) :=

En(e, 1�). The output Enproj(e, b, i) is defined as Xb
i . We refer to Enproj as

the projection algorithm.
– Y := Ev(F,X). Given a garbled function F and a garbled input X as input,

Ev obtains the garbled output Y .
– y := De(d, Y ). Given a decoding function d and a garbled output Y , De

maps Y to a final output y.

Note that all algorithms except Gb are deterministic. A garbling scheme must
satisfy the following:

1. Length condition: |F |, e, and d depend only on κ, �, m, and |f |.
2. Correctness condition: for all f ∈ {0, 1}∗, κ ∈ N, x ∈ {0, 1}�, it holds that

Pr[(F, e, d)←Gb(1κ, f) : De(d,Ev(F,En(e, x))) = ev(f, x)] = 1.

3. Non-degeneracy condition: e and d depends only on κ, �,m, |f |, and the
random coins of Gb.

Authenticity. We will employ a garbling scheme that satisfies the authenticity
property [4]. Loosely speaking, a garbling scheme is authentic if the adversary
upon learning a set of tokens corresponding to some input x is unable to pro-
duce a set of tokens that correspond to an output different from f(x). Different
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notions of authenticity are possible depending on whether the adversary chooses
the input x adaptively (i.e., whether it sees the garbled function F before choos-
ing x). We adopt the adaptive definition given in [3] because we want ourMVC
scheme to achieve adaptive soundness; alternately, we could use a non-adaptive
definition of authenticity and achieve non-adaptive soundness.

Definition 3. For a garbling scheme G = (Gb,En,De,Ev, ev) consider the fol-
lowing experiment with respect to an adversary A.

Experiment ExpAut!G
A [κ] :

f←A(1κ).
(F, e, d)←Gb(1κ, f).
x←A(1κ, F ).
X := En(e, x).
Y ←A(1κ, F,X).
If De(d, Y ) �= ⊥ and Y �= Ev(F,X), output 1, else 0.

A garbling scheme G satisfies the authenticity property if for any PPT adversary
A, there is a negligible function negl such that

Pr[ExpAut!G
A [κ] = 1] ≤ negl(κ).

3.2 Fully Homomorphic Encryption

In a (compact) fully-homomorphic encryption scheme FHE = (Fgen,Fenc,Fdec,
Feval), the first three algorithms form a semantically secure public-key encryp-
tion scheme. Moreover, Feval takes a circuit C and a tuple of ciphertexts and
outputs a ciphertext that decrypts to the result of applying C to the plaintexts;
here, the length of the output ciphertext should be independent of the size of
the circuit C. We will treat FHE as a black box.

4 Non-interactive Proxy OT

In this section, we introduce a new primitive called non-interactive proxy obliv-
ious transfer (POT), which is a variant and generalization of proxy OT of the
notion defined by Naor et al. [22]. In a POT protocol there are three parties: a
sender, a chooser, and a proxy. The sender holds input (x0, x1), and the chooser
holds choice bit b. At the end of the protocol, the proxy learns xb (but not x1−b);
the sender and chooser learn nothing. Our definition requires the scheme to be
non-interactive, so we omit the term ‘non-interactive’ from now on.

The generalization we define incorporates public keys for the sender and the
chooser, and explicitly takes into account the fact that the protocol may be
run repeatedly during multiple time periods. These are needed for the later
application to ourMVC construction.
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Syntax. A proxy OT consists of the following sets of algorithms:

– (pkS , skS)←SetupS(1κ). The sender runs this one-time setup algorithm to
generate a public/private key pair (pkS , skS).

– (pkC , skC)← SetupC(1κ). The chooser runs this one-time setup algorithm to
generate a public/private key pair (pkC , skC).

– α← Snd(i, pkC , skS , x0, x1). In the ith POT execution the sender, holding
input x0, x1 ∈ {0, 1}κ, runs this algorithm to generate a single encoded
message α to be sent to the proxy. We refer to α as the sender message.

– β←Chs(i, pkS , skC , b). In the ith POT protocol, the chooser, holding input
b ∈ {0, 1}, runs this algorithm to generate a single encoded message β to be
sent to the server. We refer to β as the chooser message.

– y := Prx(i, pkS , pkC , α, β). In the ith POT protocol, the proxy runs this algo-
rithm using the sender message α and the chooser message β, and computes
the value y = xb.

A proxy OT is correct if the sender algorithm Snd and chooser algorithm Chs
produce values that allow the proxy to compute one of two sender inputs based
on the chooser’s selection bit.

Sender Privacy. A proxy OT is sender private if the proxy learns only the
value of the sender input that corresponds to the chooser’s input bit. To serve
our purpose, we define sender privacy over multiple executions. We stress that a
single setup by each party is sufficient to run multiple executions (this is essential
for ourMVC construction).

Definition 4 (Sender Privacy). For a proxy OT (SetupS, SetupC, Snd,Chs,
Prx), consider the following experiments with respect to an adversarial proxy A.

Experiment Exps-priv
A [POT, κ, n, e]:

(pkS , skS)← SetupS(1κ).
For j = 1, . . . , n:

(pkC,j , skC,j)←SetupC(1κ).
Output APOT e(·)(pkS , pkC,1, . . . , pkC,n).

Oracle POT e(i, j, x0, x1, b, x
′):

If a previous query
used the same (i, j)
output ⊥ and terminate.

If e = 0, set y0 := x0, y1 := x1.
Else set yb := xb, y1−b := x′.
α←Snd(i, pkC,j , skS , y0, y1).
β←Chs(i, pkS , skC,j , b).
Output (α, β).

Note that the sender messages α generated from oracle POT 0 (resp., POT 1)
would encode the sender’s input xb and x1−b (resp., xb and x′). We define the
advantage of an adversary A in the experiment above as:

Advs-priv
A (POT, κ, n) =

∣

∣

∣

∣

Pr[Exps-priv
A [POT, κ, n, 0] = 1]

−Pr[Exps-priv
A [POT, κ, n, 1] = 1]

∣

∣

∣

∣

A proxy OT (SetupS, SetupC, Snd,Chs,Prx) is sender private, if for any n =
poly(κ) and any PPT adversary A, there is a negligible function negl such that:

Advs-priv
A (POT, κ, n) ≤ negl(κ).
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Chooser Privacy. A proxy OT is chooser private if the proxy learns no infor-
mation about the chooser’s input bit. To serve our purpose, we define chooser
privacy over multiple executions.

Definition 5 (Chooser Privacy). For a proxy OT (SetupS, SetupC, Snd,Chs,
Prx), consider the following experiments with respect to an adversarial proxy A.
Experiment Expc-priv

A [POT, κ, n, e]:
(pkS , skS)← SetupS(1κ).
For j = 1, . . . , n:

(pkC,j , skC,j)← SetupC(1κ).
Output ACHSe(·)(pkS , pkC,1, . . . , pkC,n).

Oracle CHSe(i, j, b0, b1):
If a previous query
used the same (i, j)
output ⊥ and terminate.

β←Chs(i, pkS , skC,j, be).
Output β.

We define the advantage of an adversary A in the experiment above as:

Advc-priv
A (POT, κ, n) =

∣

∣

∣

∣

Pr[Expc-priv
A [POT, κ, n, 0] = 1]

−Pr[Expc-priv
A [POT, κ, n, 1] = 1]

∣

∣

∣

∣

A proxy OT (SetupS, SetupC, Snd,Chs,Prx) is chooser private, if for any n =
poly(κ) and any PPT adversary A, there is a negligible function negl such that:

Advc-priv
A (POT, κ, n) ≤ negl(κ).

4.1 Proxy OT from Non-interactive Key Exchange

Non-interactive Key Exchange. A non-interactive key-exchange (NIKE)
protocol allows two parties to generate a shared key based on their respective
public keys (and without any direct interaction). That is, let KEA1,KEB2 be
the algorithms used by the two parties to generate their public/private keys.
(pka, ska) and (pkb, skb), respectively. Then there are algorithms KEA2 and KEB2

such that KEA2(pkb, ska) = KEB2(pka, skb). An example is given by static/static
Diffie-Hellman key exchange.

Regarding the security of NIKE, to the view of a passive eavesdropper the
distribution of the key shared by the two parties should be indistinguishable
from a uniform key.

Definition 6 (Security of NIKE). A NIKE (KEA1,KEA2,KEB1,KEB2) is
secure if for any PPT A, it holds that |p1 − p2| is negligible in κ, where

p1 = Pr

[

(pka, ska)←KEA1(1
κ);

(pkb, skb)←KEB1(1
κ)

: A(pka, pkb,KEA2(pkb, ska)) = 1

]

p2 = Pr

⎡

⎣

(pka, ska)←KEA1(1
κ);

(pkb, skb)←KEB1(1
κ);

r←{0, 1}κ
: A(pka, pkb, r) = 1

⎤

⎦ .

Proxy OT from NIKE. We define a protocol for proxy OT below. The main
idea is that the sender and the chooser share randomness in the setup stage by
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using the key-exchange protocol. Then, using the shared randomness (which is
unknown to the proxy), both parties can simply use a one-time pad encryption
to transfer their inputs. Let Prf be a pseudorandom function.

– (pkS , skS)← SetupS(1κ). Run a key exchange protocol on Alice’s part, that
is, (pka, ska)←KEA1(1

κ). Set pkS := pka and skS := ska.
– (pkC , skC)← SetupC(1κ). Run a key exchange protocol on Bob’s part, that

is, (pkb, skb)←KEB1(1
κ). Set pkC := pkb and skC := skb.

– α← Snd(i, pkC , skS , x0, x1). Let k be the output from the key-exchange
protocol, i.e., k := KEA2(pkC , skS). Compute (z0, z1, π) := Prfk(i) where
|z0| = |z1| = κ and π ∈ {0, 1}. Then, set α := (α0, α1), where

απ = z0⊕x0, α1⊕π = z1⊕x1.

– β← Chs(i, pkS , skC , b). Let k be the output from the key exchange protocol,
i.e., k := KEB2(pkS , skC). Compute (z0, z1, π) := Prfk(i) where |z0| = |z1| =
κ and π ∈ {0, 1}. Then, reveal only the part associated with the choice bit
b. That is, β := (b⊕π, zb)

– y := Prx(i, pkS , pkC , α, β). Parse α as (α0, α1), and β as (b′, z′). Compute
y := αb′⊕z′.

It is easy to see that the scheme satisfies the correctness property. Sender privacy
over a single execution easily follows from the fact that the outputs from the
key exchange and the pseudorandom function look random. Sender privacy over
multiple pairs can also be shown with a hybrid argument. The scheme also hides
the choice bit of the chooser from the proxy.

5 Construction of MVC
In this section, we present our construction forMVC. Our scheme uses proxy OT
to extend the single-client scheme of Gennaro et al. [13] (see Section 1.2 for an
overview of the scheme). In the pre-processing stage, the keys for proxy OT are
set up, and the first client P1, who will receive the function output, generates a
garbled function F and gives it the server. Now delegating computation on input
(x1, . . . , xn), where the client Pj holds xj ∈ {0, 1}�, is performed as follows:

1. For each j ∈ [n] and k ∈ [�], do the following in parallel:
(a) Client P1 computes the following pair for the potential garbled input.

X0
jk := Enproj(e, 0, (j − 1)�+ k), X1

jk := Enproj(e, 1, (j − 1)�+ k)

(b) A proxy OT protocol is executed in which client P1 plays as the sender
with (X0

jk, X
1
jk) as input, and the client Pj plays as the chooser with the

kth bit of xj as input; the server plays as the proxy.
2. Using the outputs from the proxy OT protocols, the server evaluates the

garbled function F and sends the corresponding garbled output Y to P1.
3. Client P1 decodes Y to obtain the actual output y.
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Protocol 1

Let G = (Gb,En,De,Ev, ev) be a projective garbling scheme, FHE =
(Fgen,Fenc,Fdec,Feval) be a fully homomorphic encryption scheme, and
(SetupS,SetupC,Snd,Chs,Prx) be a proxy OT scheme. Let Lj := (j − 1)� and
IDijk := (i− 1)n�+ Lj + k.

– (pkj , skj)←KeyGen(1κ, j). The first client runs the algorithm SetupS(1κ)
to obtain (pk1, sk1). For each 2 ≤ j ≤ n, client Pj runs SetupC(1κ) to
generate (pkj , skj).

– (φ, ξ)←EnFunc(1κ, f). The first client generates (F, e, d)←Gb(1κ, f), and
sets φ := F and ξ := (e, d).

– (χ
(i)
1 , τ (i))←EnInput1(i,

−→
pk, sk1, ξ, x

(i)
1 ). Let a := x

(i)
1 and parse a as

a1 . . . a�.

1. Generate (PKi,SKi)← Fgen(1κ).
2. For each k ∈ [�], run X̃i1k←Fenc(PKi,Enproj(e, ak, k)). Set ψi1 :=

(X̃i11, . . . , X̃i1�).
3. For 2 ≤ j ≤ n, do the following:

(a) For each k ∈ [�], compute

X̃0
ijk← Fenc(PKi,Enproj(e, 0, Lj + k)),

X̃1
ijk← Fenc(PKi,Enproj(e, 1, Lj + k)),

αijk←Snd(IDijk, pkj , sk1, X̃
0
ijk, X̃

1
ijk).

(b) Set ψij := (αij1, . . . , αij�).

4. Set χ
(i)
1 := (PKi, ψi1, . . . , ψin) and τ

(i) := SKi.

– χ
(i)
j ←EnInputj(i,

−→
pk, skj , x

(i)
j ) for j = 2, . . . n. Let a := x

(i)
j and parse a

as a1 . . . a�.
1. For each k ∈ [�], compute βijk←Chs(IDijk, pk1, skj , ak).

2. Set χ
(i)
j := (βij1, . . . , βij�).

– ω(i)←Compute(i,
−→
pk, φ, (χ

(i)
1 , . . . , χ

(i)
n )). Parse χ

(i)
1 as (PKi, ψi1, . . . , ψin),

where ψi1 = (X̃i11, . . . , X̃i1�) and for 2 ≤ j ≤ n, ψij = (αij1, . . . , αij�). In

addition, for 2 ≤ j ≤ n, parse χ
(i)
j as (βij1, . . . , βij�). The server does the

following:
1. For 2 ≤ j ≤ n and for 1 ≤ k ≤ �, compute X̃ijk :=

Prx(IDijk, pk1, pkj , αijk, βijk).
2. Let CF denote the circuit representation of Ev(F, ·). Then the server

computes ω(i)←Feval(PKi, CF , {X̃ijk}j∈[n],k∈[�]).

– y(i) ∪ {⊥}←Verify(i, ξ, τ (i), ω(i)). Parse ξ as (e, d). Client P1 obtains
Y (i)← Fdec(τ (i), ω(i)), and outputs y(i) := De(d, Y (i)).

Fig. 1. A scheme for multi-client non-interactive verifiable computation
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The above scheme allows delegating the computation one-time; intuitively, the
sender privacy of the underlying proxy OT makes the server learn the garbled
inputs only for the actual inputs of all clients. Multiple inputs can be handled
using fully-homomorphic encryption as with the single-client case. The detailed
protocol (called Protocol 1) is described in Figure 1.

Correctness and Non-triviality. Correctness of our scheme follows from the
correctness of the garbling scheme, the correctness of the fully homomorphic
encryption scheme, and the correctness of the proxy OT. Non-triviality of our
scheme follows from the fact that (1) the time required (by client P1) for com-
puting Enproj, Fenc, and Snd is O(poly(κ)|x(i)|), and is independent of the circuit
size of f , and (2) the time required (by all clients Pj for 2 ≤ j ≤ n) for computing
Chs is O(poly(κ)|x(i)|), and is independent of the circuit size of f .

Soundness. At a high level, the soundness of Protocol 1 follows from the sender
security of proxy OT, the semantic security of FHE, and the authenticity property
of the garbling scheme G.

Theorem 1. Suppose G = (Gb,En,De,Ev, ev) be a projective garbling scheme
satisfying the authenticity property, FHE is a semantically secure FHE scheme,
and (SetupS, SetupC, Snd,Chs,Prx) is a proxy OT scheme that is sender private.
Then Protocol 1 is a soundMVC scheme.

A proof is given in the following section.

Privacy. It is easy to see that Protocol 1 is private against the first client,
since the output of Compute algorithm is basically the encryption of the garbled
output. For privacy against the server, we need a proxy OT that hides the
chooser’s input as well.

Theorem 2. Suppose that FHE is a semantically secure fully homomorphic en-
cryption scheme, and that (SetupS, SetupC, Snd,Chs,Prx) is a proxy OT scheme
that is chooser private. Then Protocol 1 is private against the server.

5.1 Proof of Theorem 1

Suppose there exists an adversary A that breaks the soundness of Protocol 1
with respect to a function f .

Hybrid 0. Let p be an upper bound on the number of queries Amakes. Consider
the following experiment that is slightly different from Expsound

A [MVC, f, κ, n]:

Experiment Expr-sound
A [MVC, f, κ, n]:

(pkj , skj)←KeyGen(1κ, j), for j = 1, . . . , n.
(φ, ξ)←EnFunc(1κ, f).
Initialize counter i := 0

Choose r← [p].

(i∗, ω∗)←AIN (·)(
−→
pk, φ);
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If i∗ �= r, output 0 and terminate.

y∗← Verify(i∗, ξ, τ (i
∗), ω∗);

If y∗ �= ⊥ and y∗ �= f(x
(i∗)
1 , . . . , x

(i∗)
n ), output 1;

Else output 0;

Since r is chosen uniformly at random, A would succeed in the above experi-
ment with non-negligble probability (i.e., Pr[Expsound

A [MVC, f, κ, n] = 1]/p).

Hybrid 1. In this hybrid, the oracle queries IN (x
(i)
1 , . . . , x

(i)
n ) are handled by

the following instead of setting χ
(i)
1 ←EnInput1

(

i,
−→
pk, sk1, ξ, x

(i)
1

)

– Run (χ
(i)
1 , τ (i))←EnInput′1(i,

−→
pk, sk1, ξ, (x

(i)
1 , . . . , x

(i)
n )).

At a high level, EnInput′1 is identical to EnInput1 except it sets the inputs
to the sender algorithm Snd of the proxy OT as follows: For all input bits, Snd
obtains the correct token corresponding to the actual input bit, and a zero string
in place of the token corresponding to the other bit. The explicit description of
EnInput′1 is found in Figure 2.

(χ
(i)
1 , τ (i))←EnInput′1(i,

−→
pk, sk1, ξ, (x

(i)
1 , . . . , x

(i)
n ))

Let aj := x
(i)
j for j ∈ [n], and parse aj as aj1 . . . aj�.

1. Generate (PKi,SKi)← Fgen(1κ).
2. For each k ∈ [�], run X̃i1k← Fenc(PKi,Enproj(e, a1k, k)). Set ψi1 :=

(X̃i11, . . . , X̃i1�).
3. For 2 ≤ j ≤ n, do the following:

(a) For each k ∈ [�], compute

b := ajk, X̃
b
ijk← Fenc(PKi,Enproj(e, b, Lj + k)), X̃1−b

ijk := 0|X
b
ijk|,

αijk← Snd(�i+ Lj + k, pkj , sk1, X̃
0
ijk, X̃

1
ijk).

(b) Set ψij := (αij1, . . . , αij�).

4. Set χ
(i)
1 := (PKi, ψi1, . . . , ψin) and τ

(i) := SKi.

Fig. 2. Description of EnInput′1

It is easy to see that Hybrid 0 and Hybrid 1 are indistinguishable due to the
sender privacy of the underlying proxy OT scheme. In the reduction, the adver-
sary breaking sender privacy will simulate experiment Expr-sound

A [MVC, f, κ, n]
while invoking the oracle POT with queries (i, j, X̃0

ijk, X̃
1
ijk, x

(i)
jk , 0

|X̃0
ijk|) to gen-

erate the sender messages of the proxy OT, where x
(i)
jk is the kth bit of x

(i)
j , and

for b ∈ {0, 1}, the value X̃b
ijk is the output from Fenc(PKi,Enproj(e, b, Lj + k)).
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Hybrid 2. In this hybrid, the oracle queries IN (x
(i)
1 , . . . , x

(i)
n ) are handled using

the following instead of running χ
(i)
1 ←EnInput′1

(

i,
−→
pk, sk1, ξ, x

(i)
1

)

1. If i = r, run (χ
(i)
1 , τ (i))←EnInput′1(i,

−→
pk, sk1, ξ, (x

(i)
1 , . . . , x

(i)
n ));

Otherwise, (χ
(i)
1 , τ (i))←EnInput′′1 (i,

−→
pk, sk1, (x

(i)
1 , . . . , x

(i)
n )) ;

At a high level, EnInput′′1 is identical to EnInput′1 except it replaces the token
values to zero strings. The explicit description of EnInput′′1 is found in Figure 3.

(χ
(i)
1 , τ (i))←EnInput′′1 (i,

−→
pk, sk1, (x

(i)
1 , . . . , x

(i)
n )

Let aj := x
(i)
j for j ∈ [n], and parse aj as aj1 . . . aj�. Let λ be the output

length of the Enproj algorithm.

1. Generate (PKi,SKi)← Fgen(1κ).

2. For each k ∈ [�], compute X̃i1k←Fenc(PKi, 0
λ) . Set ψi1 :=

(X̃i11, . . . , X̃i1�).
3. For 2 ≤ j ≤ n, do the following:

(a) For each k ∈ [�], compute

b := ajk, X̃b
ijk← Fenc(PKi, 0

λ) , X̃1−b
ijk := 0|X

b
ijk |,

αijk← Snd(�i+ Lj + k, pkj , sk1, X̃
0
ijk, X̃

1
ijk).

(b) Set ψij := (αij1, . . . , αij�).

4. Set χ
(i)
1 := (PKi, ψi1, . . . , ψin) and τ

(i) := SKi.

Fig. 3. Description of EnInput′′1

Indistinguishability between Hybrid 1 and Hybrid 2 can be shown with a
simple hybrid argument where indistinguishability between two adjacent hybrids
holds from the semantic security of the underlying FHE scheme.

Final Step. As a final step, we reduce the security to the authenticity of the
underlying garbling scheme. In particular, using the adversary A that succeeds
in Hybrid 2 with non-negligible probability, we construct an adversary B that
breaks the authenticity of the underlying garbling scheme. B works as follows:

B sends f to the challenger and receives F from it. Then, it simulates
Hybrid 2 as follows:

1. Run (pkj , skj)←KeyGen(1κ, j), for j = 1, . . . , n.
2. Let p be the upper bound on the number of queries that A makes,

and choose r← [p].

3. Run (i∗, ω∗)←AIN(·)(
−→
pk, φ) while handling the query IN (x

(i)
1 , . . . , x

(i)
n )

as follows:
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(a) For the input encoding of the first party, if i = r, then B sends

(x
(i)
1 , . . . , x

(i)
n ) to the challenger and receives the corresponding

tokens (X1, . . . , Xn�). Using these tokens, B perfectly simulates

EnInput′1(i,
−→
pk, sk1, ξ, (x

(i)
1 , . . . , x

(i)
n )) by replacing Enproj(e, ·, k′)s

with Xk′s. Otherwise, run EnInput′′1 (i,
−→
pk, sk1, (x

(i)
1 , . . . , x

(i)
n )).

(b) For j = 2, . . . , n, run χ
(i)
j ←EnInput

(

i, j,
−→
pk, skj , x

(i)
j

)

.

4. If i∗ = r, the adversary B runs Y ∗←Fdec(SKi∗ , ω
∗) and outputs Y ∗

to the challenger. Otherwise, it outputs ⊥.
The above simulation is perfect.

We show that B breaks the authenticity of the underlying garbling scheme with
non-negligible probability. Let Succ be the event that A succeeds in Hybrid 2,
that is, Y ∗ is a valid encoded output but different from Ev(F,Xr), where X(r)

is the encoded input for x(r). This implies that

Pr[ExpAut!G
B = 1] ≥ Pr[Succ].

Since by assumption, G satisfies the authenticity property, we conclude that
Pr[Succ] must be negligible in κ, contradiction. This concludes the proof of
soundness of Protocol 1.
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