Cryptographically Strong de Bruijn Sequences with Large Periods

Kalikinkar Mandal and Guang Gong
Department of Electrical and Computer Engineering University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada
\{kmandal, ggong\}@uwaterloo.ca

Abstract

In this paper we first refine Mykkeltveit et al.'s technique for producing de Bruijn sequences through compositions. We then conduct an analysis on an approximation of the feedback functions that generate de Bruijn sequences. The cycle structures of the approximated feedback functions and the linear complexity of a sequence produced by an approximated feedback function are determined. Furthermore, we present a compact representation of an $(n+16)$-stage nonlinear feedback shift register (NLFSR) and a few examples of de Bruijn sequences of period $2^{n}, 35 \leq n \leq 40$, which are generated by the recursively constructed NLFSR together with the evaluation of their implementation.

Keywords: de Bruijn sequences, nonlinear feedback shift registers, pseudorandom sequence generators, span n sequences, compositions.

1 Introduction

Recently, nonlinear feedback shift registers (NLFSRs) have received a lot of attention in designing cryptographic primitives such as Pseudorandom sequence generators (PRSGs) and stream ciphers to provide security and privacy in communication systems. For example, well-known stream ciphers such as Grain and Trivium used NLFSRs as the basic building blocks in their designs [4]. Due to the efficient hardware implementations, NLFSRs have a number of applications in constrained environments for instance RFID tags and sensor networks.

The theory of NLFSRs is not well explored. Most of the known results are collectively reported in Golomb's book [9]. To design a secure cryptographic primitive, such as a key stream generator in a stream cipher, an arbitrary NLFSR cannot be used to generate keystreams with unpredictability, since the randomness properties of a sequence generated by an arbitrary NLFSR are not known. A classical approach to use an NLFSR in a keystream generator is to combine it with a linear feedback shift register (LFSR), where the LFSR guarantees the period of an output keystream. A (binary) de Bruijn sequence is a sequence of period 2^{n} in which each n-bit pattern occurs exactly once in one period of the sequence (this is referred to as the span n property). A de Bruijn sequence can be
generated by an n-stage NLFSR and it has known randomness properties such as long period, balance, span n property [3, 8,9$]$.

The linear span or linear complexity of a sequence is defined as the length of the shortest LFSR which generates the sequence. The linear complexity of a de Bruijn sequence is greater than half of its period [2]. However, one can delete one zero bit from the run of zeros of length n of a de Bruijn sequence of period 2^{n}. The resulting sequence is called a modified de Bruijn or span n sequence. A span n sequence keeps the balance property and span n properly of the corresponding de Bruijn sequence except for linear span, which could be very low. A classic example of this phenomenon is m-sequences, which are a class of span n sequences that can be generated by an LFSR. By this technique, one can generate a de Bruijn sequence from an m-sequence. The linear complexity of this type of de Bruijn sequences is at least $2^{n-1}+n+1$ [2]. Likewise, from this de Bruijn sequence, one can remove a zero from the run of zeros of length n then it becomes an m-sequence with linear complexity n. Thus, the lower bound of the linear complexity of this de Bruijn sequence drops to n only after removing one zero from the run of zeros of length n [12]. This shows that the linear complexity of a de Bruijn sequence is not an adequate measurement for its randomness. Instead, it should be measured in terms of the linear complexity of its corresponding span n sequence, since they have only one bit difference.

A de Bruijn sequence and a span n sequence are an one-to-one correspondence, i.e., a span n sequence can be produced from a de Bruijn sequence by removing one zero from the run of zeros of length n. A number of publications in the literature have been discussed several techniques for generating de Bruijn sequences [1, 5, 7, 16, 18, 21]. In most of the techniques, a de Bruijn sequence is produced by joining many small cycles, which enforces that either the procedure needs some extra memory for storing the state information for joining the cycles or the feedback function must contain many product terms in order to join the cycles. Most of the existing methods are not efficient for producing de Bruijn sequences of period $2^{n}, n \geq 30$.

The objective of this paper is to investigate how to generate a de Bruijn sequence where the corresponding span n sequence has a large linear complexity through an iterative method or a composition method. The contribution of this paper is that first we refine Mykkeltveit et al.'s iterative method 21] for generating a large period de Bruijn sequence from a feedback function of a short stage feedback shift register which generates a span n sequence. Then we give an analysis of the recursively constructed nonlinear recurrence relation from a cryptographic point of view. In the analysis, we investigate an approximation of the feedback function by setting some product terms as constant functions, and determine the cycle structure of an approximated feedback function and the linear complexity of a sequence generated by an approximated feedback function. The analysis also shows that the de Bruijn sequences generated by the composition have strong cryptographic properties if the starting short span n sequence is strong. Thirdly, we derive a compact representation of an $(n+16)$ stage NLFSR and present a few instances of cryptographically strong de Bruijn
sequences with periods in the range of 2^{35} and 2^{40} together with the discussions of their implementation issues.

The paper is organized as follows. In Sect. 2, we define some notations and recall some background results that are used in this paper. Sect. 3 presents the recursive construction of the arbitrary stage NLFSRs. In Sect. 4, we analyze the feedback functions of the recursive NLFSRs from a cryptographic point of view. In Sect. 5, we present a few instances of cryptographically strong de Bruijn sequences with periods in the range of 2^{35} and 2^{40}. In Sect. 6 , we describe the methods for optimizing the number of additions for computing the feedback function of an 40 -stage recursive NLFSR. Finally, in Sect. 7, we conclude the paper.

2 Preliminaries

In this section, we define and explain some notations, terms and mathematical functions that will be used in this paper.

- $\mathbb{F}_{2}=\{0,1\}$: the Galois field with two elements.
- $\mathbb{F}_{2^{t}}$: a finite field with 2^{t} elements that is defined by a primitive element α with $p(\alpha)=0$, where $p(x)=c_{0}+c_{1} x+\cdots+c_{t-1} x^{t-1}+x^{t}$ is a primitive polynomial of degree $t(\geq 2)$ over \mathbb{F}_{2}.
- Z_{o}^{n} and Z_{e}^{n} denote two sets of odd integers and even integers between 1 and n, respectively.
- $\operatorname{Supp}(f)$: the set of all inputs for which $f(x)=1, x \in \mathbb{F}_{2^{n}}$, where f is a Boolean function in n variables.
- $H(f)$: the Hamming weight of the Boolean function f.
- $\psi\left(x_{0}, x_{1}\right)=x_{0}+x_{1}$: a Boolean function in two variables.

2.1 Basic Definitions and Properties

Let $\mathbf{a}=\left\{a_{i}\right\}$ be a periodic binary sequence generated by an n-stage linear or nonlinear feedback shift register, which is defined as [9]

$$
\begin{equation*}
a_{n+k}=f\left(a_{k}, \ldots, a_{k+n-1}\right)=a_{k}+g\left(a_{k+1}, \ldots, a_{k+n-1}\right), a_{i} \in \mathbb{F}_{2}, k \geq 0 \tag{1}
\end{equation*}
$$

where $\left(a_{0}, \ldots, a_{n-1}\right)$ is called the initial state of the feedback shift register, f is a Boolean function in n variables and g is a Boolean function in $(n-1)$ variables. The recurrence relation (11) is called a nonsingular recurrence relation. If the function f is an affine function, then the sequence a is called an LFSR sequence; otherwise it is called an NLFSR sequence. The minimal polynomial of the sequence \mathbf{a} is defined by the LFSR of shortest length that can generate the sequence and the degree of the minimal polynomial determines the linear complexity of the sequence a.

The linear span of a de Bruijn sequence, denoted as $L S_{d b}$, is bounded by $2^{n-1}+n+1 \leq L S_{d b} \leq 2^{n}-1$ [2]. On the other hand, the linear span of a span n sequence, denoted as $L S_{s}$, is bounded by $2 n<L S_{s} \leq 2^{n}-2$ [20]. From this
property, we say that a span n sequence has an optimal or suboptimal linear span if its linear span is equal to $2^{n}-2$ or close to $2^{n}-2$.

It is well known that a nonsingular feedback shift register with a feedback function f partitions the space of $2^{n} n$-tuples into a finite number of cycles, which is known as the cycle decomposition or cycle structure of f and we denote by $\Omega(f)$ the cycle decomposition of f. Each cycle in $\Omega(f)$ can be considered as a periodic sequence.

Proposition 1. [g] Let f be a feedback function in n variables that generates a span n sequence, then the function $h=f+\prod_{i=1}^{n-1}\left(x_{i}+1\right)$ generates a de Bruijn sequence.

The Welch-Gong (WG) Transformation

Let $\operatorname{Tr}(x)=x+x^{2}+\cdots+x^{2^{t-1}}, x \in \mathbb{F}_{2^{t}}$, be the trace function mapping from $\mathbb{F}_{2^{t}}$ to \mathbb{F}_{2}. Let $t>0$ with $(t \bmod 3) \neq 0$ and $3 k \equiv 1 \bmod t$ for some integer k. We define a function h from $\mathbb{F}_{2^{t}}$ to $\mathbb{F}_{2^{t}}$ by $h(x)=x+x^{q_{1}}+x^{q_{2}}+x^{q_{3}}+x^{q_{4}}$ and the exponents are given by

$$
q_{1}=2^{k}+1, q_{2}=2^{2 k}+2^{k}+1, q_{3}=2^{2 k}-2^{k}+1, q_{4}=2^{2 k}+2^{k}-1
$$

The functions, from $\mathbb{F}_{2^{t}}$ to \mathbb{F}_{2}, defined by

$$
f_{d}(x)=\operatorname{Tr}\left(h\left(x^{d}+1\right)+1\right) \text { and } g_{d}(x)=\operatorname{Tr}\left(h\left(x^{d}\right)\right)
$$

are known as the $W G$ transformation and five-term (or 5-term) function, respectively [10, 11], where d is a coset leader which is co-prime with $2^{t}-1$. The WG transformation has good cryptographic properties such as high algebraic degree, high nonlinearity. Moreover, a WG sequence has high linear span 11].

2.2 Composite Recurrence Relations

Let $g\left(x_{0}, \ldots, x_{n-1}, x_{n}\right)=x_{0}+G\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)+x_{n}=0$ and $f\left(x_{0}, \ldots\right.$, $\left.x_{m-1}, x_{m}\right)=x_{0}+F\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)+x_{m}=0$ be two recurrence relations of n and m stages, respectively that generate periodic sequences, where G and F are Boolean functions in $(n-1)$ and $(m-1)$ variables, respectively. Then, a composite recurrence relation, denoted as $g \circ f$, is defined by 21]

$$
g \circ f=g\left(f\left(x_{0}, \ldots, x_{m}\right), f\left(x_{1}, \ldots, x_{m+1}\right), \ldots, f\left(x_{n}, \ldots, x_{m+n-1}\right)\right)=0
$$

which is a recurrence relation of $(n+m)$ stages. The operation "o" is regarded as the composition operation of recurrence relations. For more detailed treatments on the cycle decomposition of a composite recurrence relation, see 21].

Lemma 1. [21] Let p be a characteristic polynomial, and $q\left(x_{0}, \ldots, x_{n}\right)=x_{0}+$ $x_{n}+w\left(x_{1}, \ldots, x_{n-1}\right)$ where w is a Boolean function in $(n-1)$ variables and let $a \in \Omega(q)$ and $x \in \Omega(q \circ p)$. If the minimal polynomial of a is coprime with p, then $x=b+c$ where b 's and a 's minimal polynomials are the same and c 's minimal polynomial is p.

Theorem 1. [21] Let $g=x_{0}+x_{n}+f\left(x_{1}, \ldots, x_{n-1}\right)$, which generates a de Bruijn sequence with period 2^{n} and let $\psi\left(x_{0}, x_{1}\right)=x_{0}+x_{1}$. Then both $h_{1}=g \circ \psi+$ $\prod_{i \in Z_{o}^{n}} x_{i} \prod_{i \in Z_{e}^{n}}\left(x_{i}+1\right)$ and $h_{2}=g \circ \psi+\prod_{i \in Z_{o}^{n}}\left(x_{i}+1\right) \prod_{i \in Z_{e}^{n}} x_{i}$ generate de Bruijn sequences with period 2^{n+1}.

3 Recursive Feedback Functions in Composed de Bruijn Sequences

In 21], Mykkeltveit et al. mentioned the idea of constructing a long stage NLFSR from a short stage NLFSR by repeatedly applying Theorem 1 when g is a linear function in two variables that generates a de Bruijn sequence. In this section, we first refine Mykkeltveit et al.'s method and then we show an analytic formulation of a recursive feedback function of an $(n+k)$-stage NLFSR, which is constructed from a feedback function of an n-stage NLFSR by repeatedly applying Theorem 1 and the composition operation.

3.1 The \boldsymbol{k}-th Order Composition of a Boolean Function

Let $g\left(x_{0}, x_{1}, \ldots, x_{n}\right)=x_{0}+x_{n}+G\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ be a Boolean function in $(n+1)$ variables where G is a Boolean function in $(n-1)$ variables. The first order composition of ψ and g, denoted as $g \circ \psi$, is given by [21]

$$
\begin{aligned}
g \circ \psi & =g\left(x_{0}+x_{1}, x_{1}+x_{2}, \ldots, x_{n}+x_{n+1}\right) \\
& =x_{0}+x_{1}+x_{n+1}+x_{n}+G\left(x_{1}+x_{2}, \ldots, x_{n-1}+x_{n}\right) .
\end{aligned}
$$

Similarly, the k-th order composition of g with respect to ψ, denoted as $g \circ \psi^{k}$, is defined by $g \circ \psi^{k}=\left(g \circ \psi^{k-1}\right) \circ \psi$, where $g \circ \psi^{k-1}$ is $(k-1)$-th order composition of g with respect to ψ.

3.2 Repeated Compositions of a Product Term

Let X_{0}^{p} be a product term in p variables which is given by

$$
X_{0}^{p}=\prod_{i \in Z_{o}^{p}} x_{i} \prod_{i \in Z_{e}^{p}}\left(x_{i}+1\right)
$$

Then the first order composition of X_{0}^{p} with respect to ψ, denoted as X_{1}^{p}, is given by

$$
X_{1}^{p}=\prod_{i \in Z_{o}^{p}}\left(x_{i}+x_{i+1}\right) \prod_{i \in Z_{e}^{p}}\left(x_{i}+x_{i+1}+1\right)
$$

which is a product of sum terms in $(p+1)$ variables. Similarly, the k-th order composition of X_{0}^{p} with respect to ψ, denoted by X_{k}^{p}, is defined as $X_{k}^{p}=\left(X_{k-1}^{p}\right) \circ$ ψ, which is a product of sum terms in $(p+k)$ variables. Note that the composition operation with respect to ψ increases the number of variables in X_{0}^{p} by one when
it repeats once, but the composition operation does not increase the algebraic degree of X_{0}^{p}.

We denote by $J^{n-1}=\prod_{i=1}^{n-1}\left(x_{i}+1\right)$. In a similar manner, the k-th order composition of J^{n-1} with respect to ψ, denoted as J_{k}^{n-1}, is defined by $J_{k}^{n-1}=$ $\left(J_{k-1}^{n-1}\right) \circ \psi$, where J_{k-1}^{n-1} is the $(k-1)$-th order composition of J^{n-1}.

Let us now define a function I_{k}^{n} in $(n+k-1)$ variables as follows

$$
I_{k}^{n}\left(x_{1}, x_{2}, \ldots, x_{n+k-1}\right)=J_{k}^{n-1}+X_{k-1}^{n}+X_{k-2}^{n+1}+\cdots+X_{1}^{n+k-2}+X_{0}^{n+k-1} .
$$

Then, I_{k}^{n} satisfies the following recursive relation

$$
I_{k+1}^{n}=I_{k}^{n} \circ \psi+X_{0}^{n+k}, \text { for } k \geq 0 \text { and } n \geq 2
$$

where $I_{0}^{n}=J^{n-1}$.

3.3 The Recursive Construction of the NLFSR

In this subsection, we give the construction of an $(n+k)$-stage NLFSR that is constructed from an n-stage NLFSR.

Proposition 2. Let $g\left(x_{0}, x_{1}, \ldots, x_{n}\right)=x_{n}+x_{0}+G\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$, which generates a span n sequence of period $2^{n}-1$, where G is a Boolean function in $(n-1)$ variables. Then, for any integer $k \geq 0, R_{k}^{n}\left(x_{0}, x_{1}, \ldots, x_{n+k}\right)=\left(x_{n}+x_{0}\right) \circ$ $\psi^{k}+G\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ \psi^{k}+I_{k}^{n}\left(x_{1}, \ldots, x_{n+k-1}\right)$ generates a de Bruijn sequence of period 2^{n+k}.

Proof. By applying Theorem 1 to the feedback function $\left(g+J^{n-1}\right) k$ times, it becomes

$$
\begin{align*}
R_{k}^{n}\left(x_{0}, x_{1}, \ldots, x_{n+k}\right)= & \left(x_{n}+x_{0}\right) \circ \psi^{k}+G\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ \psi^{k}+ \\
& I_{k}^{n}\left(x_{1}, \ldots, x_{n+k-1}\right), k \geq 0 \tag{2}\\
= & \left(x_{n}+x_{0}\right) \circ \psi^{k}+G\left(x_{1} \circ \psi^{k}, \ldots, x_{n-1} \circ \psi^{k}\right)+ \\
& I_{k}^{n}\left(x_{1}, x_{2}, \ldots, x_{n+k-1}\right) . \tag{3}
\end{align*}
$$

The function R_{k}^{n} is a feedback function in $(n+k)$ variables of an $(n+k)$-stage NLFSR and the recurrence relation, $R_{k}^{n}=0$, generates a de Bruijn sequence with period 2^{n+k}.

One can construct the feedback function R_{k+1}^{n} from R_{k}^{n} in the following recursive manner

$$
R_{k+1}^{n}=R_{k}^{n} \circ \psi+X_{0}^{n+k} \text { or } R_{k+1}^{n}=g \circ \psi^{k+1}+I_{k+1}^{n}, k \geq 0
$$

where $R_{0}^{n}=\left(g+J^{n-1}\right)$.
Remark 1. For $k=1$, Proposition 2is the same as Theorem 1 which is also found by Lempel in [18]. For $k=1$ and g is a primitive polynomial, Proposition 2 is similar to Theorem 2 in [21].

Remark 2. According to Theorem 1 the product term X_{0}^{p} in the recurrence relation (21) can be replaced by the product term $\prod_{i \in Z_{o}^{p}}\left(x_{i}+1\right) \prod_{i \in Z_{e}^{p}} x_{i}$.

We now present an explicit form of the product terms of I_{16}^{n} for a recurrence relation of $(n+16)$ stages, which is derived by putting $k=16$ in the recurrence relation (2). Then, the nonlinear recurrence relation of $(n+16)$ stages is given by

$$
\begin{align*}
R_{16}^{n}\left(x_{0}, \ldots, x_{n+16}\right) & =x_{n+16}+x_{n}+x_{0}+x_{16}+G\left(x_{1}+x_{17}, \ldots, x_{n-1}+x_{n+15}\right) \\
& +J_{16}^{n-1}+X_{15}^{n}+\cdots+X_{1}^{n+14}+X_{0}^{n+15}=0 \tag{4}
\end{align*}
$$

where $J_{16}^{n-1}=\prod_{i=1}^{n-1}\left(x_{i}+x_{i+16}+1\right)$ and $X_{j}^{i}=T_{o, j}^{i} \cdot T_{e, j}^{i}, i+j=(n+15), n \leq i \leq$ $n+15, T_{o, j}^{i}$ and $T_{e, j}^{i}$ are given in Table 2 (see Appendix). In the product terms, the subscripts o and e represent the odd indices product terms and even indices product terms. Note that each product term $X_{j}^{i}, i+j=(n+15), n \leq i \leq n+15$, is a function of $(n+15)$ variables.

4 Cryptanalysis of the Recursively Constructed NLFSR for Generating de Bruijn Sequences

Since the feedback function contains I_{k}^{n} and it includes many product terms whose algebraic degrees are high and the Hamming weights of these product terms are low, as a result, the function I_{k}^{n} can be approximated by a linear function or a constant function with high probability. In this section, we first investigate the success probability of approximating the function I_{k}^{n} by the zero function. We then study the cycle decomposition of an approximated recurrence relation after a successful approximation of the feedback function with high probability.

4.1 Hamming Weights of the Product Terms and I_{k}^{n}

Before calculating the success probability of approximating the function I_{k}^{n} by the zero function, we first need to derive the Hamming weight of a composed product term as I_{k}^{n} is a sum of $(k+1)$ composed product terms.

Proposition 3. For an integer $r \geq 1$, the Hamming weight of X_{r}^{p} is equal to 2^{r}.

Proof. For any product term X_{0}^{p}, the r-order composition is of the form $X_{r}^{p}=$ $\prod_{i \in Z_{o}^{p}} U_{i} \cdot \prod_{i \in Z_{e}^{p}} V_{i}$, where U_{i} is a sum of at most $(r+1)$ variables and V_{i} is also a sum of at most $(r+1)$ variables and the exact number of variables in U_{i} / V_{i} depends on the value of r. For simplicity, we assume that $r=2^{l}, l \geq 0$. To find the Hamming weight of X_{r}^{p}, there are two cases to arise.

Case I: When $1 \leq p \leq r+1$
If $r=2^{l}$, then U_{i} and V_{j} can be written as $U_{i}=x_{i}+x_{i+r}, i \in Z_{o}^{p}, V_{j}=$ $\left(x_{j}+x_{j+r}+1\right), j \in Z_{e}^{p}$, respectively. $X_{r}^{p}=1$ if and only if $U_{i}=1$ and $V_{j}=1$ for all $i \in Z_{o}^{p}$ and $j \in Z_{e}^{p}$. This implies

$$
\begin{aligned}
x_{1} & =1+x_{1+r}=1+x_{1+2 r}=\cdots=1+x_{l_{1}}=0 / 1 \\
x_{2} & =x_{2+r}=x_{2+2 r}=\cdots=x_{l_{2}}=0 / 1 \\
& \vdots \\
x_{p} & =1+x_{p+r}=1+x_{p+2 r}=\cdots=1+x_{l_{n}}=0 / 1, \text { if } p \text { is odd } \\
x_{p} & =x_{p+r}=x_{p+2 r}=\cdots=x_{l_{p}}=0 / 1, \text { if } p \text { is even }
\end{aligned}
$$

where $l_{i} \leq p+r, i=1,2, \ldots, p$. Note that X_{r}^{p} is a function in $(p+r)$ variables. For an $(p+r)$-tuple with $X_{r}^{p}=1$, the values at $2 p$ positions are determined by the values at p positions, which follows from the above set of equations and the remaining $(p+r-2 p)$ positions can take any binary value. Hence, the total number of $(p+r)$-tuples for which $X_{r}^{p}=1$ is equal to $2^{p} \cdot 2^{r-p}=2^{r}$.

Case II: When $p \geq r+1$
Similarly, $X_{r}^{p}=1$ if and only if $U_{i}=1$ and $V_{j}=1$ for all $i \in Z_{o}^{p}$ and $j \in Z_{e}^{p}$. This implies

$$
\begin{aligned}
x_{1} & =1+x_{1+r}=1+x_{1+2 r}=\cdots=1+x_{l_{1}}=0 / 1 \\
x_{2} & =x_{2+r}=x_{2+2 r}=\cdots=x_{l_{2}}=0 / 1 \\
& \vdots \\
x_{r-1} & =1+x_{2 r-1}=\cdots=1+x_{l_{r-1}}=0 / 1 \\
x_{r} & =x_{2 r}=\cdots=x_{l_{r}}=0 / 1
\end{aligned}
$$

where $l_{i} \leq p+r, i=1,2, \ldots, r$. According to the above system of equations, the binary values at $(p+r)$ positions are determined by the binary values at r positions and these r positions can take any values. Hence, the total number of $(p+r)$-tuples for which $X_{r}^{p}=1$ is given by 2^{r}.

By considering $U_{i}=1$ and $V_{j}=1$ for all $i \in Z_{o}^{p}$ and $j \in Z_{e}^{p}$ as a system of linear equations with p equations and $(p+r)$ unknown variables over \mathbb{F}_{2}, it follows that the Hamming weight of X_{r}^{p} is equal to the number of solutions of the system of linear equations, which is equal to $2^{p+r-r}=2^{r}$ for any positive integer $r\left(\neq 2^{l}\right)$.

Proposition 4. For any integer $r \geq 1$, the Hamming weight of J_{r}^{n-1} is equal to 2^{r}.

Proof. The proof is similar to the proof of Proposition 3
Proposition 5. For any integer $k \geq 1$ and $n \geq 2$, the Hamming weight of function I_{k}^{n} is equal to $2^{k}+1$. One can approximate function I_{k}^{n} by the zero function with probability $\left(1-\frac{1}{2^{n-1}}-\frac{1}{2^{n+k-1}}\right)$.

Proof. By Proposition 3 the Hamming weight of $X_{j}^{n+k-1-j}$ is equal to 2^{j} for $0 \leq j \leq k-1$. Note that $X_{j}^{n+k-1-j}=1$ is a system of linear equations with $(n+k-1-j)$ equations and $(n+k-1)$ unknown variables and $\operatorname{Supp}\left(X_{j}^{n+k-1-j}\right)$ contains the set of all solutions. It is not hard to show that the support of $X_{i}^{n+k-1-i}$ and $X_{j}^{n+k-1-j}$ are disjoint for $0 \leq i \neq j \leq n-1$. Again, $\left(\cup_{j=0}^{k-2} \operatorname{Supp}\left(X_{j}^{n+k-1-j}\right)\right) \subset \operatorname{Supp}\left(J_{k}^{n-1}\right)$, and $\operatorname{Supp}\left(X_{k-1}^{n+k-1}\right)$ and $\operatorname{Supp}\left(J_{k}^{n-1}\right)$ are disjoint. Then the cardinality of the support of I_{k}^{n} is equal to $\left(2^{k}+2^{k-1}-\right.$ $\left.\sum_{j=0}^{k-2} 2^{j}\right)=\left(2^{k}+2^{k-1}-2^{k-1}+1\right)=2^{k}+1$. Hence, the Hamming weight of I_{k}^{n} is $2^{k}+1$.

Since the Hamming weight of I_{k}^{n} is $2^{k}+1$, the number of inputs for which I_{k}^{n} takes the value zero is equal to $2^{n+k-1}-2^{k}-1$. Hence, one can approximate the function I_{k}^{n} by the zero function with probability $\left(1-\frac{1}{2^{n-1}}-\frac{1}{2^{n+k-1}}\right)$.

4.2 Cycle Structures of the Recurrence Relation After Approximation

By Proposition [5 the function I_{k}^{n} can be approximated by the zero function with probability about $\left(1-\frac{1}{2^{n-1}}\right)$. As a consequence, Eq. (2) can be written as follows

$$
\begin{equation*}
R_{k, a}^{n}\left(x_{0}, x_{1}, \ldots, x_{n+k}\right)=\left(\left(x_{n}+x_{0}\right)+G\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)\right) \circ \psi^{k} \tag{5}
\end{equation*}
$$

In the following proposition, we provide the cycle structure of the above recurrence relation.

Lemma 2. For an integer $k \geq 1, \Omega\left(R_{k, a}^{n}\right)=\Omega(g) \oplus \Omega\left(\psi^{k}\right)$, i.e., any sequence $x \in \Omega\left(R_{k, a}^{n}\right)$ can be written as $x=b+c$, where b 's minimal polynomial is the same as the minimal polynomial of a span n sequence that is generated by g and c 's minimal polynomial is $(1+x)^{k}$ and \oplus denotes the direct sum operation.

Proof. Let s be a span n sequence generated by g and let $h(x)$ the minimal polynomial of s. Then, $h(x)=h_{1}(x) \cdot h_{2}(x) \cdots h_{r}(x)$, where h_{i} 's are distinct irreducible polynomials of degree less than or equal to n and the value of r depends on the sequence, see [10, 12, 20]. If $h_{i}(x)=(1+x)$ for some i, then the sequence s is not a span n sequence. On the other hand, the minimal polynomial of ψ^{k} is $(1+x)^{k}$. Again, the minimal polynomial of a sequence generated by ψ^{k} is a factor of $(1+x)^{k}$. As $h(x)$ does not contain the factor $(1+x)$, the minimal polynomial of s and the minimal polynomial of ψ^{k} are relatively prime with each other. Then, by Lemma 1, any sequence $x \in \Omega\left(R_{k, a}^{n}\right)$ can be represented by $x=b+c$ where $b \in \Omega(g)$ and $c \in \Omega\left(\psi^{k}\right)$. Hence, the cycle decomposition of $R_{k, a}^{n}$ is a direct sum of $\Omega(g)$ and $\Omega\left(\psi^{k}\right)$, i.e., $\Omega\left(R_{k, a}^{n}\right)=\Omega(g) \oplus \Omega\left(\psi^{k}\right)$.

Proposition 6. The cycle decomposition of $R_{k, a}^{n}$, i.e., $\Omega\left(R_{k, a}^{n}\right)$ contains 2 . $\left(\Gamma_{2}(k)+1\right)$ cycles with $\left(\Gamma_{2}(k)+1\right)$ cycles of period at least $2^{n}-1$ and $\left(\Gamma_{2}(k)+1\right)$ cycles of period at most $2^{\left\lceil\log _{2} k\right\rceil}$, where $\Gamma_{2}(k)$ is the number of all coset leaders modulo $2^{k}-1$.

Proof. For any positive integer $k \geq 1$, the cycle decomposition of ψ^{k} is the cycle decomposition of $(1+x)^{k}$, which contains sequences with period $2^{\left\lceil\log _{2} i\right\rceil}, 1 \leq$ $i \leq k$, and the number of cycles is given by $\left(\Gamma_{2}(k)+1\right)$ including the zero cycle (see 9], Th. 3.4, page-42). Again, the cycle decomposition of g contains only two cycles, one is a cycle of length $2^{n}-1$ and the other one is the zero cycle of length one. Therefore, by Lemma 2, $\Omega\left(R_{k, a}^{n}\right)$ contains $2 \cdot\left(\Gamma_{2}(k)+1\right)$ cycles where $\left(\Gamma_{2}(k)+1\right)$ cycles are of length at least $2^{n}-1$ and $\left(\Gamma_{2}(k)+1\right)$ cycles are of length at most $2^{\left[\log _{2} k\right]}$.
Proposition 7. Let $\Omega\left(R_{k, a}^{n}\right)$ be the cycle decomposition of $R_{k, a}^{n}$. For any sequence $x \in \Omega\left(R_{k, a}^{n}\right)$ with period at least $2^{n}-1$, the linear complexity of x is bounded below by the linear complexity of the sequence generated by g.

Proof. We already showed in Lemma 2 that any sequence $x \in \Omega\left(R_{k, a}^{n}\right)$ can be written as $x=b+c$ where $b \in \Omega(g), c \in \Omega\left(\psi^{k}\right)$, and the minimal polynomial of b is coprime with the minimal polynomial of c. Since the minimal polynomial of b is coprime with the minimal polynomial of c, the linear complexity of x is equal to the sum of the linear complexities of b and c. Therefore, the linear complexity of x is greater than or equal to the linear complexity of b. Hence, the assertion is established.

Remark 3. Propositions [5] and 7 suggest that in order to generate a strong de Bruijn sequence by this technique, the starting span n sequence generated by g should have excellent randomness properties, particularly, long period and an optimal or suboptimal linear complexity. If an attacker is successful in approximating the feedback function R_{k}^{n} by the feedback function $g \circ \psi^{k}$, then the security of the sequence generated by R_{k}^{n} depends on the security of the sequence generated by g.

5 Designing Parameters for Cryptographic de Bruijn Sequences

In this section, we present a few examples of cryptographically strong de Bruijn sequences with period 2^{n+k} for $19 \leq n \leq 24$ and $k=16$.

5.1 Tradeoff between n and k

From the construction of the recurrence relation, one can determine an $(n+k)$ stage recurrence relation by choosing a small value of n and a large value of k since for a small value of n it is easy to find a span n sequence and the success probability of approximating the feedback function is low. However, for such a choice of the parameters, the recurrence relation contains many product terms, as a result, the function I_{k}^{n} may not be calculated efficiently. Thus, for generating a strong de Bruijn efficiently, one needs to choose the parameters in such a way that the nonlinearly generated span n sequence is large enough and its linear complexity is optimal, and the number of product terms in I_{k}^{n} is as small as possible.

5.2 Examples of de Bruijn Sequences with Large Periods

Let $\left\{x_{j}\right\}_{j \geq 0}$ be a binary span n sequence generated by the following n-stage recurrence relation for a suitable choice of a decimation number d, a primitive polynomial $p(x)$, and a t-tap position [19]

$$
\begin{equation*}
x_{n}=x_{0}+f_{d}\left(x_{r_{1}}, x_{r_{2}}, \ldots, x_{r_{t}}\right) \tag{6}
\end{equation*}
$$

where $\left(r_{1}, r_{2}, \ldots, r_{t}\right)$ with $0<r_{1}<r_{2}<\cdots<r_{t}<n$ is called a t-tap position and f_{d} is a WG transformation. Here the decimation number d is a coset leader which is coprime with $2^{t}-1$. Then the recurrence relation (4) with G as the WG transformation can be written as

$$
\begin{align*}
R_{16}^{n} & =x_{n+16}+x_{n}+x_{0}+x_{16}+f_{d}\left(x_{r_{1}}+x_{r_{1}+16}, \ldots, x_{r_{t}}+x_{r_{t}+16}\right)+J_{16}^{n-1} \\
& +X_{15}^{n}+X_{14}^{n+1}+\cdots+X_{1}^{n+14}+X^{n+15}=0 \tag{7}
\end{align*}
$$

where $J_{16}^{n-1}=\prod_{i=1}^{n-1}\left(x_{i}+x_{i+16}+1\right)$ and $X_{j}^{p}=T_{o, j}^{p} \cdot T_{e, j}^{p}, p+j=(n+15), n \leq$ $p \leq n+15, T_{o, j}^{p}$ and $T_{e, j}^{p}$ are given in Table 2. The recurrence relation (77) can generate a de Bruijn sequence for a suitable choice of a decimation number d, a primitive polynomial $p(x)$, and a t-tap position. Our de Bruijn sequences are uniquely represented by the following four parameters: 1) the decimation number $d, 2)$ the primitive polynomial $p(x), 3)$ the t-tap position $\left(r_{1}, r_{2}, \ldots, r_{t}\right)$, and 4) I_{k}^{n}.

Table 1 presents a few examples of cryptographically strong de Bruijn sequences with periods in the range of 2^{35} and 2^{40}. In Table 1 the computations for the linear complexity of the 24 -stage span n sequence has not finished yet. However, currently the lower bound of the linear complexity is at least 2^{22}. For more instances of span n sequences with an optimal or suboptimal linear span, see 19].

Table 1. De Bruijn sequences with periods $\geq 2^{35}$

WG over $\mathbb{F}_{2^{t}}$			
t	Decimation		
t		\quad	Basis Polynomial
:---:			
$\left(c_{0}, c_{1}, \ldots, c_{t-1}\right)$	\quad	t-tap positions	
:---:			
$\left(r_{1}, r_{2}, \ldots, r_{t}\right)$			

Remark 4. In recurrence relation (4), any feedback function g that generates a span n sequence can be used to produce a long de Bruijn sequence. To the best of our knowledge, Table 1 contains a set of (longest) de Bruijn sequences whose algebraic forms of the recurrence relations are known. We here used WG
transformations for producing long period de Bruijn sequences as a span n sequence can be found in a systematic manner by using WG transformations and the compact representation of the recurrence relation (6). In [23], eight span n sequences with periods in the range of $\left(2^{22}-1\right)$ and $\left(2^{31}-1\right)$ are presented and that have been used in stream cipher Achterbahn.

6 Implementation

In this section, we provide some techniques for optimizing the number additions in the product terms for $k=16$, and give an estimation for the number of multiplications and the time complexity for computing the function I_{k}^{n} in terms of n and k.

6.1 Optimizing the Number of Additions

For $k=16, I_{k}^{n}$ in recurrence relation (7) contains 17 product terms. For example, for $n=24$ and $k=16$, one needs 2116 additions for computing all product terms in I_{k}^{n}. In Table 2, we can observe that many partial-sum terms appear in different product terms. By reusing the result of a previously computed sum term, we can optimize the number of additions. For $k=16$, three optimization rules are described in Table 3,

Applying the rules given in Table 3, the total number of additions required for computing I_{16}^{n} is given by $\left(n-1+32 \cdot\left\lceil\frac{n+5}{2}\right\rceil+32 \cdot\left\lfloor\frac{n+5}{2}\right\rfloor+152\right)=(32$. $(n+5)+n+151)$, since the numbers of additions required for OR-I, OR-II and OR-III in Table 3 are 32, 18 and 5 , respectively. For $n=24$ and $k=$ 16 , the number of additions after applying the above three rules is equal to 1103.

6.2 Number of Multiplications and the Time Complexity for Computing I_{k}^{n}

The maximum number of multiplications required for computing I_{k}^{n} is given by $\sum_{i=n-1}^{n+k-1}(i-1)=\left(n(k+1)+\frac{(k-1)(k-2)}{2}-3\right)$ as one requires $(i-1)$ multiplications to compute a product of i numbers. For $n=24$ and $k=16$, the number of multiplications for computing I_{k}^{n} equals 510.

Proposition 8. The time complexity for computing the function I_{k}^{n} is approximately given by $\sum_{p=n-1}^{n+k-1}\left\lceil\log _{2} p\right\rceil$.

Proof. To compute a product term $X_{k}^{p}, n \leq p \leq n+k-1$, one requires at most $\left\lceil\log _{2} p\right\rceil$-time. Since the function I_{k}^{n} contains $(k+1)$ product terms, the time complexity for computing I_{k}^{n} is given by $\sum_{p=n-1}^{n+k-1}\left\lceil\log _{2} p\right\rceil$.

7 Conclusions

In this paper, we first refined a technique by Mykkeltveit et al. for producing a long period de Bruijn sequence from a short period span n sequence through the composition operation. We then performed an analysis on the feedback functions of the long period de Bruijn sequences from the cryptographic point of view. In our analysis, we studied an approximation of the feedback functions and the cycle structure of an approximated feedback function, and determined the linear complexity of a sequence generated by an approximated feedback function. In addition, we presented a compact representation of an $(n+16)$-stage NLFSR and a few instances of de Bruijn sequences with periods in the range of 2^{35} and 2^{40} together with the discussions of their implementation issues. A long period de Bruijn sequence produced by this technique can be used as a building block to design secure lightweight cryptographic primitives such as pseudorandom sequence generators and stream ciphers with desired randomness properties.

References

1. Chan, A.H., Games, R.A.: On the Quadratic Spans of de Bruijn Sequences. IEEE Transactions on Information Theory 36(4), 822-829 (1990)
2. Chan, A.H., Games, R.A., Key, E.L.: On the Complexities of de Bruijn Sequences. Journal of Combinatorial Theory, Series A 33(3), 233-246 (1982)
3. de Bruijn, N.G.: A Combinatorial Problem. Proc. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758-764 (1946)
4. The eStream Project, http://www.ecrypt.eu.org/stream/
5. Etzion, T., Lempel, A.: Construction of de Bruijn Sequences of Minimal Complexity. IEEE Transactions on Information Theory 30(5), 705-709 (1984)
6. Fredricksen, H.: A Survey of Full Length Nonlinear Shift Register Cycle Algorithms. SIAM Review 24(2), 195-221 (1982)
7. Fredricksen, H.: A Class of Nonlinear de Bruijn Cycles. Journal of Combinatorial Theory, Series A 19(2), 192-199 (1975)
8. Golomb, S.W.: On the Classification of Balanced Binary Sequences of Period $2^{n}-1$. IEEE Transformation on Information Theory 26(6), 730-732 (1980)
9. Golomb, S.W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1981)
10. Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2004)
11. Gong, G., Youssef, A.: Cryptographic Properties of the Welch-Gong Transformation Sequence Generators. IEEE Transactions on Information Theory 48(11), 2837-2846 (2002)
12. Gong, G.: Randomness and Representation of Span n Sequences. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 192-203. Springer, Heidelberg (2007)
13. Good, I.J.: Normal Recurring Decimals. Journal of London Math. Soc. 21(3) (1946)
14. Green, D.H., Dimond, K.R.: Nonlinear Product-Feedback Shift Registers. Proceedings of the Institution of Electrical Engineers 117(4), 681-686 (1970)
15. Green, D.H., Dimond, K.R.: Some Polynomial Compositions of Nonlinear Feedback Shift Registers and their Sequence-Domain Consequences. Proceedings of the Institution of Electrical Engineers 117(9), 1750-1756 (1970)
16. Jansen, C.J.A., Franx, W.G., Boekee, D.E.: An Efficient Algorithm for the Generation of de Bruijn Cycles. IEEE Transactions on Information Theory 37(5), 1475-1478 (1991)
17. Kjeldsen, K.: On the Cycle Structure of a Set of Nonlinear Shift Registers with Symmetric Feedback Functions. Journal Combinatorial Theory Series A 20, 154-169 (1976)
18. Lempel, A.: On a Homomorphism of the de Bruijn Graph and its Applications to the Design of Feedback Shift Registers. IEEE Transactions on Computers C-19(12), 1204-1209 (1970)
19. Mandal, K., Gong, G.: Probabilistic Generation of Good Span n Sequences from Nonlinear Feedback Shift Registers. CACR Technical Report (2012)
20. Mayhew, G.L., Golomb, S.W.: Characterizations of Generators for Modified de Bruijn Sequences. Advanced Applied Mathematics 13(4), 454-461 (1992)
21. Mykkeltveit, J., Siu, M.-K., Tong, P.: On the Cycle Structure of Some Nonlinear Shift Register Sequences. Information and Control 43(2), 202-215 (1979)
22. Rachwalik, T., Szmidt, J., Wicik, R., Zablocki, J.: Generation of Nonlinear Feedback Shift Registers with Special-Purpose Hardware. Report 2012/314, Cryptology ePrint Archive (2012), http://eprint.iacr.org/
23. http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf

A. Explicit Forms of Product Terms of I_{16}^{n} and Optimization Rules

We here present the explicit forms of the product terms of I_{16}^{n} in Table 2, the rules for optimizing the number of additions required for computing the function I_{16}^{n} in Table 3, and the product terms of Table 2 after applying the optimization rules in Table 4.

Table 2. Product terms in I_{16}^{n} of recurrence relation (4)

$T_{o, 15}^{n}=\prod_{i \in Z_{o}^{n}}\left(\sum_{l=0}^{15} x_{i+l}\right)$	$T_{o, 14}^{n+1}=\prod_{i \in Z^{n+1}}\left(\sum_{l=0}^{7} x_{i+2 l}\right)$
$T_{o, 13}^{n+2}=\prod_{i \in Z^{n+2}}\left(x_{i}+x_{i+1}+\sum_{l=1}^{3}\left(x_{i+2^{l}}+x_{i+2^{l}+1}\right)\right)$	$T_{o, 12}^{n+3}=\prod_{i \in Z_{0}^{n+3}}\left(\sum_{l=0}^{3} x_{i+4 l}\right)$
$T_{o, 11}^{n+4}=\prod_{i \in Z_{0}^{n+4}}\left(\sum_{l=0}^{4} x_{i+l}+\sum_{l=8}^{11} x_{i+l}\right)$	$T_{o, 10}^{n+5}=\prod_{i \in Z_{0}^{n+5}}\left(x_{i}+x_{i+2}+x_{i+8}+x_{i+1}\right.$
$T_{o, 9}^{n+6}=\prod_{i \in Z_{0}^{n+6}\left(x_{i}+x_{i+1}+x_{i+8}+x_{i+9}\right)}$	$T_{o, 8}^{n+7}=\prod_{i \in Z_{0}^{n+7}}\left(x_{i}+x_{i+8}\right)$
$T_{o, 7}^{n+8}=\prod_{i \in Z_{0}^{n+8}}\left(\sum_{l=0}^{l} x_{i+l}\right)$	$T_{o, 6}^{n+9}=\prod_{i \in Z_{0}^{n+9}}\left(\sum_{l=0}^{3} x_{i+2 l}\right)$
$T_{o, 5}^{n+10}=\prod_{i \in Z_{0}^{n+10}}\left(x_{i}+x_{i+1}+x_{i+4}+x_{i+5}\right)$	$T_{o, 4}^{n+11}=\prod_{i \in Z_{0}^{n+11}}\left(x_{i}+x_{i+4}\right)$
$T_{o, 3}^{n+12}=\prod_{i \in Z_{0}^{n+12}}\left(\sum_{l=0}^{3} x_{i+l}\right)$	$T_{o, 2}^{n+13}=\prod_{i \in Z_{0}^{n+13}}\left(x_{i}+x_{i+2}\right)$
$T_{o, 1}^{n+14}=\prod_{i \in Z^{n+14}}\left(x_{i}+x_{i+1}\right)$	$T_{o, 0}^{n+19}=\prod_{i \in Z^{n+16} x_{i}}$
$T_{e, 15}^{n}=\prod_{i \in Z^{n}}\left(\sum_{l=0}^{15} x_{i+l}+1\right)$	$T_{e, 14}^{n+1}=\prod_{i \in Z^{n+1}}\left(\sum_{l=0}^{l} x_{i+2 l}+1\right)$
$T_{e, 13}^{n+2}=\prod_{i \in Z^{n}+2}\left(x_{i}+x_{i+1}+\sum_{l=1}^{3}\left(x_{i+2^{l}}+x_{i+2^{l}+1}\right)+1\right)$	$T_{e, 12}^{n+3}=\prod_{i \in Z^{n}+3}\left(\sum_{l=0}^{3} x_{i+4 l}+1\right)$
$T_{e, 11}^{n+4}=\prod_{i \in Z^{n+4}}\left(\sum_{l=0}^{4} x_{i+l}+\sum_{l=8}^{11} x_{i+l}+1\right)$	$T_{e, 10}^{n+5}=\prod_{i \in Z^{n+5}}\left(x_{i}+x_{i+2}+x_{i+8}+x_{i+10}+1\right)$
$T_{e, 9}^{n+6}=\prod_{i \in Z^{n+6}}\left(x_{i}+x_{i+1}+x_{i+8}+x_{i+9}+1\right)$	$T_{e, 8}^{n+7}=\prod_{i \in Z^{n+7}}\left(x_{i}+x_{i+8}+1\right)$
$T_{e, 7}^{n+8}=\prod_{i \in Z_{c}^{n+8}}\left(\sum_{l=0}^{l} x_{i+l}+1\right)$	$T_{e, 6}^{n+9}=\prod_{i \in Z^{n+9}}\left(\sum_{l=0}^{3} x_{i+2 l}+1\right)$
$T_{e, 5}^{n+10}=\prod_{i \in Z^{n}+10}\left(x_{i}+x_{i+1}+x_{i+4}+x_{i+5}+1\right)$	$T_{e, 4}^{n+11}=\prod_{i \in Z^{n+11}}\left(x_{i}+x_{i+4}+1\right)$
$T_{e, 3}^{n+12}=\prod_{i \in Z^{n}+12}\left(\sum_{l=0}^{3} x_{i+l}+1\right)$	$T_{e, 2}^{n+13}=\prod_{i \in Z^{n+13}}\left(x_{i}+x_{i+2}+1\right)$
$T_{e, 1}^{n+14}=\prod_{i \in Z_{r}^{n+14}}\left(x_{i}+x_{i+1}+1\right)$	$T_{e, 0}^{n+15}=\prod_{i \in Z_{r}+16}\left(x_{i}+1\right)$

Table 3. Optimization rules for addition

Optimization Rule I			
$Y_{1, i}^{1}=x_{i}+x_{i+1}$	$Y_{1, i}^{2}=x_{i+2}+x_{i+3}$	$Y_{3, i}^{1}=x_{i+8}+x_{i+9}$	$Y_{3, i}^{2}=x_{i+10}+x_{i+11}$
$Y_{2, i}^{1}=x_{i+4}+x_{i+5}$	$Y_{2, i}^{2}=x_{i+6}+x_{i+7}$	$Y_{4, i}^{1,}=x_{i+12}+x_{i+13}$	$Y_{4, i}^{2}=x_{i+14}+x_{i+15}$
$Y_{1, i}=Y_{1, i}^{1}+Y_{1, i}^{2}$	$Y_{2, i}=Y_{2, i}^{1}+Y_{2, i}^{2}$		
$Y_{3, i}=Y_{3, i}^{1, i}+Y_{3, i}^{2}$	$Y_{4, i}=Y_{4, i}^{1,}+Y_{4, i}^{2}$		
$Q_{0, i}=x_{i}$	$Q_{4, i}=x_{i}+x_{i+4}$	$\begin{array}{lll}Q_{11, i}=Q_{3, i}+Y_{3, i} & Q_{15, i}=Q_{7, i}+Y_{3, i}+Y_{4, i}\end{array}$	
$Q_{8, i}=x_{i}+x_{i+8}$	$Q_{12, i}=Q_{4, i}+x_{i+8}+x_{i+12}$		
$Q_{2, i}=Y_{0,2, i}$	$Q_{6, i}=Q_{2, i}+Y_{4,6, i}$	$Q_{1, i}=Y_{1, i}^{1}$	$Q_{5, i}=Q_{1, i}+Y_{2, i}^{1}$
$Q_{10, i}=Q_{2, i}+Y_{8,10, i}$	$Q_{14, i}=Q_{6, i}+Y_{8,10, i}+Y_{12,14, i}$	$Q_{9, i}=Q_{1, i}+Y_{3, i}^{1}$	$Q_{13, i}=Q_{5, i}+Y_{3, i}^{1}+Y_{4, i}^{1}$
Optimization Rule II			
${ }_{1, i}=x_{i}+x_{i+1}$	$Y_{1, i}^{2}=x_{i+2}+x_{i+3}$	$Y_{1, i}=Y_{1, i}^{1}+Y_{1, i}^{2}$	$Y_{2, i}=Y_{2, i}^{1}+Y_{2, i}^{2}$
$Y_{2, i}^{1,}=x_{i+4}+x_{i+5}$	$Y_{2, i}^{2}=x_{i+6}+x_{i+7}$	$Y_{i}=Y_{1, i}+Y_{2, i}$	$Y_{0,2, i}=x_{i}+x_{i+2}$
$Y_{4,6, i}=x_{i+4}+x_{i+6}$		$Y_{8,10, i}=x_{i+8}+x_{i+10}$	
$W_{0, i}=x_{i}$	$W_{1, i}=Y_{1, i}^{1}$	$W_{4, i}=x_{i}+x_{i+4}$	$W_{5, i}=Y_{1, i}^{1}+Y_{2, i}^{1}$
$W_{2, i}=Y_{0,2, i}$	$W_{3, i}=Y_{1, i}$	$W_{6, i}=Y_{0,2, i}+Y_{4,6, i}$	$W_{7, i}=Y_{1, i}+Y_{2, i}$
$W_{8, i}=x_{i}+x_{i+8}$	$W_{9, i}=Y_{1, i}^{1}+x_{i+8}+x_{i+9}$	$W_{10, i}=Y_{0,2, i}+Y_{8,10, i}$	
Optimization Rule III			
$Y_{1, i}=x_{i}+x_{i+1}$	$Y_{2, i}=x_{i+2}+x_{i+3}$	$Z_{0,1}=x_{i}$	$Z_{1, i}=Y_{1, i}$
$Z_{2, i}=x_{i}+x_{i+2}$	$Z_{3, i}=Y_{1, i}+Y_{2, i}$	$Z_{4, i}=x_{i}+x_{i+4}$	

Table 4. Product terms of recurrence relation (7)

$T_{o, 15}^{n}=\prod_{i \in Z_{o}^{n}} Q_{15, i}$	$T_{o, 14}^{n+1}=\prod_{i \in Z_{o}^{n+1}} Q_{14, i}$
$T_{o, 13}^{n+2}=\prod_{i \in Z_{o}^{n+2}} Q_{13, i}$	$T_{o, 12}^{n+3}=\prod_{i \in Z_{o}^{n+3}} Q_{12, i}$
$T_{o, 11}^{n+4}=\prod_{i \in Z_{o}^{n+4}} Q_{11, i}$	$T_{o, 10}^{n+5}=\prod_{i \in Z_{o}^{n+5}} Q_{10, i}$
$T_{o, 9}^{n+6}=\prod_{i \in Z_{o}^{n+5}} Q_{9, i} \cdot W_{9, n+6}$	$T_{o, 8}^{n+7}=\prod_{i \in Z_{o}^{n+5}} Q_{11, i} \prod_{i=n+6, \text { odd }}^{n+7} W_{8, i}$
$T_{o, 7}^{n+8}=\prod_{i \in Z_{o}^{n+5}} Q_{7, i} \cdot \prod_{i=n+6, o d d}^{n+8} W_{7, i}$	$T_{o, 6}^{n+9}=\prod_{i \in Z_{o}^{n+5}} Q_{6, i} \cdot \prod_{i=n+6, \text { odd }}^{n+9} W_{6, i}$
$T_{o, 5}^{n+10}=\prod_{i \in Z_{o}^{n+5}} Q_{5, i} \cdot \prod_{i=n+6, \text { odd }}^{n+10} W_{5, i}$	$T_{o, 4}^{n+11}=\prod_{i \in Z_{o}^{n+5}} Q_{4, i} \cdot \prod_{i=n+6, o d d}^{n+11} W_{4, i}$
$T_{o, 3}^{n+12}=\prod_{i \in Z_{o}^{n+5}} Q_{3, i} \cdot \prod_{i=n+6, \text { odd }}^{n+11} W_{3, i} \cdot Z_{3, n+12}$	$T_{o, 2}^{n+13}=\prod_{i \in Z_{o}^{n+5}} Q_{2, i} \cdot \prod_{i=n+6, \text { odd }}^{n+11} W_{2, i} \cdot \prod_{i=n+12, \text { odd }}^{n+13} Z_{2, i}$
$T_{o, 1}^{n+14}=\prod_{i \in Z_{o}^{n+5}} Q_{1, i} \cdot \prod_{i=n+6, o d d}^{n+11} W_{1, i} \cdot \prod_{i=n+12, \text { odd }}^{n+13} Z_{1, i} \cdot\left(x_{n+14}+x_{n+15}\right)$	$T_{o, 0}^{n+15}=\prod_{i \in Z_{o}^{n+16}} x_{i}$
$T_{e, 15}^{n}=\prod_{i \in Z^{n}} Q_{15, i}$	$T_{e, 14}^{n+1}=\prod_{i \in Z_{e}^{n+1}} Q_{14, i}$
$T_{e, 13}^{n+2}=\prod_{i \in Z_{e}^{n+2}} Q_{13, i}$	$T_{e, 12}^{n+3}=\prod_{i \in Z_{e}^{n+3}} Q_{12, i}$
$T_{e, 11}^{n+4}=\prod_{i \in Z_{r}^{n+4}} Q_{11, i}$	$T_{e, 10}^{n+5}=\prod_{i \in Z_{e}^{n+5}} Q_{10, i}$
$T_{e, 9}^{n+6}=\prod_{i \in Z_{e}^{n+5}} Q_{9, i} \cdot W_{9, n+6}$	$T_{e, 8}^{n+7}=\prod_{i \in Z_{e}^{n+5}} Q_{11, i} \prod_{i=n+6, \text { even }}^{n+7} W_{8, i}$
$T_{e, 7}^{n+8}=\prod_{i \in Z_{e}^{n+5}} Q_{7, i} \cdot \prod_{i=n+6, \text { even }}^{n+8} W_{7, i}$	$T_{e, 6}^{n+9}=\prod_{i \in Z_{e}^{n+5}} Q_{6, i} \cdot \prod_{i=n+6, e v e n}^{n+9} W_{6, i}$
$T_{e, 5}^{n+10}=\prod_{i \in Z_{e}^{n+5}} Q_{5, i} \cdot \prod_{i=n+6, \text { even }}^{n+10} W_{5, i}$	$T_{e, 4}^{n+11}=\prod_{i \in Z_{e}^{n+5}} Q_{4, i} \cdot \prod_{i=n+6, \text { even }}^{n+11} W_{4, i}$
$T_{e, 3}^{n+12}=\prod_{i \in Z_{e}^{n+5}} Q_{3, i} \cdot \prod_{i=n+6, \text { even }}^{n+11} W_{3, i} \cdot Z_{3, n+12}$	$T_{e, 2}^{n+13}=\prod_{i \in Z_{e}^{n+5}} Q_{2, i} \cdot \prod_{i=n+6, \text { odd }}^{n+11} W_{2, i} \cdot \prod_{i=n+12, \text { even }}^{n+13} Z_{2, i}$
$T_{e, 1}^{n+14}=\prod_{i \in Z_{e}^{n+5}} Q_{1, i} \cdot \prod_{i=n+6, \text { even }}^{n+11} W_{1, i} \cdot \prod_{i=n+12, \text { even }}^{n+13} Z_{1, i} \cdot\left(x_{n+14}+x_{n+15}\right)$	$T_{e, 0}^{n+15}=\prod_{i \in Z_{e}^{n+16}} x_{i}$

