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Abstract. In this paper we first refine Mykkeltveit et al.’s technique for
producing de Bruijn sequences through compositions. We then conduct
an analysis on an approximation of the feedback functions that generate
de Bruijn sequences. The cycle structures of the approximated feedback
functions and the linear complexity of a sequence produced by an ap-
proximated feedback function are determined. Furthermore, we present
a compact representation of an (n + 16)-stage nonlinear feedback shift
register (NLFSR) and a few examples of de Bruijn sequences of period
2n, 35 ≤ n ≤ 40, which are generated by the recursively constructed
NLFSR together with the evaluation of their implementation.
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1 Introduction

Recently, nonlinear feedback shift registers (NLFSRs) have received a lot of at-
tention in designing cryptographic primitives such as Pseudorandom sequence
generators (PRSGs) and stream ciphers to provide security and privacy in com-
munication systems. For example, well-known stream ciphers such as Grain and
Trivium used NLFSRs as the basic building blocks in their designs [4]. Due to
the efficient hardware implementations, NLFSRs have a number of applications
in constrained environments for instance RFID tags and sensor networks.

The theory of NLFSRs is not well explored. Most of the known results are col-
lectively reported in Golomb’s book [9]. To design a secure cryptographic prim-
itive, such as a key stream generator in a stream cipher, an arbitrary NLFSR
cannot be used to generate keystreams with unpredictability, since the random-
ness properties of a sequence generated by an arbitrary NLFSR are not known.
A classical approach to use an NLFSR in a keystream generator is to combine
it with a linear feedback shift register (LFSR), where the LFSR guarantees the
period of an output keystream. A (binary) de Bruijn sequence is a sequence of
period 2n in which each n-bit pattern occurs exactly once in one period of the
sequence (this is referred to as the span n property). A de Bruijn sequence can be
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generated by an n-stage NLFSR and it has known randomness properties such
as long period, balance, span n property [3, 8, 9].

The linear span or linear complexity of a sequence is defined as the length
of the shortest LFSR which generates the sequence. The linear complexity of
a de Bruijn sequence is greater than half of its period [2]. However, one can
delete one zero bit from the run of zeros of length n of a de Bruijn sequence
of period 2n. The resulting sequence is called a modified de Bruijn or span n
sequence. A span n sequence keeps the balance property and span n properly
of the corresponding de Bruijn sequence except for linear span, which could be
very low. A classic example of this phenomenon is m-sequences, which are a class
of span n sequences that can be generated by an LFSR. By this technique, one
can generate a de Bruijn sequence from an m-sequence. The linear complexity
of this type of de Bruijn sequences is at least 2n−1 + n + 1 [2]. Likewise, from
this de Bruijn sequence, one can remove a zero from the run of zeros of length
n then it becomes an m-sequence with linear complexity n. Thus, the lower
bound of the linear complexity of this de Bruijn sequence drops to n only after
removing one zero from the run of zeros of length n [12]. This shows that the
linear complexity of a de Bruijn sequence is not an adequate measurement for
its randomness. Instead, it should be measured in terms of the linear complexity
of its corresponding span n sequence, since they have only one bit difference.

A de Bruijn sequence and a span n sequence are an one-to-one correspon-
dence, i.e., a span n sequence can be produced from a de Bruijn sequence by
removing one zero from the run of zeros of length n. A number of publications
in the literature have been discussed several techniques for generating de Bruijn
sequences [1, 5–7, 16, 18, 21]. In most of the techniques, a de Bruijn sequence is
produced by joining many small cycles, which enforces that either the procedure
needs some extra memory for storing the state information for joining the cycles
or the feedback function must contain many product terms in order to join the
cycles. Most of the existing methods are not efficient for producing de Bruijn
sequences of period 2n, n ≥ 30.

The objective of this paper is to investigate how to generate a de Bruijn se-
quence where the corresponding span n sequence has a large linear complexity
through an iterative method or a composition method. The contribution of this
paper is that first we refine Mykkeltveit et al.’s iterative method [21] for gen-
erating a large period de Bruijn sequence from a feedback function of a short
stage feedback shift register which generates a span n sequence. Then we give
an analysis of the recursively constructed nonlinear recurrence relation from a
cryptographic point of view. In the analysis, we investigate an approximation
of the feedback function by setting some product terms as constant functions,
and determine the cycle structure of an approximated feedback function and the
linear complexity of a sequence generated by an approximated feedback func-
tion. The analysis also shows that the de Bruijn sequences generated by the
composition have strong cryptographic properties if the starting short span n
sequence is strong. Thirdly, we derive a compact representation of an (n+ 16)-
stage NLFSR and present a few instances of cryptographically strong de Bruijn
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sequences with periods in the range of 235 and 240 together with the discussions
of their implementation issues.

The paper is organized as follows. In Sect. 2, we define some notations and
recall some background results that are used in this paper. Sect. 3 presents the
recursive construction of the arbitrary stage NLFSRs. In Sect. 4, we analyze
the feedback functions of the recursive NLFSRs from a cryptographic point of
view. In Sect. 5, we present a few instances of cryptographically strong de Bruijn
sequences with periods in the range of 235 and 240. In Sect. 6, we describe the
methods for optimizing the number of additions for computing the feedback
function of an 40-stage recursive NLFSR. Finally, in Sect. 7, we conclude the
paper.

2 Preliminaries

In this section, we define and explain some notations, terms and mathematical
functions that will be used in this paper.

- �2 = {0, 1} : the Galois field with two elements.
- �2t : a finite field with 2t elements that is defined by a primitive element α
with p(α) = 0, where p(x) = c0 + c1x + · · · + ct−1x

t−1 + xt is a primitive
polynomial of degree t (≥ 2) over �2.

- Zn
o and Zn

e denote two sets of odd integers and even integers between 1 and
n, respectively.

- Supp(f) : the set of all inputs for which f(x) = 1, x ∈ �2n , where f is a
Boolean function in n variables.

- H(f) : the Hamming weight of the Boolean function f .
- ψ(x0, x1) = x0 + x1 : a Boolean function in two variables.

2.1 Basic Definitions and Properties

Let a = {ai} be a periodic binary sequence generated by an n-stage linear or
nonlinear feedback shift register, which is defined as [9]

an+k = f(ak, ..., ak+n−1) = ak + g(ak+1, ..., ak+n−1), ai ∈ �2, k ≥ 0 (1)

where (a0, ..., an−1) is called the initial state of the feedback shift register, f
is a Boolean function in n variables and g is a Boolean function in (n − 1)
variables. The recurrence relation (1) is called a nonsingular recurrence relation.
If the function f is an affine function, then the sequence a is called an LFSR
sequence; otherwise it is called an NLFSR sequence. The minimal polynomial
of the sequence a is defined by the LFSR of shortest length that can generate
the sequence and the degree of the minimal polynomial determines the linear
complexity of the sequence a.

The linear span of a de Bruijn sequence, denoted as LSdb, is bounded by
2n−1 + n+ 1 ≤ LSdb ≤ 2n − 1 [2]. On the other hand, the linear span of a span
n sequence, denoted as LSs, is bounded by 2n < LSs ≤ 2n − 2 [20]. From this
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property, we say that a span n sequence has an optimal or suboptimal linear
span if its linear span is equal to 2n − 2 or close to 2n − 2.

It is well known that a nonsingular feedback shift register with a feedback
function f partitions the space of 2n n-tuples into a finite number of cycles,
which is known as the cycle decomposition or cycle structure of f and we denote
by Ω(f) the cycle decomposition of f . Each cycle in Ω(f) can be considered as
a periodic sequence.

Proposition 1. [9] Let f be a feedback function in n variables that generates a

span n sequence, then the function h = f +
∏n−1

i=1 (xi + 1) generates a de Bruijn
sequence.

The Welch-Gong (WG) Transformation

Let Tr(x) = x + x2 + · · · + x2
t−1

, x ∈ �2t , be the trace function mapping from
�2t to �2. Let t > 0 with (t mod 3) �= 0 and 3k ≡ 1 mod t for some integer k.
We define a function h from �2t to �2t by h(x) = x+ xq1 + xq2 + xq3 + xq4 and
the exponents are given by

q1 = 2k + 1, q2 = 22k + 2k + 1, q3 = 22k − 2k + 1, q4 = 22k + 2k − 1.

The functions, from �2t to �2, defined by

fd(x) = Tr(h(xd + 1) + 1) and gd(x) = Tr(h(xd)),

are known as the WG transformation and five-term (or 5-term) function, respec-
tively [10, 11], where d is a coset leader which is co-prime with 2t − 1. The WG
transformation has good cryptographic properties such as high algebraic degree,
high nonlinearity. Moreover, a WG sequence has high linear span [11].

2.2 Composite Recurrence Relations

Let g(x0, ..., xn−1, xn) = x0 + G(x1, x2, ..., xn−1) + xn = 0 and f(x0, ...,
xm−1, xm) = x0 + F (x1, x2, ..., xm−1) + xm = 0 be two recurrence relations
of n and m stages, respectively that generate periodic sequences, where G and
F are Boolean functions in (n− 1) and (m− 1) variables, respectively. Then, a
composite recurrence relation, denoted as g ◦ f , is defined by [21]

g ◦ f = g(f(x0, ..., xm), f(x1, ..., xm+1), ..., f(xn, ..., xm+n−1)) = 0,

which is a recurrence relation of (n+m) stages. The operation “◦” is regarded as
the composition operation of recurrence relations. For more detailed treatments
on the cycle decomposition of a composite recurrence relation, see [21].

Lemma 1. [21] Let p be a characteristic polynomial, and q(x0, ..., xn) = x0 +
xn + w(x1, ..., xn−1) where w is a Boolean function in (n− 1) variables and let
a ∈ Ω(q) and x ∈ Ω(q◦p). If the minimal polynomial of a is coprime with p, then
x = b + c where b’s and a’s minimal polynomials are the same and c’s minimal
polynomial is p.
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Theorem 1. [21] Let g = x0+xn+f(x1, ..., xn−1), which generates a de Bruijn
sequence with period 2n and let ψ(x0, x1) = x0 + x1. Then both h1 = g ◦ ψ +∏

i∈Zn
o
xi

∏
i∈Zn

e
(xi + 1) and h2 = g ◦ ψ +

∏
i∈Zn

o
(xi + 1)

∏
i∈Zn

e
xi generate de

Bruijn sequences with period 2n+1.

3 Recursive Feedback Functions in Composed de Bruijn
Sequences

In [21], Mykkeltveit et al. mentioned the idea of constructing a long stage NLFSR
from a short stage NLFSR by repeatedly applying Theorem 1 when g is a linear
function in two variables that generates a de Bruijn sequence. In this section, we
first refine Mykkeltveit et al.’s method and then we show an analytic formulation
of a recursive feedback function of an (n+k)-stage NLFSR, which is constructed
from a feedback function of an n-stage NLFSR by repeatedly applying Theorem 1
and the composition operation.

3.1 The k-th Order Composition of a Boolean Function

Let g(x0, x1, ..., xn) = x0 + xn + G(x1, x2, ..., xn−1) be a Boolean function in
(n + 1) variables where G is a Boolean function in (n − 1) variables. The first
order composition of ψ and g, denoted as g ◦ ψ, is given by [21]

g ◦ ψ = g(x0 + x1, x1 + x2, ..., xn + xn+1)

= x0 + x1 + xn+1 + xn +G(x1 + x2, ..., xn−1 + xn).

Similarly, the k-th order composition of g with respect to ψ, denoted as g ◦ψk, is
defined by g ◦ψk =

(
g ◦ ψk−1

)◦ψ, where g ◦ψk−1 is (k−1)-th order composition
of g with respect to ψ.

3.2 Repeated Compositions of a Product Term

Let Xp
0 be a product term in p variables which is given by

Xp
0 =

∏

i∈Zp
o

xi
∏

i∈Zp
e

(xi + 1).

Then the first order composition of Xp
0 with respect to ψ, denoted as Xp

1 , is
given by

Xp
1 =

∏

i∈Zp
o

(xi + xi+1)
∏

i∈Zp
e

(xi + xi+1 + 1)

which is a product of sum terms in (p + 1) variables. Similarly, the k-th order
composition ofXp

0 with respect to ψ, denoted byXp
k , is defined asXp

k = (Xp
k−1)◦

ψ, which is a product of sum terms in (p+k) variables. Note that the composition
operation with respect to ψ increases the number of variables in Xp

0 by one when
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it repeats once, but the composition operation does not increase the algebraic
degree of Xp

0 .

We denote by Jn−1 =
∏n−1

i=1 (xi + 1). In a similar manner, the k-th order
composition of Jn−1 with respect to ψ, denoted as Jn−1

k , is defined by Jn−1
k =(

Jn−1
k−1

) ◦ ψ, where Jn−1
k−1 is the (k − 1)-th order composition of Jn−1.

Let us now define a function Ink in (n+ k − 1) variables as follows

Ink (x1, x2, ..., xn+k−1) = Jn−1
k +Xn

k−1 +Xn+1
k−2 + · · ·+Xn+k−2

1 +Xn+k−1
0 .

Then, Ink satisfies the following recursive relation

Ink+1 = Ink ◦ ψ +Xn+k
0 , for k ≥ 0 and n ≥ 2,

where In0 = Jn−1.

3.3 The Recursive Construction of the NLFSR

In this subsection, we give the construction of an (n + k)-stage NLFSR that is
constructed from an n-stage NLFSR.

Proposition 2. Let g(x0, x1, ..., xn) = xn+x0+G(x1, x2, ..., xn−1), which gen-
erates a span n sequence of period 2n − 1, where G is a Boolean function in
(n− 1) variables. Then, for any integer k ≥ 0, Rn

k (x0, x1, ..., xn+k) = (xn+x0)◦
ψk +G(x1, x2, ..., xn−1) ◦ψk + Ink (x1, ..., xn+k−1) generates a de Bruijn sequence
of period 2n+k.

Proof. By applying Theorem 1 to the feedback function (g + Jn−1) k times, it
becomes

Rn
k (x0, x1, ..., xn+k) = (xn + x0) ◦ ψk +G(x1, x2, ..., xn−1) ◦ ψk+

Ink (x1, ..., xn+k−1), k ≥ 0 (2)

= (xn + x0) ◦ ψk +G(x1 ◦ ψk, ..., xn−1 ◦ ψk)+

Ink (x1, x2, ..., xn+k−1). (3)

The function Rn
k is a feedback function in (n+ k) variables of an (n+ k)-stage

NLFSR and the recurrence relation, Rn
k = 0, generates a de Bruijn sequence

with period 2n+k. �

One can construct the feedback function Rn
k+1 from Rn

k in the following recursive
manner

Rn
k+1 = Rn

k ◦ ψ +Xn+k
0 or Rn

k+1 = g ◦ ψk+1 + Ink+1, k ≥ 0

where Rn
0 = (g + Jn−1).

Remark 1. For k = 1, Proposition 2 is the same as Theorem 1 which is also found
by Lempel in [18]. For k = 1 and g is a primitive polynomial, Proposition 2 is
similar to Theorem 2 in [21].
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Remark 2. According to Theorem 1, the product term Xp
0 in the recurrence

relation (2) can be replaced by the product term
∏

i∈Zp
o
(xi + 1)

∏
i∈Zp

e
xi.

We now present an explicit form of the product terms of In16 for a recurrence
relation of (n+ 16) stages, which is derived by putting k = 16 in the recurrence
relation (2). Then, the nonlinear recurrence relation of (n + 16) stages is given
by

Rn
16(x0, ..., xn+16) = xn+16 + xn + x0 + x16 +G(x1 + x17, ..., xn−1 + xn+15)

+ Jn−1
16 +Xn

15 + · · ·+Xn+14
1 +Xn+15

0 = 0 (4)

where Jn−1
16 =

∏n−1
i=1 (xi+xi+16+1) and X i

j = T i
o,j ·T i

e,j , i+j = (n+15), n ≤ i ≤
n+15, T i

o,j and T i
e,j are given in Table 2 (see Appendix). In the product terms,

the subscripts o and e represent the odd indices product terms and even indices
product terms. Note that each product term X i

j, i+j = (n+15), n ≤ i ≤ n+15,
is a function of (n+ 15) variables.

4 Cryptanalysis of the Recursively Constructed NLFSR
for Generating de Bruijn Sequences

Since the feedback function contains Ink and it includes many product terms
whose algebraic degrees are high and the Hamming weights of these product
terms are low, as a result, the function Ink can be approximated by a linear
function or a constant function with high probability. In this section, we first
investigate the success probability of approximating the function Ink by the zero
function. We then study the cycle decomposition of an approximated recurrence
relation after a successful approximation of the feedback function with high
probability.

4.1 Hamming Weights of the Product Terms and In
k

Before calculating the success probability of approximating the function Ink by
the zero function, we first need to derive the Hamming weight of a composed
product term as Ink is a sum of (k + 1) composed product terms.

Proposition 3. For an integer r ≥ 1, the Hamming weight of Xp
r is equal to

2r.

Proof. For any product term Xp
0 , the r-order composition is of the form Xp

r =∏
i∈Zp

o
Ui ·

∏
i∈Zp

e
Vi, where Ui is a sum of at most (r+1) variables and Vi is also

a sum of at most (r + 1) variables and the exact number of variables in Ui/Vi
depends on the value of r. For simplicity, we assume that r = 2l, l ≥ 0. To find
the Hamming weight of Xp

r , there are two cases to arise.
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Case I: When 1 ≤ p ≤ r + 1
If r = 2l, then Ui and Vj can be written as Ui = xi + xi+r , i ∈ Zp

o , Vj =
(xj + xj+r + 1), j ∈ Zp

e , respectively. X
p
r = 1 if and only if Ui = 1 and Vj = 1

for all i ∈ Zp
o and j ∈ Zp

e . This implies

x1 = 1 + x1+r = 1 + x1+2r = · · · = 1 + xl1 = 0/1

x2 = x2+r = x2+2r = · · · = xl2 = 0/1

...

xp = 1 + xp+r = 1 + xp+2r = · · · = 1 + xln = 0/1, if p is odd

xp = xp+r = xp+2r = · · · = xlp = 0/1, if p is even

where li ≤ p+ r, i = 1, 2, ..., p. Note that Xp
r is a function in (p + r) variables.

For an (p + r)-tuple with Xp
r = 1, the values at 2p positions are determined

by the values at p positions, which follows from the above set of equations and
the remaining (p+ r− 2p) positions can take any binary value. Hence, the total
number of (p+ r)-tuples for which Xp

r = 1 is equal to 2p · 2r−p = 2r.

Case II: When p ≥ r + 1
Similarly, Xp

r = 1 if and only if Ui = 1 and Vj = 1 for all i ∈ Zp
o and j ∈ Zp

e .
This implies

x1 = 1 + x1+r = 1 + x1+2r = · · · = 1 + xl1 = 0/1

x2 = x2+r = x2+2r = · · · = xl2 = 0/1

...

xr−1 = 1 + x2r−1 = · · · = 1 + xlr−1 = 0/1

xr = x2r = · · · = xlr = 0/1

where li ≤ p + r, i = 1, 2, ..., r. According to the above system of equations,
the binary values at (p + r) positions are determined by the binary values at r
positions and these r positions can take any values. Hence, the total number of
(p+ r)-tuples for which Xp

r = 1 is given by 2r.
By considering Ui = 1 and Vj = 1 for all i ∈ Zp

o and j ∈ Zp
e as a system

of linear equations with p equations and (p + r) unknown variables over �2, it
follows that the Hamming weight of Xp

r is equal to the number of solutions of
the system of linear equations, which is equal to 2p+r−r = 2r for any positive
integer r(�= 2l). �

Proposition 4. For any integer r ≥ 1, the Hamming weight of Jn−1
r is equal

to 2r.

Proof. The proof is similar to the proof of Proposition 3. �

Proposition 5. For any integer k ≥ 1 and n ≥ 2, the Hamming weight of
function Ink is equal to 2k + 1. One can approximate function Ink by the zero
function with probability (1− 1

2n−1 − 1
2n+k−1 ).
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Proof. By Proposition 3, the Hamming weight of Xn+k−1−j
j is equal to 2j

for 0 ≤ j ≤ k − 1. Note that Xn+k−1−j
j = 1 is a system of linear equa-

tions with (n + k − 1 − j) equations and (n + k − 1) unknown variables and

Supp(Xn+k−1−j
j ) contains the set of all solutions. It is not hard to show that the

support of Xn+k−1−i
i and Xn+k−1−j

j are disjoint for 0 ≤ i �= j ≤ n− 1. Again,

(∪k−2
j=0Supp(X

n+k−1−j
j )) ⊂ Supp(Jn−1

k ), and Supp(Xn+k−1
k−1 ) and Supp(Jn−1

k )

are disjoint. Then the cardinality of the support of Ink is equal to (2k + 2k−1 −
∑k−2

j=0 2
j) = (2k + 2k−1 − 2k−1 + 1) = 2k + 1. Hence, the Hamming weight of Ink

is 2k + 1.
Since the Hamming weight of Ink is 2k +1, the number of inputs for which Ink

takes the value zero is equal to 2n+k−1 − 2k − 1. Hence, one can approximate
the function Ink by the zero function with probability (1− 1

2n−1 − 1
2n+k−1 ). �

4.2 Cycle Structures of the Recurrence Relation After
Approximation

By Proposition 5, the function Ink can be approximated by the zero function
with probability about (1− 1

2n−1 ). As a consequence, Eq. (2) can be written as
follows

Rn
k,a(x0, x1, ..., xn+k) = ((xn + x0) +G(x1, x2, ..., xn−1)) ◦ ψk. (5)

In the following proposition, we provide the cycle structure of the above recur-
rence relation.

Lemma 2. For an integer k ≥ 1, Ω(Rn
k,a) = Ω(g) ⊕ Ω(ψk), i.e., any sequence

x ∈ Ω(Rn
k,a) can be written as x = b + c, where b’s minimal polynomial is the

same as the minimal polynomial of a span n sequence that is generated by g and
c’s minimal polynomial is (1 + x)k and ⊕ denotes the direct sum operation.

Proof. Let s be a span n sequence generated by g and let h(x) the minimal
polynomial of s. Then, h(x) = h1(x) · h2(x) · · · hr(x), where hi’s are distinct
irreducible polynomials of degree less than or equal to n and the value of r
depends on the sequence, see [10, 12, 20]. If hi(x) = (1+ x) for some i, then the
sequence s is not a span n sequence. On the other hand, the minimal polynomial
of ψk is (1 + x)k. Again, the minimal polynomial of a sequence generated by ψk

is a factor of (1 + x)k. As h(x) does not contain the factor (1 + x), the minimal
polynomial of s and the minimal polynomial of ψk are relatively prime with
each other. Then, by Lemma 1, any sequence x ∈ Ω(Rn

k,a) can be represented

by x = b + c where b ∈ Ω(g) and c ∈ Ω(ψk). Hence, the cycle decomposition of
Rn

k,a is a direct sum of Ω(g) and Ω(ψk), i.e., Ω(Rn
k,a) = Ω(g)⊕Ω(ψk). �

Proposition 6. The cycle decomposition of Rn
k,a, i.e., Ω(Rn

k,a) contains 2 ·
(Γ2(k)+1) cycles with (Γ2(k)+1) cycles of period at least 2n−1 and (Γ2(k)+1)
cycles of period at most 2�log2 k�, where Γ2(k) is the number of all coset leaders
modulo 2k − 1.
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Proof. For any positive integer k ≥ 1, the cycle decomposition of ψk is the cycle
decomposition of (1 + x)k, which contains sequences with period 2�log2 i�, 1 ≤
i ≤ k, and the number of cycles is given by (Γ2(k) + 1) including the zero cycle
(see [9], Th. 3.4, page-42). Again, the cycle decomposition of g contains only
two cycles, one is a cycle of length 2n − 1 and the other one is the zero cycle
of length one. Therefore, by Lemma 2, Ω(Rn

k,a) contains 2 · (Γ2(k) + 1) cycles
where (Γ2(k) + 1) cycles are of length at least 2n − 1 and (Γ2(k) + 1) cycles are
of length at most 2�log2 k�. �

Proposition 7. Let Ω(Rn
k,a) be the cycle decomposition of Rn

k,a. For any se-
quence x ∈ Ω(Rn

k,a) with period at least 2n − 1, the linear complexity of x is
bounded below by the linear complexity of the sequence generated by g.

Proof. We already showed in Lemma 2 that any sequence x ∈ Ω(Rn
k,a) can be

written as x = b+c where b ∈ Ω(g), c ∈ Ω(ψk), and the minimal polynomial of b
is coprime with the minimal polynomial of c. Since the minimal polynomial of b
is coprime with the minimal polynomial of c, the linear complexity of x is equal
to the sum of the linear complexities of b and c. Therefore, the linear complexity
of x is greater than or equal to the linear complexity of b. Hence, the assertion
is established. �

Remark 3. Propositions 5, 6, and 7 suggest that in order to generate a strong
de Bruijn sequence by this technique, the starting span n sequence generated
by g should have excellent randomness properties, particularly, long period and
an optimal or suboptimal linear complexity. If an attacker is successful in ap-
proximating the feedback function Rn

k by the feedback function g ◦ψk, then the
security of the sequence generated by Rn

k depends on the security of the sequence
generated by g.

5 Designing Parameters for Cryptographic de Bruijn
Sequences

In this section, we present a few examples of cryptographically strong de Bruijn
sequences with period 2n+k for 19 ≤ n ≤ 24 and k = 16.

5.1 Tradeoff between n and k

From the construction of the recurrence relation, one can determine an (n+ k)-
stage recurrence relation by choosing a small value of n and a large value of k
since for a small value of n it is easy to find a span n sequence and the success
probability of approximating the feedback function is low. However, for such a
choice of the parameters, the recurrence relation contains many product terms,
as a result, the function Ink may not be calculated efficiently. Thus, for generating
a strong de Bruijn efficiently, one needs to choose the parameters in such a way
that the nonlinearly generated span n sequence is large enough and its linear
complexity is optimal, and the number of product terms in Ink is as small as
possible.
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5.2 Examples of de Bruijn Sequences with Large Periods

Let {xj}j≥0 be a binary span n sequence generated by the following n-stage
recurrence relation for a suitable choice of a decimation number d, a primitive
polynomial p(x), and a t-tap position [19]

xn = x0 + fd(xr1 , xr2 , ..., xrt) (6)

where (r1, r2, ..., rt) with 0 < r1 < r2 < · · · < rt < n is called a t-tap position
and fd is a WG transformation. Here the decimation number d is a coset leader
which is coprime with 2t − 1. Then the recurrence relation (4) with G as the
WG transformation can be written as

Rn
16 = xn+16 + xn + x0 + x16 + fd(xr1 + xr1+16, ..., xrt + xrt+16) + Jn−1

16

+Xn
15 +Xn+1

14 + · · ·+Xn+14
1 +Xn+15 = 0 (7)

where Jn−1
16 =

∏n−1
i=1 (xi + xi+16 + 1) and Xp

j = T p
o,j · T p

e,j, p+ j = (n+ 15), n ≤
p ≤ n + 15, T p

o,j and T p
e,j are given in Table 2. The recurrence relation (7) can

generate a de Bruijn sequence for a suitable choice of a decimation number d,
a primitive polynomial p(x), and a t-tap position. Our de Bruijn sequences are
uniquely represented by the following four parameters: 1) the decimation number
d, 2) the primitive polynomial p(x), 3) the t-tap position (r1, r2, ..., rt), and 4)
Ink .

Table 1 presents a few examples of cryptographically strong de Bruijn se-
quences with periods in the range of 235 and 240. In Table 1, the computations
for the linear complexity of the 24-stage span n sequence has not finished yet.
However, currently the lower bound of the linear complexity is at least 222. For
more instances of span n sequences with an optimal or suboptimal linear span,
see [19].

Table 1. De Bruijn sequences with periods ≥ 235

WG over �2t Decimation Basis Polynomial t-tap positions span n Linear Span, Ink , Period
t d (c0, c1, ..., ct−1) (r1, r2, ..., rt) n span n k 2n+k

13 55 (1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0) (1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 15, 17) 24 −− 16 240

8 53 (1, 1, 1, 0, 0, 1, 1, 1) (1, 2, 5, 6, 8, 11, 12, 15) 21 221 − 5 16 237

8 29 (1, 1, 1, 0, 0, 0, 0, 1) (1, 2, 6, 8, 9, 15, 16, 19) 21 221 − 26 16 237

8 31 (1, 1, 1, 0, 0, 0, 0, 1) (1, 2, 10, 12, 13, 16, 18, 19) 20 220 − 6 16 236

8 1 (1, 1, 0, 0, 0, 1, 1, 0) (1, 3, 4, 5, 8, 11, 12, 15) 19 219 − 2 16 235

7 5 (1, 0, 0, 1, 1, 1, 0) (1, 2, 6, 8, 10, 12, 16) 20 220 − 7 16 236

7 19 (1, 0, 1, 0, 0, 1, 1) (1, 2, 3, 5, 6, 10, 18) 19 219 − 2 16 235

5 1 (1, 1, 1, 0, 1) (5, 10, 12, 18, 19) 20 220 − 2 16 236

Remark 4. In recurrence relation (4), any feedback function g that generates
a span n sequence can be used to produce a long de Bruijn sequence. To the
best of our knowledge, Table 1 contains a set of (longest) de Bruijn sequences
whose algebraic forms of the recurrence relations are known. We here used WG
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transformations for producing long period de Bruijn sequences as a span n se-
quence can be found in a systematic manner by using WG transformations and
the compact representation of the recurrence relation (6). In [23], eight span n
sequences with periods in the range of (222 − 1) and (231 − 1) are presented and
that have been used in stream cipher Achterbahn.

6 Implementation

In this section, we provide some techniques for optimizing the number additions
in the product terms for k = 16, and give an estimation for the number of
multiplications and the time complexity for computing the function Ink in terms
of n and k.

6.1 Optimizing the Number of Additions

For k = 16, Ink in recurrence relation (7) contains 17 product terms. For example,
for n = 24 and k = 16, one needs 2116 additions for computing all product
terms in Ink . In Table 2, we can observe that many partial-sum terms appear
in different product terms. By reusing the result of a previously computed sum
term, we can optimize the number of additions. For k = 16, three optimization
rules are described in Table 3.

Applying the rules given in Table 3, the total number of additions required
for computing In16 is given by (n − 1 + 32 · �n+5

2 � + 32 · 
n+5
2 � + 152) = (32 ·

(n + 5) + n + 151), since the numbers of additions required for OR-I, OR-II
and OR-III in Table 3 are 32, 18 and 5, respectively. For n = 24 and k =
16, the number of additions after applying the above three rules is equal to
1103.

6.2 Number of Multiplications and the Time Complexity for
Computing In

k

The maximum number of multiplications required for computing Ink is given by
∑n+k−1

i=n−1 (i−1) = (n(k+1)+ (k−1)(k−2)
2 −3) as one requires (i−1) multiplications

to compute a product of i numbers. For n = 24 and k = 16, the number of
multiplications for computing Ink equals 510.

Proposition 8. The time complexity for computing the function Ink is approx-

imately given by
∑n+k−1

p=n−1�log2 p�.

Proof. To compute a product term Xp
k , n ≤ p ≤ n+ k− 1, one requires at most

�log2 p�-time. Since the function Ink contains (k + 1) product terms, the time

complexity for computing Ink is given by
∑n+k−1

p=n−1�log2 p�. �



116 K. Mandal and G. Gong

7 Conclusions

In this paper, we first refined a technique by Mykkeltveit et al. for producing a
long period de Bruijn sequence from a short period span n sequence through the
composition operation. We then performed an analysis on the feedback functions
of the long period de Bruijn sequences from the cryptographic point of view. In
our analysis, we studied an approximation of the feedback functions and the
cycle structure of an approximated feedback function, and determined the linear
complexity of a sequence generated by an approximated feedback function. In
addition, we presented a compact representation of an (n + 16)-stage NLFSR
and a few instances of de Bruijn sequences with periods in the range of 235 and
240 together with the discussions of their implementation issues. A long period
de Bruijn sequence produced by this technique can be used as a building block
to design secure lightweight cryptographic primitives such as pseudorandom se-
quence generators and stream ciphers with desired randomness properties.
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A. Explicit Forms of Product Terms of In
16 and

Optimization Rules

We here present the explicit forms of the product terms of In16 in Table 2, the
rules for optimizing the number of additions required for computing the function
In16 in Table 3, and the product terms of Table 2 after applying the optimization
rules in Table 4.

Table 2. Product terms in In16 of recurrence relation (4)

T n
o,15 =

∏
i∈Zn

o

(∑15
l=0 xi+l

)
T n+1
o,14 =

∏
i∈Zn+1

o

(∑7
l=0 xi+2l

)

T n+2
o,13 =

∏
i∈Zn+2

o
(xi + xi+1 +

∑3
l=1(xi+2l + xi+2l+1)) T n+3

o,12 =
∏

i∈Zn+3
o

(
∑3

l=0 xi+4l)

T n+4
o,11 =

∏
i∈Zn+4

o
(
∑4

l=0 xi+l +
∑11

l=8 xi+l) T n+5
o,10 =

∏
i∈Zn+5

o
(xi + xi+2 + xi+8 + xi+10)

T n+6
o,9 =

∏
i∈Zn+6

o
(xi + xi+1 + xi+8 + xi+9) T n+7

o,8 =
∏

i∈Zn+7
o

(xi + xi+8)

T n+8
o,7 =

∏
i∈Zn+8

o
(
∑7

l=0 xi+l) T n+9
o,6 =

∏
i∈Zn+9

o
(
∑3

l=0 xi+2l)

T n+10
o,5 =

∏
i∈Zn+10

o
(xi + xi+1 + xi+4 + xi+5) T n+11

o,4 =
∏

i∈Zn+11
o

(xi + xi+4)

T n+12
o,3 =

∏
i∈Zn+12

o
(
∑3

l=0 xi+l) T n+13
o,2 =

∏
i∈Zn+13

o
(xi + xi+2)

T n+14
o,1 =

∏
i∈Zn+14

o
(xi + xi+1) T n+15

o,0 =
∏

i∈Zn+16
o

xi

T n
e,15 =

∏
i∈Zn

e
(
∑15

l=0 xi+l + 1) T n+1
e,14 =

∏
i∈Zn+1

e
(
∑7

l=0 xi+2l + 1)

T n+2
e,13 =

∏
i∈Zn+2

e
(xi + xi+1 +

∑3
l=1(xi+2l + xi+2l+1) + 1) T n+3

e,12 =
∏

i∈Zn+3
e

(
∑3

l=0 xi+4l + 1)

T n+4
e,11 =

∏
i∈Zn+4

e
(
∑4

l=0 xi+l +
∑11

l=8 xi+l + 1) T n+5
e,10 =

∏
i∈Zn+5

e
(xi + xi+2 + xi+8 + xi+10 + 1)

T n+6
e,9 =

∏
i∈Zn+6

e
(xi + xi+1 + xi+8 + xi+9 + 1) T n+7

e,8 =
∏

i∈Zn+7
e

(xi + xi+8 + 1)

T n+8
e,7 =

∏
i∈Zn+8

e
(
∑7

l=0 xi+l + 1) T n+9
e,6 =

∏
i∈Zn+9

e
(
∑3

l=0 xi+2l + 1)

T n+10
e,5 =

∏
i∈Zn+10

e
(xi + xi+1 + xi+4 + xi+5 + 1) T n+11

e,4 =
∏

i∈Zn+11
e

(xi + xi+4 + 1)

T n+12
e,3 =

∏
i∈Zn+12

e
(
∑3

l=0 xi+l + 1) T n+13
e,2 =

∏
i∈Zn+13

e
(xi + xi+2 + 1)

T n+14
e,1 =

∏
i∈Zn+14

e
(xi + xi+1 + 1) T n+15

e,0 =
∏

i∈Zn+16
e

(xi + 1)

http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf
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Table 3. Optimization rules for addition

Optimization Rule I
Y 1
1,i = xi + xi+1 Y 2

1,i = xi+2 + xi+3 Y 1
3,i = xi+8 + xi+9 Y 2

3,i = xi+10 + xi+11

Y 1
2,i = xi+4 + xi+5 Y 2

2,i = xi+6 + xi+7 Y 1
4,i = xi+12 + xi+13 Y 2

4,i = xi+14 + xi+15

Y1,i = Y 1
1,i + Y 2

1,i Y2,i = Y 1
2,i + Y 2

2,i Y0,2,i = xi + xi+2 Y4,6,i = xi+4 + xi+6

Y3,i = Y 1
3,i + Y 2

3,i Y4,i = Y 1
4,i + Y 2

4,i Y8,10,i = xi+8 + xi+10 Y12,14,i = xi+12 + xi+14

Q0,i = xi Q4,i = xi + xi+4 Q3,i = Y1,i Q7,i = Q3,i + Y2,i
Q8,i = xi + xi+8 Q12,i = Q4,i + xi+8 + xi+12 Q11,i = Q3,i + Y3,i Q15,i = Q7,i + Y3,i + Y4,i
Q2,i = Y0,2,i Q6,i = Q2,i + Y4,6,i Q1,i = Y 1

1,i Q5,i = Q1,i + Y 1
2,i

Q10,i = Q2,i + Y8,10,i Q14,i = Q6,i + Y8,10,i + Y12,14,i Q9,i = Q1,i + Y 1
3,i Q13,i = Q5,i + Y 1

3,i + Y 1
4,i

Optimization Rule II
Y 1
1,i = xi + xi+1 Y 2

1,i = xi+2 + xi+3 Y1,i = Y 1
1,i + Y 2

1,i Y2,i = Y 1
2,i + Y 2

2,i

Y 1
2,i = xi+4 + xi+5 Y 2

2,i = xi+6 + xi+7 Yi = Y1,i + Y2,i Y0,2,i = xi + xi+2

Y4,6,i = xi+4 + xi+6 Y8,10,i = xi+8 + xi+10

W0,i = xi W1,i = Y 1
1,i W4,i = xi + xi+4 W5,i = Y 1

1,i + Y 1
2,i

W2,i = Y0,2,i W3,i = Y1,i W6,i = Y0,2,i + Y4,6,i W7,i = Y1,i + Y2,i
W8,i = xi + xi+8 W9,i = Y 1

1,i + xi+8 + xi+9 W10,i = Y0,2,i + Y8,10,i
Optimization Rule III

Y1,i = xi + xi+1 Y2,i = xi+2 + xi+3 Z0,1 = xi Z1,i = Y1,i
Z2,i = xi + xi+2 Z3,i = Y1,i + Y2,i Z4,i = xi + xi+4

Table 4. Product terms of recurrence relation (7)

T n
o,15 =

∏
i∈Zn

o
Q15,i T n+1

o,14 =
∏

i∈Zn+1
o

Q14,i

T n+2
o,13 =

∏
i∈Zn+2

o
Q13,i T n+3

o,12 =
∏

i∈Zn+3
o

Q12,i

T n+4
o,11 =

∏
i∈Zn+4

o
Q11,i T n+5

o,10 =
∏

i∈Zn+5
o

Q10,i

T n+6
o,9 =

∏
i∈Zn+5

o
Q9,i ·W9,n+6 T n+7

o,8 =
∏

i∈Zn+5
o

Q11,i

∏n+7
i=n+6,oddW8,i

T n+8
o,7 =

∏
i∈Zn+5

o
Q7,i ·

∏n+8
i=n+6,oddW7,i T n+9

o,6 =
∏

i∈Zn+5
o

Q6,i ·
∏n+9

i=n+6,oddW6,i

T n+10
o,5 =

∏
i∈Zn+5

o
Q5,i ·

∏n+10
i=n+6,oddW5,i T n+11

o,4 =
∏

i∈Zn+5
o

Q4,i ·
∏n+11

i=n+6,oddW4,i

T n+12
o,3 =

∏
i∈Zn+5

o
Q3,i ·

∏n+11
i=n+6,oddW3,i · Z3,n+12 T n+13

o,2 =
∏

i∈Zn+5
o

Q2,i ·
∏n+11

i=n+6,oddW2,i ·
∏n+13

i=n+12,odd Z2,i

T n+14
o,1 =

∏
i∈Zn+5

o
Q1,i ·

∏n+11
i=n+6,oddW1,i ·

∏n+13
i=n+12,odd Z1,i · (xn+14 + xn+15) T n+15

o,0 =
∏

i∈Zn+16
o

xi

T n
e,15 =

∏
i∈Zn

e
Q15,i T n+1

e,14 =
∏

i∈Zn+1
e

Q14,i

T n+2
e,13 =

∏
i∈Zn+2

e
Q13,i T n+3

e,12 =
∏

i∈Zn+3
e

Q12,i

T n+4
e,11 =

∏
i∈Zn+4

e
Q11,i T n+5

e,10 =
∏

i∈Zn+5
e

Q10,i

T n+6
e,9 =

∏
i∈Zn+5

e
Q9,i ·W9,n+6 T n+7

e,8 =
∏

i∈Zn+5
e

Q11,i

∏n+7
i=n+6,evenW8,i

T n+8
e,7 =

∏
i∈Zn+5

e
Q7,i ·

∏n+8
i=n+6,evenW7,i T n+9

e,6 =
∏

i∈Zn+5
e

Q6,i ·
∏n+9

i=n+6,evenW6,i

T n+10
e,5 =

∏
i∈Zn+5

e
Q5,i ·

∏n+10
i=n+6,evenW5,i T n+11

e,4 =
∏

i∈Zn+5
e

Q4,i ·
∏n+11

i=n+6,evenW4,i

T n+12
e,3 =

∏
i∈Zn+5

e
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e,2 =
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∏n+11

i=n+6,oddW2,i ·
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T n+14
e,1 =

∏
i∈Zn+5

e
Q1,i ·

∏n+11
i=n+6,evenW1,i ·

∏n+13
i=n+12,even Z1,i · (xn+14 + xn+15) T n+15

e,0 =
∏
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