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Abstract. We present an efficient structure-preserving tagged one-time signa-
ture scheme with tight security reductions to the decision-linear assumption. Our
scheme features short tags consisting of a single group element and gives rise
to the currently most efficient structure-preserving signature scheme based on
the decision-liner assumption with constant-size signatures of only 14 group ele-
ments, where the record-so-far was 17 elements.

To demonstrate the advantages of our scheme, we revisit the work by Hofheinz
and Jager (CRYPTO 2012) and present the currently most efficient tightly se-
cure public-key encryption scheme. We also obtain the first structure-preserving
public-key encryption scheme featuring both tight security and public verifiability.

Keywords: Tagged One-Time Signatures, Structure-Preserving Signatures,
Tight Security Reduction, Decision Linear Assumption.

1 Introduction

Background. A tagged one-time signature (TOS, [1]) scheme is a signature scheme that
includes a fresh random tag in each signature. It is unforgeable if creating a signature
on a new message but with an old tag picked by an honest signer is hard. A TOS is a
special type of partial one-time signature (POS, [1]), that involves one-time keys and
long-term keys.1 Namely, a TOS is a POS with an empty one-time secret-key. For this
reason the one-time public-key is called a tag.

A TOS is structure-preserving [2] if its long-term public-keys, tags, messages, and
signatures consist only of elements of the base bilinear groups and the verification
only evaluates pairing product equations. Structure-preservation grants interoperabil-
ity among building blocks over the same bilinear groups and allows modular construc-
tions of conceptually complex cryptographic schemes, in particular when combined

1 POS also known as two-tier signatures [8].
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with the Groth-Sahai (GS) proof system [25]. So far, structure-preserving constructions
have been developed for signature [23,14,2,3,15,11,1] commitments [4,5], and public-
key encryption schemes [12]. The growing list of their applications include universally
composable adaptive oblivious transfer [22,21], anonymous proxy signatures [18], del-
egatable anonymous credentials [7], transferable e-cash [19], compact verifiable shuf-
fles [16], and network coding [6].

Efficiency and tight security is of general interest for cryptographic primitives. In
[26], a tightly-secure structure-preserving POS is used as a central building block for
constructing pubic-key encryption scheme secure against adaptive chosen-ciphertext
attacks with multiple challenges and users. Replacing the POS with a TOS gives an
immediate improvement. It is however seemingly more difficult to construct a TOS
with high efficiency and tight security at the same time due to the absence of one-
time secrets. To the best of our knowledge, the scheme in [1] is the only structure-
preserving TOS in the literature bases on the decision-linear assumption (DLIN, [9]).
Unfortunately, their reduction is not tight. For qs signing queries, it suffers a factor of
1/qs. Moreover, a tag requires two group elements for technical reasons. This contrasts
to the case of POS, where tight reductions to DLIN or SXDH are known, and the one-
time public-key can be a single group element [1].

Our Contribution. The main contribution of this paper is a structure-preserving TOS
with 1) optimally short tags consisting only of one group element, and 2) a tight se-
curity reduction to a computational assumption tightly implied by DLIN. Thus, when
compared with the TOS scheme in [1], our scheme improves both tag size and tightness.
The first application of our new TOS is a more efficient structure-preserving signature
(SPS) scheme based on DLIN. The signature consists of 14 group elements and the ver-
ification evaluates 7 pairing product equations. It saves 3 group elements and 2 equa-
tions over previous SPS in [1]. Our second application is a more efficient tightly secure
public-key encryption scheme. As a stepping stone we also obtain a more efficient and
tight secure structure-preserving tree-based signature schemes. We obtain these results
by revisiting the framework of [26]. In addition to the efficiency and key-management
improvements, our contributions include the first structure-preserving CCA-secure en-
cryption schemes featuring a tight security reduction, public verifiability, and leakage
resilience which we inherit from [17].

The combined length of a tag and the long-term public-key in the new TOS is shorter
than the one-time public-key of other structure-preserving one-time signature schemes
(OTS) in the literature. (It saves 2 group elements over the OTS in [4].) Using our
TOS as OTS is therefore beneficial even for applications that use the whole public-
key only once. Typical examples include the IBE-to-PKE transformation [13], NIZK-
to-SS-NIZK transformation [23], CCA-secure Group Signatures [24] where one-time
signatures are used to add non-malleability, and delegatable anonymous credentials [7].
Though the improvement in this direction is small, it is often considerably amplified
in applications, e.g., in delegatable anonymous credentials where the whole public key
needs to be concealed in Groth-Sahai commitments.

Many of the applications in this paper require hundreds of group elements and are
not necessarily practical. Nevertheless, the concrete efficiency assessment should serve
as a reference that shows how efficient instantiation of generic modular constructions
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can be. In particular, as the constants in generic constructions can be large, we observed
that small gains in the building blocks can result in significant efficiency improvements
in applications.

2 Preliminaries

2.1 Bilinear Groups

We work in a setting with a symmetric bilinear pairing (the Type-I setting of [20])
and use multiplicative notation. Let G be a bilinear group generator that takes security
parameter λ as input and outputs a description of bilinear groups Λ := (p,G,GT , e),
where G and GT are groups of prime order p, and e is an efficient and non-degenerating
bilinear map G × G → GT . We count the number of group elements to measure the
size of cryptographic objects such as keys, messages, and signatures. By Zp and Z∗

p, we
denote Z/pZ and Z/pZ \ {0}, respectively. We abuse the notation and denote G \ {1G}
by G∗.

The security of our schemes is based on the following computational assumption.

Definition 1 (Simultaneous Double Pairing Assumption : SDP [14]). For the bilin-
ear group generator G and any polynomial time A the probability

AdvsdpG,A(λ) := Pr

⎡
⎣
Λ← G(1λ)
(Gz , Gr, Hz, Hs)← G∗4

(Z,R, S)← A(Λ,Gz, Gr, Hz , Hs)
:
Z ∈ G∗ ∧
1 = e(Gz, Z) e(Gr, R) ∧
1 = e(Hz, Z) e(Hs, S)

⎤
⎦

is negligible in λ.

SDP is random-self reducible. Given (Gz , Gr, Hz, Hs), another random instance
(Ga

zG
b
r, G

c
r, H

a
zH

d
s , H

e
s ) can be generated by choosing a, b, c, d, and e uniformly from

Z∗
p. Given an answer (Z,R, S) to the new instance, (Za, RcZb, SeZd) is the answer to

the original instance. Furthermore, SDP is tightly reduced from DLIN as observed in
[14]. For a DLIN instance (G1, G2, G3, G

a
1 , G

b
2, G

c
3) for deciding c = a+b or not, con-

struct an SDP instance (Ga
1 , G1, G

b
2, G2). Then, given an answer (Z,R, S) that satisfies

1 = e(Ga
1 , Z) e(G1, R) and 1 = e(Gb

2, Z) e(G2, S), one can conclude that c = a + b
if e(G3, R · S) = e(Gc

3, Z) since R = Za and S = Zb. We restate this observation as
a lemma below.

Lemma 1 (DLIN ⇒ SDP). If there exists adversary A that solves SDP, then there
exists adversary B that solves DLIN with the same advantage and a runtime overhead
of a few exponentiations and pairings.

2.2 Syntax and Security Notions

We follow the syntax and security notions for TOS in [1]. Let Setup(1λ) be an algorithm
that takes security parameter λ and outputs common parameter gk. Parameters gk are
(sometimes implicit) input to all algorithms.
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Definition 2 (Tagged One-Time Signature Scheme). A tagged one-time signature
scheme TOS is a set of polynomial-time algorithms TOS.{Key,Tag, Sign,Vrf} that
takes gk generated by Setup. Each function works as follows.

TOS.Key(gk) generates a long-term public-key pk and a secret-key sk . Message
spaceMt and tag space T are determined by gk.

TOS.Tag(gk) takes gk as input and outputs tag ∈ T .
TOS.Sign(sk ,msg, tag) outputs signature σ for message msg based on secret-key sk

and tag tag .
TOS.Vrf(pk , tag,msg, σ) outputs 1 for acceptance, or 0 for rejection.

For any key (pk , sk) ← TOS.Key(Setup(1λ)), any message msg ∈ Mt, any tag
tag ← TOS.Tag(gk), and any signature σ ← TOS.Sign(sk ,msg, tag), verification
TOS.Vrf(pk , tag ,msg, σ) outputs 1.

TOS is called uniform-tag if the output distribution of tag is uniform over T . TOS
is structure-preserving over Λ if gk contains Λ and the public-keys, messages, tags,
and signatures consist only of elements of base groups of Λ and TOS.Vrf consists of
evaluating pairing product equations.

Definition 3 (Unforgeability against One-Time Tag Chosen-Message Attacks). For
tagged one-time signature scheme TOS and algorithm A, let Exprot-cma

TOS,A be an experi-
ment that:

Exprot-cma
TOS,A(1

λ) :=

gk ← Setup(1λ), (pk , sk)← TOS.Key(gk)
(tag†, σ†,msg†)← AOtag,Osig(pk )
If ∃(tag ,msg , σ) ∈ Qm s.t.

tag† = tag ∧ msg† �= msg ∧ 1 = TOS.Vrf(pk , tag†, σ†,msg†)
return 1. Return 0, otherwise.

Otag and Osig are tag and signature generation oracles, respectively. On receiving i-th
query, Otag returns tag tagi generated by TOS.Tag(gk). On receiving j-th query with
message msgj as input (if at this point Otag has been received i < j requests, Otag

is invoked to generate tagj), Osig performs σj ← TOS.Sign(sk ,msgj , tagj), appends
(tagj ,msgj , σj) to Qm, and returns σj (and tagj if generated) to A.

A tagged one-time signature scheme is unforgeable against one-time tag adaptive
chosen message attacks (OT-CMA) if for all polynomial-time oracle algorithms A the
advantage function Advot-cma

TOS,A := Pr[Exprot-cma
TOS,A(1

λ) = 1] is negligible in λ.

Strong unforgeability is a variation on this definition obtained by replacing the condi-
tion msg† �= msg in the experiment with (msg†, σ†) �= (msg , σ). Another variation is
non-adaptive attack unforgeability (OT-NACMA) defined by integratingOtag intoOsig

so that tagj and σj are returned to A at the same time. Namely, A must submit msgj
before seeing tagj . It is obvious that if a scheme is secure in the sense of OT-CMA,
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the scheme is also secure in the sense of OT-NACMA. By Advot-nacma
TOS,A (λ) we denote

the advantage ofA in this non-adaptive case. We use labels sot-cma and sot-nacma for
adaptive and non-adaptive strong unforgeability respectively.

For signatures we follow the standard syntax of digital signatures with common
setup. Namely, a signature scheme consists of three algorithms SIG.{Key, Sign,Vrf}
that take gk generated by Setup as additional input. SIG.Key is a key generation algo-
rithm, SIG.Sign is a signing algorithm and SIG.Vrf is a verification algorithm. We also
follow the standard security notion of existential unforgeability against adaptive chosen
message attacks.

2.3 A Framework of TOS + RMA-SIG

We review the framework of combining TOS and RMA signatures in [1] to obtain a
CMA-secure signature scheme. Let rSIG be a signature scheme with message spaceMr,
and TOS be a tagged one-time signature scheme with tag space T such thatMr = T .
We construct a signature scheme SIG from rSIG and TOS. Let gk be a global parameter
generated by Setup(1λ).

[Generic Construction: SIG]

SIG.Key(gk): Run (pk t, sk t) ← TOS.Key(gk), (vkr, skr) ← rSIG.Key(gk). Output
vk := (pk t, vkr) and sk := (sk t, skr).

SIG.Sign(sk,msg): Parse sk into (sk t, skr). Output σ := (tag , σt, σr) where tag ←
TOS.Tag(gk), σt ← TOS.Sign(sk t,msg, tag), and σr ← rSIG.Sign(skr, tag).

SIG.Vrf(vk, σ,msg): Parse vk and σ accordingly. Output 1, if 1 = TOS.Vrf(pk t, tag ,
σt,msg) and 1 = rSIG.Vrf(vkr , σr, tag). Output 0, otherwise.

The following theorems are due to [1].

Theorem 1. SIG is unforgeable against adaptive chosen message attacks (UF-CMA)
if TOS is uniform-tag and unforgeable against one-time non-adaptive chosen message
attacks (OT-NACMA), and rSIG is unforgeable against random message attacks (UF-
RMA). In particular, Advuf-cma

SIG,A (λ) ≤ Advot-nacma
TOS,B (λ) + Advuf-rma

rSIG,C(λ). The overhead of
adversary B against rSIG and C against TOS is proportional to the running time of the
key generation and signing operations of rSIG and TOS respectively.

Theorem 2. If TOS.Tag produces constant-size tags and signatures in the size of input
messages, the resulting SIG produces constant-size signatures as well. Furthermore, if
TOS and rSIG are structure-preserving, so is SIG.

3 Tightly-Secure TOS Based on DLIN

Let gk be a global parameter that specifiesΛ= (p,G,GT , e) generated by group genera-
torG(1λ). It also includes a generatorG ∈ G∗. We constructTOS.{Key,Tag, Sign,Vrf}
as shown in Fig. 1.
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[Scheme TOS]

TOS.Key(gk): Parse gk = (Λ,G). Choose wz, wr, μz, μs, τ randomly from Z
∗
p and

compute Gz := Gwz , Gr := Gwr , Hz := Gμz , Hs := Gμs , Gt := Gτ and For
i = 1, . . . , k, uniformly choose χi, γi, δi from Zp and compute

Gi := Gχi
z Gγi

r , and Hi := Hχi
z Hδi

s . (1)

Output pk := (Gz, Gr,Hz, Hs, Gt, G1, . . . , Gk,H1, . . . ,Hk) ∈ G
2k+5 and

sk := (χ1, γ1, δ1, . . . , χk, γk, δk, wz, wr, μz, μs, τ ) ∈ Z
3k+5
p .

TOS.Tag(gk): Choose t← Z
∗
p and output tag := T = Gt ∈ G.

TOS.Sign(sk ,msg , tag): Parse msg into (M1, . . . ,Mk) ∈ G
k. Take T1 from tag . Parse

sk accordingly. Output σ := (Z,R,S) ∈ G
3 that, for ζ ← Zp,

Z := Gζ ∏k
i=1M

−χi
i , R := (T τG−ζ

z )
1

wr
∏k

i=1M
−γi
i , and

S := (H−ζ
z )

1
μs

∏k
i=1M

−δi
i .

TOS.Vrf(pk , tag ,msg , σ): Parse σ as (Z,R, S) ∈ G
3, msg as (M1, . . . ,Mk) ∈ G

k , and
take T from tag . Return 1 if the following equations hold. Return 0, otherwise.

e(T,Gt) = e(Gz, Z) e(Gr, R)

k∏

i=1

e(Gi,Mi) (2)

1 = e(Hz, Z) e(Hs, S)

k∏

i=1

e(Hi,Mi) (3)

Fig. 1. Tagged One-Time Signature Scheme

Correctness is verified by inspecting the following relations.

For (2): e(Gz, G
ζ

k∏
i=1

M−χi

i ) e(Gr, (T
τG−ζ

z )
1

wr

k∏
i=1

M−γi

i )

k∏
i=1

e(Gχi
z G

γi
r ,Mi)

= e(Gz , G
ζ) e(G, T τ )e(G,G−ζ

z ) = e(G, T τ) = e(T,Gt)

For (3): e(Hz, G
ζ

k∏
i=1

M−χi

i ) e(Hs, (H
−ζ
z )

1
μs

k∏
i=1

M−δi
i )

k∏
i=1

e(Hχi
z Hδi

s ,Mi)

= e(Hz , G
ζ) e(G,H−ζ

z ) = 1

We state the following theorems, of which the first one is immediate from the
construction.

Theorem 3. Above TOS is structure-preserving, and yields uniform tags and constant-
size signatures.
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Theorem 4. Above TOS is strongly unforgeable against one-time tag adaptive chosen
message attacks (SOT-CMA) if the SDP assumption holds. In particular, Advsot-cma

TOS,A ≤
AdvsdpG,B + 1/p and the runtime overhead of the reduction B is a small number of multi-
exponentiations per signing query.

Proof. Given successful forger A against TOS as a black-box, we construct B that
breaks SDP as follows. Let Isdp = (Λ,Gz , Gr, Hz, Hs) be an instance of SDP. Algo-
rithm B simulates the attack game againstTOS as follows. It first build gk := (Λ,G,G)
by choosingG randomly from G∗. This yields a gk in the same distribution as produced
by Setup. Next B simulates TOS.Key by taking (Gz , Gr, Hz, Hs) from Isdp and com-
puting Gt := Hτ

s for random τ in Z∗
p. It then generates Gi and Hi according to (1).

This perfectly simulates TOS.Key.
On receiving the j-th query to Otag, algorithm B computes

T := (Gζ
zG

ρ
r)

1
τ (4)

for ζ, ρ ← Z∗
p. If T = 1, B sets Z	 := Hs, S	 := H−1

z , and R	 := (Z	)ρ/ζ , outputs
(Z	, R	, S	) and stop. Otherwise, B stores (ζ, ρ) and returns tagj := T to A.

On receiving signing query msgj = (M1, . . . ,Mk), algorithm B takes ζ and ρ used
for computing tagj (if they are not yet defined, invoke the procedure for Otag) and
computes

Z := Hζ
s

k∏
i=1

M−χi

i , R := Hρ
s

k∏
i=1

M−γi

i , and S := H−ζ
z

k∏
i=1

M−δi
i . (5)

Then B returns σj := (Z,R, S) to A and record (tagj , σj ,msgj).
When A outputs a forgery (tag†, σ†,msg†), algorithm B searches the records for

(tag , σ,msg) such that tag† = tag and (msg†, σ†) �= (msg, σ). If no such entry exists,
B aborts. Otherwise, B computes

Z	 :=
Z†

Z

k∏
i=1

(
M †

i

Mi

)χi

, R	 :=
R†

R

k∏
i=1

(
M †

i

Mi

)γi

, and S	 :=
S†

S

k∏
i=1

(
M †

i

Mi

)δi

where (Z,R, S), (M1, . . . ,Mk) and their dagger counterparts are taken from (σ,msg)
and (σ†,msg†), respectively. B finally outputs (Z	, R	, S	) and stops. This completes
the description of B.

We claim that B solves the problem by itself or the view ofA is perfectly simulated.
The correctness of key generation has been already inspected. In the simulation ofOtag,
there is a case of T = 1 that happens with probability 1/q. If it happens, B outputs a
correct answer to Isdp, which is inspected by observing Gz = G

−ρ/ζ
r , Z	 = Hs �= 1,

e(Gz, Z
	)e(Gr, R

	) = e(G
−ρ/ζ
r , Z	)e(Gr, (Z

	)ρ/ζ) = 1 and e(Hz, Z
	)e(Hs, S

	) =
e(Hz, Hs)e(Hs, H

−1
z ) = 1. Otherwise, tag T uniformly distributes over G∗ and the

simulation is perfect.
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Oracle Osig is simulated perfectly as well. Correctness of simulated σj = (Z, R, S)
can be verified by inspecting the following relations.

(Right-hand of (2)) = e(Gz,H
ζ
s

k∏

i=1

M−χi
i ) e(Gr,H

ρ
s

k∏

i=1

M−γi
i )

k∏

i=1

e(Gχi
z G

γi
r ,Mi)

= e(Gζ
zG

ρ
r ,Hs) = e((Gζ

zG
ρ
r)

1
τ , Hτ

s ) = e(T1, Gt)

(Right-hand of (3)) = e(Hz,H
ζ
s

k∏

i=1

M−χi
i ) e(Hs, H

−ζ
z

k∏

i=1

M−δi
i )

k∏

i=1

e(Hχi
z Hδi

s ,Mi)

= e(Hz,H
ζ
s ) e(Hs,H

−ζ
z ) = 1

Every Z distributes uniformly over G due to the uniform choice of ζ. ThenR and S are
uniquely determined by following the distribution of Z .

Accordingly, A outputs successful forgery with noticeable probability and B finds
a corresponding record (tag , σ,msg). We show that output (Z	, R	, S	) from B is a
valid solution to Isdp. First, equation (2) is satisfied because

1 = e

(
Gz ,

Z†

Z

)
e

(
Gr,

R†

R

) k∏
i=1

e

(
Gχi

z G
γi
r ,

M †
i

Mi

)

= e

(
Gz ,

Z†

Z

k∏
i=1

(
M †

i

Mi

)χi
)
e

(
Gr,

R†

R

k∏
i=1

(
M †

i

Mi

)γi
)

= e (Gz, Z
	) e (Gr, R

	) ,

holds. Equation (3) is verified similarly.
It remains to prove thatZ	 �= 1. Since msg† �= msg , there exists � ∈ {1, . . . , k} such

thatM †

 /M
 �= 1. We claim that, parameterχ1, . . . , χk are independent of the view ofA.

We prove it by showing that, for every possible assignment to χ1, . . . , χk, there exists an
assignment to other coins, i.e., (γ1, . . . , γk, δ1, . . . , δk) and (ζ(1), ρ(1), . . . , ζ(qs), ρ(qs))
for qs queries, that is consistent to the view of A. (By ζ(j), we denote ζ with respect to
the j-th query. We follow this convention hereafter. Without loss of generality, we as-
sume that A makes qs tag queries and the same number of signing queries.) Observe
that the view of A consists of independent group elements (G,Gz , Gr, Hz, Hs, Gt,

G1, H1, . . . , Gk, Hk) and (T (j), Z(j),M
(j)
1 , . . . ,M

(j)
k ) for j = 1, . . . , qs. (Note that

R(j) and S(j) are not in the view since they are uniquely determined from other compo-
nents.) We represent the view by the discrete-logarithms of these group elements with
respect to base G. Namely, the view is (1, wz, wr, μz, μs, τ, w1, μ1, . . . , wk, μk) and

(t(j), z(j),m
(j)
1 , . . . ,m

(j)
k ) for j = 1, . . . , qs. The view and the random coins follow

relations from (1), (4), and (5) translated to

wi = wzχi + wrγi, μi = μzχi + μsδi for i = 1, . . . , k, (6)
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τt(j) = wzζ
(j) + wrρ

(j), and (7)

z(j) = μs ζ
(j) −

k∑
i=1

m
(j)
i χi for j = 1, . . . , qs. (8)

Consider χ
 for some � ∈ {1, . . . , k}. For every value of χ
 in Zp, the linear equations

in (6) determine γ
 and δ
. Then, if m(j)

 �= 0, equations in (8) determine ζ(j), ρ(j).

If m(j)

 = 0, then ζ(j), ρ(j) can be assigned independently from χ
. The above holds

for every � in {1, . . . , k}. Thus, if χ1, . . . , χk distributes uniformly over Zk
p , then other

coins distribute uniformly as well retaining the consistency with the view of A.

Now we see that
(
M †


 /M


)χ�

distributes uniformly over G. Therefore Z	 = 1

happens only with probability 1/p. Thus, B outputs correct answer with probability
AdvsdpG,B = 1/p+(1−1/p)(1−1/p)Advsot-cma

TOS,A , which leads to Advsot-cma
TOS,A ≤ AdvsdpG,B+

1/p as claimed. �
Remark 1. On tag extension. The tag can be easily extended to the form (Gt, Gt

1, G
t
2, ...)

for extra bases G1, G2, ... provided as a part of gk. (In the security proof, the extended
part is computed from the first element by using logGGi. This is possible since the extra
generators in gk are chosen by the reduction algorithm.) Such an extension is in par-
ticular needed when the TOS is coupled with other signature schemes whose message
space is structured as above. Indeed, it is the case for an application in Section 4.

Remark 2. Signing lengthy messages. The TOS can be used to sign messages of un-
bound length by chaining the signatures. Every message block except for the last one
is followed by a tag used to sign the next block. The signature consists of all internal
signatures and tags. The initial tag is considered as the tag. For a message consisting of
m group elements, it repeats τ := 1+max(0, 
m−k

k−1 �) times. The signature consists of
4τ − 2 elements.

4 Efficient SPS Based on DLIN

As the first application of our TOS, we present an efficiet structure-preserving signature
scheme. The construction follows the framework suggested in Theorem 1. We begin
with introducing an RMA-secure SPS as a building block. The scheme in Fig. 2 is an
RMA-secure SPS for messages in the form (Cm, Fm, Um) ∈ G

3 defined by generators
(C,F, U) provided in gk. The scheme is a modification of the one in Sec.5.3 of [1] that
signs longer message of the form {(Cm1 , Cm2 , Fm1 , Fm2 , Um1 , Um2)}. Our scheme
is obtained by restricting m2 = 0 and removing useless operations relevant to m2. The
security is stated in Theorem 5 below, whose proof is obtained as a trivial modification
of the proof of Theorem 24 in [1].

Theorem 5. The above rSIG scheme is secure against random message attacks under
the DLIN assumption. In particular, for any polynomial-time adversaryA against rSIG
that makes at most qs signing queries, there exists polynomial-time algorithm B for
DLIN such that Advuf-rma

rSIG,A(λ) ≤ (qs + 2) · AdvdlinG,B(λ).
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[Scheme rSIG]

Let gk be a common parameter that consists of group description Λ = (p,G,GT , e) and
default generator G. It also includes randomly chosen generators C,F , and U .

rSIG.Key(gk): Given gk := (Λ,G, C, F, U) as input, uniformly select V, V1, V2,H
from G

∗ and a1, a2, b, α, and ρ from Z
∗
p. Then compute and output vk :=

(B,A1, A2, B1, B2, R1, R2,W1,W2, V, V1, V2,H,X1, X2) and sk := (vk,K1,K2)
where

B := Gb, A1 := Ga1 , A2 := Ga2 , B1 := Gb·a1 , B2 := Gb·a2

R1 := V V a1
1 , R2 := V V a2

2 , W1 := Rb
1, W2 := Rb

2,

X1 := Gρ, X2 := Gα·a1·b/ρ, K1 := Gα, K2 := Gα·a1 .

rSIG.Sign(sk,msg): Parse msg into (M1,M2,M3). Pick random r1, r2, z1, z2 ∈ Zp. Let
r = r1 + r2. Compute and output signature σ := (S0, S1, . . . S7) where

S0 := (M3H)r1 , S1 := K2V
r, S2 := K−1

1 V r
1 G

z1 , S3 := B−z1 ,

S4 := V r
2 G

z2 , S5 := B−z2 , S6 := Br2 , S7 := Gr1 .

rSIG.Vrf(vk, σ,msg): Parse msg into (M1,M2,M3) and σ into (S0, S1, . . . , S7). Also
parse vk accordingly. Verify the following pairing product equations:

e(S7,M3H) = e(G,S0),

e(S1, B) e(S2, B1) e(S3, A1) = e(S6, R1) e(S7,W1),

e(S1, B) e(S4, B2) e(S5, A2) = e(S6, R2) e(S7,W2) e(X1, X2),

e(F,M1) = e(C,M2), e(U,M1) = e(C,M3)

Fig. 2. RMA-secure SPS for 1 message block based on DLIN

According to Theorem 1, combining TOS in Section 3 and rSIG in Fig. 2 results in
a chosen-message-secure SPS. (Note that tags of TOS are extended as explained in the
remark in the end of Section 3 so that they fit to the message space of rSIG. Concretely,
by using generator C from rSIG as G in the description of TOS, and also using extra
generators F and U , a tag is defined as (T1, T2, T3) := (Ct, F t, U t).) The resulting
SPS yields signatures consisting of 14 group elements (T1, T2, T3, Z,R, S, S0, . . . , S7)
and evaluates 7 pairing product equations in the verification. Since both TOS and rSIG
are based on DLIN, the resulting SPS is secure under DLIN as well. (They are actually
based on SDP that is a seemingly weaker computational assumption.)

The efficiency is summarised in Table 1. It is compared to existing efficient structure-
preserving schemes over symmetric bilinear groups. We measure efficiency by counting
the number of group elements and the number of pairing product equations for verifying
a signature. The figures do not count default generator G in gk.
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To see how a small difference in the size of signatures and the number of PPEs
impacts the efficiency in applications, we assess the cost of proving possession of valid
signatures and messages by using Groth-Sahai NIWI proof system. Column ”Proof Cost
σ” shows the number of group elements in the commitment of a signature and the proof.
If there are randomizable parts in a signature, they are put in the clear. It is the case for
the scheme in [2]. Similarly, column ”Proof Cost (σ,msg)” shows the size when both
messages and signatures are committed as witnesses.

Table 1. Comparison of constant-size SPS over symmetric bilinear groups. ”Reduction Cost”
shows the loss factor to the underlying assumptions. ”Proof Cost” is the number of group elements
in the Groth-Sahai NIWI proof of knowledge about a valid signature.

Reduction Proof Cost
Scheme |msg | |gk|+ |vk| |σ| #(PPE) Assumption Cost σ (msg, σ)

[2] k 2k + 12 7 2 q-SFP 1 19 3k+19
[1] k 2k + 25 17 9 DLIN (2q)−1 84 3k+84

this paper k 2k + 20 14 7 DLIN (q + 1)−1 69 3k+69

5 Chosen-Ciphertext Secure Public-Key Encryption

5.1 Simulation Extractable NIZK

A non-interactive zero-knowledge argument system NIZK = NIZK.{Crs,Prv,Vrf} for
a relation R consists of three algorithms: NIZK.Crs that takes a common setup parame-
ter and generates a common reference string crs , the proof algorithm NIZK.Prv which
on input crs , an instance x and a witness w for the truth of the statement R, outputs a
proof π, and the verification algorithm NIZK.Vrf that on input crs, an instance x, and
a proof π either accepts or rejects the proof. It is equipped with a pair of algorithms,
NIZK.CrsSim and NIZK.PrvSim, that simulates NIZK.Crs and NIZK.Prv, respectively.
NIZK.CrsSim outputs crs and a simulation-trapdoor, τzk, and NIZK.PrvSim produces
proofs by using the trapdoor. NIZK is (unbounded multi-theorem) zero-knowledge,
if given oracle access to either NIZK.PrvSim(τzk, ·) or NIZK.Prv(crs , ·, ·), with true
statements as inputs, any polynomial-time adversary trying to distinguish the oracles
has advantage upper bounded by a negligible function, εzk, in the security parame-
ter. A NIZK is strongly simulation-sound if adversary A is given oracle access to
NIZK.PrvSim(τzk, ·) and outputs valid (x, π) only with negligible probability. It can
be relaxed to standard simulation soundness by requiring that only x is not reused.

A NIZK is a non-interactive proof of knowledge [28] if NIZK.Crs additionally out-
puts an extraction trapdoor, τex, and there exists an efficient algorithm, NIZK.Ext, that
extracts a correct witness w from any (x, π) that 1 = NIZK.Vrf(crs , x, π) with prob-
ability 1 − εks for some negligible function εks. This property is called knowledge
soundness. A simulation-extractable NIZK extends a NIZK proof of knowledge so that
NIZK.Crs outputs extraction trapdoor τex and simulation trapdoor τzk at the same time.
Then it is simulation-extractable if NIZK.Ext works even if an adversary is given oracle
access to NIZK.PrvSim(τzk, ·). More precisely,



Tagged One-Time Signatures: Tight Security and Optimal Tag Size 323

Pr

⎡
⎣
(crs , τex, τzk)← NIZK.Crs
(x, π)← ANIZK.PrvSim(τzk,·)(crs)
w ← NIZK.Ext(crs , x, π, τex)

∣∣∣∣∣∣
NIZK.Vrf(crs , x, π) = 1∧
R(x,w) �= 1

⎤
⎦ < εse (9)

holds for a negligible function εse.
Recall that simulation soundness only guarantees that x is a true statement

whereas simulation extractability additionally guarantees that the witness be efficiently
extractable. When the number of oracle access is unlimited (limited to only once, resp.),
it is called unbounded (one-time, resp.) simulation extractability.

We show that the simulation-sound NIZK of [26] is simulation extractable if the un-
derlying NIZK is a proof of knowledge system. Let POK = POK.{Crs,Prv,Vrf,Ext}
be a NIZK proof of knowledge system, SIG = SIG.{Key, Sign,Vrf} be a signature
scheme, and OTS = OTS.{Key, Sign,Vrf} be a one-time signature scheme. Their
construction of SE-NIZK = SE-NIZK.{Crs,Prv,Vrf,PrvSim,Ext} is shown in Fig. 3

[Scheme SE-NIZK]

SE-NIZK.Crs(gk): It takes gk and runs (crspok, τex) ← POK.Crs(gk),
(vk, sk) ← SIG.Key(gk). It then outputs crs := (gk, crspok, vk), τex := τex,
and τzk := sk.

SE-NIZK.Prv(crs , x, w): Run opk ← OTS.Key(gk). Set σ = ⊥. Let xse := (x,opk)
and wse := (w, σ). Set relation Rse be

Rse(xse, wse) := (R(x,w) = 1) ∨ (SIG.Vrf(vk, σ, opk) = 1) .

Run π ← POK.Prv(crspok, xse, wse), and σo ← OTS.Sign(osk , π). Output
πse := (π,opk , σo).

SE-NIZK.Vrf(crs , x, πse): Parse (π, opk , σo)← πse. Verify both σo and π.

SE-NIZK.PrvSim(crs , τzk, x): Parse (gk, crspok, vk) ← crs and sk ← τzk. Run
opk ← OTS.Key(gk) and σ ← SIG.Sign(sk, opk). Set wse := (⊥, σ).
Run π ← POK.Prv(crspok, xse, wse) and σo ← OTS.Sign(osk , π). Output
πse := (π,opk , σo).

SE-NIZK.Ext(crs , τex, x, πse): Parse (gk, crspok, vk) ← crs and (π, opk , σo) ← πse.
Run wse ← POK.Ext(crspok, τex, π, (x,opk)) and return w in wse = (w, σ).

Fig. 3. Simulation-Extractable Non-Interactive Zero-Knowledge Proof System

Theorem 6. If POK is a witness indistinguishable proof of knowledge system with
knowledge-soundness error εks, SIG is unforgeable against non-adaptive chosen mes-
sage attacks with advantage εsig, and OTS is strongly one-time unforgeable against
chosen message attacks with advantage εots, then SE-NIZK is strongly simulation-
extractable NIZK with simulation-extraction error εse ≤ εots + εks + εsig.
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Proof. Correctness of the scheme and zero-knowledge property is verified by inspecting
the construction. Computational zero-knowledge is not hard to verify due to the witness
indistinguishability of POK and the construction of SE-NIZK.PrvSim.

We focus on showing simulation extractability. Suppose that adversary A accesses
SE-NIZK.PrvSim(crs , τzk, ·) as an oracle and eventually outputs x	 and π	=(π	, opk	,
σ	) that passes SE-NIZK.Vrf . ForA to be successful, it must be the case that (x	, π	) /∈
{xi, πi} and (x	, π	) /∈ R. Recall that π	

se = (π	, opk	, σ	). We distinguish two cases:

Case 1: opk	 = opk i happens for opk i returned from the oracle. In this case,
(x	, π	, σ	) �= (xi, πi, σi) and we have a valid forgery for OTS. This happens with
probability at most εots due to the strong one-time unforgeability of OTS.

Case 2: opk	 �= opk i for all opk i. By executing SE-NIZK.Ext(crs , τex, x	, π	), we
have wse = (w, σ) that either R(x	, w) = 1 or SIG.Vrf(vk, σ, opk 	) = 1 for vk in-
cluded in crs . The extraction is successful with probability 1−εks due to the knowledge-
soundness of NIZK. Then, if the former happens, we have extracted correct witness for
x	 and A is unsuccessful. Otherwise, we have a valid forgery for SIG since its mes-
sage opk	 is fresh. This happens with probability at most εsig due to the unforgeability
against non-adaptive chosen-message attacks for SIG. (The non-adaptiveness is due to
the fact that all opk i can be generated in advance.)

In total, the extraction is successful with probability (1− εse) = (1− εots)(1− εks)(1−
εsig) which leads to εse ≤ εots + εks + εsig as stated. �

Instantiating SE-NIZK. We instantiate the above generic SE-NIZK in several ways.
The result is several SE-NIZKs that have different sets of properties as summarised in
Table 2.

SE-NIZK0: The original instantiation in [26]. SIG is a tree-based signature scheme
with their original one-time signature scheme, and OTS is instantiated with the
Pedersen commitment as a one-time signature that is not structure-preserving. The
result is a unbounded SE-NIZK.

SE-NIZK1: SIG remains a tree-based scheme but we replace the internal one-time sig-
natures with our TOS in plug-in manner. The result is a more efficient unbounded
SE-NIZK. This shows how plug-in replacement of low-level building block impacts
to the efficiency.

SE-NIZK2: The same as SE-NIZK1 but we instantiate OTS with our TOS as well.
Since that OTS is the only non-structure-preserving component in SE-NIZK1, the
result is structure-preserving unbounded SE-NIZK. A problem is that theTOS must
be able to sign the entire proof that linearly grows in the size of the public-key
of the TOS itself. We therefore use the technique of chaining the signatures as
mentioned in Remark 2 in Section 3. The same technique is used when the one-
time key is signed at the bottom of the tree-based signing. The resulting SE-NIZK
is used in constructing structure-preserving publicly verifiable CCA-secure PKE
tightly-secure with multiple challenges.

SE-NIZK3: We use TOS for SIG. No tree-based construction here. This means the
signature can be generated only once for simulation and the result is structure-
preserving one-time SE-NIZK. As well as SE-NIZK2, we use the signatrue
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chaining. The resulting scheme can be used in constructing efficient structure-
preserving publicly verifiable CCA-secure PKE. We can add leakage resilience
(LR) if desired.

SE-NIZK4: As well as SE-NIZK3 we instantiate SIG with our TOS but leave OTS
with the one based on the Pedersen commitment for the sake of efficiency. In ex-
change of losing structure-preservation, it results in a very efficient one-time SE-
NIZK. It will be used for publicly verifiable CCA-secure PKE (with LR if desired).

Table 2. Properties of the instantiations of SE-NIZK. Efficiency is presented in subjective term.
Objective evaluation of efficiency is in Table 3.

scheme efficiency simulatability structure-preservance
SE-NIZK0 less efficient unbounded no
SE-NIZK1 moderate unbounded no
SE-NIZK2 less efficient unbounded yes
SE-NIZK3 efficient one-time yes
SE-NIZK4 very efficient one-time no

We give a general formula that evaluate the cost of the generic construction. The generic
SE-NIZK uses theS0-or-S1 structure so that real proof is done for statement S0 whereas
simulation is done with a witness for statement S1. It is however believed that the OR
structure with Groth-Sahai proof system is as costly as doubling the number of elements
in a proof. It is true for general statements. But for the specific construction of SE-NIZK,
it can be done much less costly. taking the advantage of the fact that there is no common
witnesses shared by statements S0 and S1.

Regarding the proof of disjunction, we sketch the construction of [10] and refer to
[10] for details. The prover commits to 1G or G with X , and show its correctness by
proving a single non-linear relation e(X,X) = e(X,G). We call X a switcher as it
switches the statement that is really proven. Let X0 = X and X1 = G ·X−1. Then for
every pairing product equation in Sb, if pairing e(A,B) with some constants A and B
is involved, one of them say A is transformed to variable Y and prove its correctness
by showing e(Y,G) = e(A,Xb) holds. (Observe that if Xb = G, it guarantees that
Y = A. Otherwise, if Xb = 1, it holds for Y = 1.) After that, every pairing in every
relation in Sb includes at least one variable. Now, if Xb = G, one can still satisfy the
relations with the legitimate witnesses. Otherwise, if Xb = 1G, they can be satisfied by
setting 1G to all variables, which allows zero-knowledge simulation.

Now the number of group elements in a proof of SE-NIZK is counted as follows. Let
S0 : (R(x,w) = 1) and S1 : (SIG.Vrf(vk, σ, opk ) = 1) be the statements represented
by pairing product equations. The proof size of SE-NIZK is as follows:

(cost for S0) + (cost for switcher) + (cost for S1) + (cost for OTS)

= (cost for S0) (10)

+ (|com| × 1 + |πNL| × 1) (11)

+ (|com| × (|σsig|+ S1(C)) + |πL| × (S1(L) + S1(C)) + |πNL| × S1(NL) (12)

+ (|opk o|+ |σo|) (13)
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Here, parameters |πL/NL|, |opko|, |σo|, |σsig|, |com| are the size of a proof for a
linear/non-linear relation, a one-time public-key of OTS, a signature of OTS, a signa-
ture of SIG, and commitment per variable, respectively. Also, S1(L/NL) and S1(C),
denote the number of linear/non-linear relations and constant pairings, respectively, in
SIG.Vrf where signatures are considered as variables. By ”overhead”, we mean the size
of (11)+(12)+ (13) since it is the cost for achieving simulation extractability on top of
simply proving the original statement S0.

With the Groth-Sahai proof over the DLIN setting, we have (|com|, |πL|, |πNL|) =
(3, 3, 9). Other parameters (|σsig|, S1(C), S1(L), S1(NL), |opko|, |σo|) differ in every
instantiation and summarised as in Table 3. For SE-NIZK2,3 that uses the signature
chaining, let k1 and k2 be block size of a message for SIG and OTS, respectively. Also
let τ1 and τ2 be the length of the chains determined by τ2 := 1 + max(0, 
m2−k2

k2−1 �)
and τ1 := 1 + max(0, 
m1−k1

k1−1 �) where m2 := |opko| and m1 := (cost for S0) +
(cost for switcher)+(cost for S0). Then the overhead in a proof is ψ2 := 21d+18τ2+
4τ1 + 14k1 + 45 for SE-NIZK2 and ψ3 := 18τ2 + 4τ1 + 14k1 + 45 for SE-NIZK3.
When those schemes are used, parameters k1 and k2 should be chosen to minimize
the overhead. Unfortunately, the general assessment in Table 3 is not intuitive enough
to see the difference of efficiency due to the several parameters involved. One can see
their difference in more concrete manner in the next section.

Table 3. Parameterized costs for simulation extractable NIZKs. See the main text for the meaning
of parameters.

scheme |σsig| S1(C) S1(L) S1(NL) |opko| |σo| overhead
SE-NIZK0 10d + 2 5 3 3d 2 2 57d + 61
SE-NIZK1 5d + 1 3 2(d+ 1) 0 2 2 21d + 43
SE-NIZK2 5d+ 4τ2 − 2 2k1 + 6 2(d+ τ2) 0 2k1 + 5 4τ1 − 2 ψ2

SE-NIZK3 4τ2 − 2 2k1 + 6 2τ2 0 2k1 + 5 4τ1 − 2 ψ3

SE-NIZK4 3 2 3 0 2 2 46

We note that the instantiations follow the generic construction rigorously. Some
hand-crafted optimization is possible in reality by carefully choosing variables and con-
stants in GS-proofs. In particular, it is not necessary to commit the entire signature when
we compute π. The tag and Z in every signature can be sent in the clear. Such optimiza-
tion saves considerable number of group elements. The impact of optimization will be
discussed in the next section with concrete numbers.

5.2 Tight/Structure-Preserving CCA-Secure Encryption from SE-NIZK

In [26], the SS-NIZK is used to construct a chosen-ciphertext-secure (CCA) PKE that
is secure against multiple challenges retaining the tightness property. It follows the
Naor-Yung paradigm that combines two chosen-plaintext-secure public-key encryption
schemes (CPA-secure PKE) with an SS-NIZK. As we now know that their instantia-
tion of SS-NIZK actually gives SE-NIZK, we rather follow more efficient generic con-
struction by Dodis, et. al.,[17] that combines one CPA-secure PKE with SE-NIZK. This
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results in more efficient CCA PKE. Since slightly different components is used in [17]
for their purpose of adding leakage resilience and no quantified evaluation was pre-
sented, we restate their theorem in a simplified form with a proof in the following.

Let CPA be a CPA-secure encryption scheme and SE-NIZK be simulation extractable
NIZK. We construct CCA-secure encryption scheme PKE := PKE.{Key,Enc,Dec} by
combining CPA and SE-NIZK as shown in Fig. 4. Let gk be a common parameter gen-
erated by Setup(1λ). Underlying encryption scheme CPA must satisfy the following
property. There exists efficiently computable functionW and efficiently verifiable rela-
tion R such that

(R((ek cpa, ccpa), (msg ,W (r)) = 1) ⇐⇒ (ccpa = CPA.Enc(ek cpa,msg; r)). (14)

FunctionW is understood as a converter that transforms random coin r into a form that
is easily handled in verifying relation R. In our instantiation with Groth-Sahai proof
system, W transforms r ∈ Zp to a vector of group elements.

[Scheme PKE]

PKE.Key(gk): Run (crsnizk, τzk, τex) ← SE-NIZK.Crs(gk), (ek cpa, dk cpa) ←
CPA.Key(gk). Set ek := (crsnizk, ek cpa) and dk := dk cpa.

PKE.Enc(ek ,msg): Run ccpa ← CPA.Enc(ek cpa,msg ; r) and π ←
SE-NIZK.Prv(crsnizk, ccpa, (msg , r)). The proof is for relation 1 =
R((ek cpa, ccpa), (msg , r)). Output ciphertext c := (ccpa, π).

PKE.Dec(dk , c): Parse c into (ccpa, π). If 0 ← SE-NIZK.Vrf(crsnizk, ccpa, π), return ⊥.
Otherwise, output msg := CPA.Dec(dk cpa, ccpa).

Fig. 4. CCA-secure PKE from SE-NIZK

In addition to the use of only one CPA-secure encryption, the construction in Fig. 4
is different from [26] in the following sense. In [26], crsnizk is included in gk and com-
mon for all users. Hence the security of resulting CCA PKE fully relies on the secrecy
of the trapdoors behind crsnizk. In our case, fresh crsnizk is selected for every public-key.
If gk includes no trapdoors (as is usually the case in the certified group model where
only the group description Λ is included in gk), the security of the resulting CCA PKE
is reduced to complexity assumptions defined over gk. In fact, when gk does not in-
clude trapdoors, and the underlying complexity assumption is random self reducible,
it is rather trivial to preserve tightness when extending the security reduction from the
single-user to the multi-user setting because no secret information is shared between
users. On the contrary, it is not trivial to preserve tightness in the multi-challenge set-
ting since every challenge is related to the same public-key which involves a trapdoor.
We therefore focus on security in the multi-challenge and single-user setting in the fol-
lowing argument.
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Theorem 7. If CPA is left-or-right CPA secure encryption scheme with advantage εcpa
and SE-NIZK be unbounded (or one-time, resp.) simulation-extractable NIZK with zero-
knowledge error εzk and simulation-extraction error εse, thenPKE is multi-challenge (or
standard single-challenge, resp.) CCA-secure with advantage εcca ≤ 2·(εzk+εse)+εcpa.

Proof. The proof structure follows [17]. Games are numbered by the combination of
an idealization step counter and a bit indicating whether to encrypt the left or the right
side to visualize its inherent symmetry.

Game 0.0. This is the IND-CCA security experiment from [26], executed with b = 0.
The challenger always returns encryptions of msg0.

Game 1.0. This game is identical to Game 0.0, except that we use the zero-knowledge
simulator of SE-NIZK to generate proofs in the challenge ciphertexts. (If SE-NIZK
is one-time simulation extractable, this is limited to a single challenge.) We have
[Pr[Win1.0]− Pr[Win0.0] ≤ εzk.

Game 2.0 This game is identical to Game 1.0, except that decryption queries c =
(ccpa, π) are answered by running SE-NIZK.Ext on π to extract msg . (This mod-
ification accommodates with the previous one since SE-NIZK.Crs outputs trap-
doors for simulation and extraction at the same time.) We have Pr[Win2.0] −
Pr[Win1.0] ≤ εse.

Game 2.1 This game is identical to Game 2.0, except that the challenger always returns
encryptions of msg1. As we do not use dk cpa anywhere we can do a reduction to
IND-CPA security and have Pr[Win2.1]− Pr[Win2.0] ≤ εcpa.

Game 1.1. This game is identical to Game 2.1, except that decryption queries c =
(ccpa, π) are no longer answered by running the extractor but by decrypting ccpa to
obtain msg . We have Pr[Win1.1]− Pr[Win2.1] ≤ εse.

Game 0.1. This game is identical to Game 1.1, except that we no longer use the zero-
knowledge simulator of SE-NIZK to generate all proofs but generate them honestly.
We have Pr[Win0.1] − Pr[Win1.1] ≤ εzk. This is the IND-CCA security experi-
ment executed with b = 1.

By accumulating the differences, we have εcca ≤ 2 · (εzk + εse) + εcpa as stated. �

We instantiate CPA with the linear encryption scheme [27,29] shown in Fig. 5. It is
IND-CPA secure and tightly reducible to DLIN in the multi-challenge and multi-user
setting as formally proven in [26]. Well formness of a ciphertext can be proven by
providing a GS proof for relations

e(C1, G) = e(G1,W1), e(C2, G) = e(G2,W2),

e(W1W2, G) = e(C3/M,G), e(G,G) = e(G,X0).

The underlined variables G,W1 := Gr1 ,W2 := Gr2 ,M are witneses and X0 is a
switcher as explained in Section 5.1. Accordingly, the ”cost for S0” in (10) is 24 group
elements (12 for four commitments and 12 for proof of four linear equations).

The SE-NIZK in the construction of PKE can be instantiated with any SE-NIZKi
in Section 5.1. The efficiency and properties of the resulting PKE is shown in Table 4.
For SE-NIZK1,2,3 that uses a tree-based signature scheme, we set the depth of the tree
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[Scheme CPA]
Let gk include Λ = (p,G,GT , e) and generator G ∈ G as global parameters.

CPA.Key(gk): Uniformly select y1, y2 from Z
∗
p. Compute G1 = Gy1 and G2 = Gy2 ,

And then output ek := (Λ,G1, G2) and dk := (ek , y1, y2). The message space is G.

CPA.Enc(ek ,msg): Parse msg intoM ∈ G and ek accordingly. Pick random r1, r2 ∈ Zp.
Compute and output signature c := (C1, C2, C3) where C1 := Gr1

1 , C2 := Gr2
2 , and

C3 :=M Gr1+r2 .

CPA.Dec(dk , c): Parse c into (C1, C2, C3), and dk into (y1, y2). Then output M :=

C3 C
−1/y1
1 C

−1/y2
2 .

Fig. 5. The Linear Encryption Scheme

Table 4. Properties and ciphertext size of CCA PKE constructed with SE-NIZKi. Tight security
is for multiple challenges and users.

Cipheretxt Size Properties Parameter
SE-NIZKi Size Publicly-Verifiable Tightly-Secure Strucure-Preserving Setting

0 1228 yes yes no d=20
1 490 yes yes no d=20
2 916 yes yes yes d=20, k1=31, k2=13
3 304 yes no yes k1=19, k2=7
4 73 yes no no

to d = 20, which allows up to 220 simulations. (If one demands virtually unbounded
simulatability, d should equal to the security parameter as suggested in [26].) For SE-
NIZK3,4 that uses TOS as OTS, we seek for optimal value for parameter k1 and k2 that
minimizes the size of the cipehrtext. As originally stated in [17], leakage resilience can
be added by using a leakage resilient CPA encryption from [17] while retaining other
properties.

We finally remark that the ciphertext size is assessed with non-optimized instantia-
tions of SE-NIZKi. Following the already mentioned observation that only a part of a
simulated signature in NIZK must be committed, one can optimize the GS proofs and
reduce the size of ciphertext to 398 from 490 with SE-NIZK1 at d = 20, 731 from 916
with with SE-NIZK2 at d = 20, k1 = 27, k2 = 11, and 273 from 304 with SE-NIZK3
at d = 20, k1 = 17, k2 = 6.

6 Conclusion

We present a new efficient tagged one-time signature scheme that features tight reduc-
tion to DLIN and optimal tag size. We then revisit several generic constructions where
(tagged) one-time signatures play a central role, and build structure preserving signa-
ture and public-key encryption schemes that for the first time simultaneously achieve
several desirable properties. Although many of our instantiations are not necessarily
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practical with hundreds of group elements, the concrete efficiency assessment should
serve as a reference and as a first step.

Our construction uses the symmetry of the pairing in an essential way. It is left as
an open problem to construct TOS schemes with optimal tag size and a tight security
reduction over asymmetric pairings.
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