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Abstract. Web Engineering has always been concerned with modelling
the functional aspects of Web applications. Non-functional (e.g., per-
formance, availability) properties of Web applications have traditionally
been a minor concern in the Web engineering community and have been
seen as technology- or system-related issues. The advent of Cloud com-
puting, with substantial delegation of “system concerns” to infrastruc-
ture or platform providers, seems at a first sight to confirm the validity
of this choice. But is this really true?

We will argue that, in order to be able to actually profit from the
Cloud computing paradigm, Web Engineering methodologies need sev-
eral interventions transcending the platform-specific concerns of adapting
to Cloud technologies.

In this position paper, we call for a long-due revamp of Web engineer-
ing methodologies to become more sound engineering practices with
respect to both functional and non-functional aspects of Web applica-
tions. To this end, we propose a methodological framework that preserves
the advantages of model-driven development, but also takes into account
performance and cost considerations for Cloud-based applications.

1 Introduction

In a recent report Gartner predicts that by 2015 “most enterprises will have part
of their run-the-business software functionally executing in the cloud, using PaaS
services or technologies directly or indirectly” and “cloud-based solutions will be
growing at a faster rate than on-premises solutions” [I3]. Indeed, the pace of adop-
tion of cloud-technologies is staggering, driven by the realization by companies that
(at least for some applications) the advantages of the pay-per-use utility model of
software, platform, and infrastructure as a service (SaaS, PaaS, IaaS) outweighs
today the CAPEX and OPEX of traditional in-house data centres.

Cloud computing pledges to free Web application providers from the burden
of managing the Web infrastructure and applications running on it. The direct
emanation of a pay-per-use model is the focus on application elasticity, meaning
that providers can at any time change the amount of resources (e.g., virtual
machines, CPUs, disks) assigned to applications maintaining constant QoS (i.e.,
their performance) and adapting their cost to the incoming workload.

Some Cloud providers already advertise their platforms claiming that porting
a traditional Web application to the Cloud is as simple as uploading its “.war” file
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to their systems. This is true, in the sense that the application will effectively run,
but there is a small catch: generally it will not scale. Thus, this naive approach
would only work for applications that do not need to support a considerable and
varying number of users, hence probably have no real financial motivation behind
Cloud adoption. For an enterprise application, where SLAs, serving multiple
users, and data-intensive usage are the norm, moving to the Cloud means it will
have to support elasticity in all its architectural constituents: from dynamic
reconfiguration all the way to scalable technologies.

In this paper, we advocate that Cloud computing is a great opportunity for
the Web engineering community. On one hand, Web engineering (WebEng)
methodologies can become the enablers of new SaaS providers that design, test,
deploy, and manage applications in a single online environment without requiring
programming skills. On the other hand, and in order for these applications to
scale, WebEng methodologies need to, at the very least, adapt their runtime and
code generation mechanisms.

We go the full way and claim that also the modelling primitives and method-
ologies need a revamp. As main evidence to support this observation we will
elaborate on the following two considerations: 1) some systemic trade-offs (e.g.,
consistency vs. availability vs. partition tolerance [4]) imply a range of decisions
that vertically span multiple modelling layers through the complete application
life-cycle; and 2) some of the main reasons to move to the Cloud are elasticity, the
pay-per-use model, and the savings they imply: non-functional aspects of Cloud
applications reflect directly on their cost and rentability, hence WebEng sim-
ply cannot afford not to consider them.

The main contributions of this paper are:

— An analysis of how to enable Web engineering methodologies to address Cloud
computing development in terms of code generation, modelling primitives,
Cloud patterns and elasticity;

— the prospect of Web engineering as a service, a viable opportunity to foster
elastic application modelling;

— a methodological framework to address both the functional and non-functional
quality of Web applications in the Cloud, preserving the advantages and flex-
ibility of Web engineering methodologies.

The rest of this article is organized as follows: SectionPlgives a high level overview
of cloud computing paradigms and common patterns; Section 3] justifies the need
for adaptation, and describes the different integration scenarios between Cloud
computing paradigms and Web engineering. Section [ discusses whether the as-
pects currently covered by Web Engineering methodologies are still adequate for
Cloud development, Section [ proposes an extended methodological framework
catering for non-functional aspect for continuous development in WebEng; Sec-
tion [l comments on the related work. Finally, Section [{] draws conclusions and
illustrates our planned future work.
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2 Cloud Computing in a Nutshell

The Cloud computing paradigm is typically characterized as either software,
platform, or infrastructure “as a service”, respectively SaaS, PaaS, and laaS,
where being a service implies billing. Each characterization sees two actors: the
cloud provider and the cloud user together with a different amount of responsi-
bility and control.

In SaaS, the service being delivered is an application, a software accessed with
a remote client, typically provided with some guarantees in terms of quality
(QoS) expressed in terms of service level objectives (SLOs). The Cloud user
normally pays a flat rate amount (monthly, yearly) to access the service and
delegates the complete responsibility of managing the application, platform, and
infrastructure upon which it runs to the service provider. For the client this is
the simplest approach to cloud computing: it does not require any knowledge or
experience about platforms and infrastructure technologies; the service offered is
the application functionality and all non-functional aspects are delegated to the
provider’s responsibility. An example of a SaaS instance is the service offered by
Salesforce.com, a company offering pre-packaged (and customizable) customer
relationship management (CRM) solutions “as a service” to other companies.

In PaaS, the service being offered is a “platform” in the sense of an applica-
tion runtime environment together with generic application functionalities (e.g.,
database storage, event buses, messaging, authentication). The cloud client pays
for the service of utilizing a runtime (often also development) environment and
delegates to the platform provider the activities of managing the elasticity and
the infrastructure running the applications. Each platform in the PaaS sense is
a coherent set of technologies selected and managed by the cloud provider. They
are typically packaged in application programming interfaces (APIs) that are
specific of the chosen PaaS provider. Currently this is one of the main obsta-
cles to Cloud interoperability, since PaaS APIs are very heterogeneous due to
the different technologies adopted by providers. Even though the PaaS market
is supposed to be consolidating in a few years into a small numbers of “big”
providers [13], this might of course still result in vendor lock-in situations. PaaS
is intended for application developers, hence more advanced users with respect
to SaaS, that are willing to pay cloud providers to manage the infrastructure
and platform supporting their application logic. Two quite different examples of
PaaS solutions are Google App Engine and CloudBees. The former allows de-
velopers to build applications using the same scalable solutions powering some
Google products (e.g., BigTable, GFS) on the Google infrastructure; the latter
is targeted at development and deploy of Java Web applications with additional
generic services (e.g., monitoring, logging, storage) on top of third party infras-
tructure providers, for example Amazon EC2.

IaaS builds mainly on virtualization: Cloud providers offer infrastructural re-
sources (e.g., CPUs, RAM, bandwidth) as a service for running third party applica-
tions typically packaged in virtual machines (VMs). The service level agreements
between infrastructure providers and cloud users only deal with provisioning and
availability of resources for the VMs. In this scenario, application developers have
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the most control on their application: apart from developing its functional logic,
they can select the platform to use for development and deploy, and they have con-
trol on the number of virtual machines (and therefore on the amount and cost of
resources) assigned to their application. Infrastructure providers retain the control
on the actual physical data center infrastructure. Examples of TaaS are for instance
Amazon EC2, Microsoft Azure, Rackspace, and GoGrid.

2.1 Cloud Patterns

Modern massively-scalable Web applications rely on different patterns and
technological solutions with respect to traditional Web applications. While the
three-tier architectural model still holds, each of the tiers had to undergo some re-
structuring in order to enable elasticity. Given the space limitations, here we give
only a short list of the main issues addressed in elastic Cloud applications, they are:

Load balancing and HTTP sessions: Load balancers are used to spread
the load across the multiple instances of VMs that compose an application.
HTTP Sessions are typically stored at the application server layer, and load
balancers have to forward requests for each user to the application server
hosting the correct session ( “sticky sessions”). Some PaaS providers (e.g.,
Cloudbees) do not support sticky sessions for some usage configurations,
and suggest using session-specific datasources to persist all session-related
variables so that they are shared by all VMs.

Dynamic reconfiguration: A common pattern for enterprise solutions is to
realize Web applications as compositions of Web services offered by different
components. When horizontally scaling any of this components by adding
or removing a VM, all the components that directly communicate with it
need to be notified and/or reconfigured. A typical solution is using enterprise
service buses (ESB) to achieve de-coupling.

Storage, NoSQL, and sharding: This is probably the most notable paradig-
matic change for Cloud-based Web applications. In his first conjecture of the
CAP theorem, Brewer postulated [4] that it is impossible for a distributed sys-
tem to provide at the same time consistency, availability, and partition toler-
ance. Much in this direction, Cloud application providers have soon realized
that relational databases are able to scale only up to a point, then consistency
(the ’C’ in ’ACID’) eventually has to be given up for improved availability and
better partition-tolerance (i.e., ultimately for horizontal scalability). In other
terms, the “blocking” needed for consistency might be negligible for small ap-
plications, but might become a hinderance when apps need to grow in size.
One of the outcomes of these considerations is the thriving world of NoSQL ap-
proaches for “not-so-structured” storage of key-value pairs, documents, blobs.
NoSQL is the term vaguely identifying the wide range of data management
systems relaxing some of the ACID properties for the sake of horizontal scal-
ability (i.e., adding instances). Several NoSQL solutions are widely adopted,
for instance BigTable, Cassandra, Memcached, MongoDB, Apache CouchDB,
and Voldemort. Apart from scalability, these solutions are typically adopted



Web Engineering for Cloud Computing 9

also because they offer very low latency and flexibility to schema changes or
no predefined schemas at all. NoSQL solutions are no silver bullet: some ap-
plication scenarios have hard consistency requirements and the best option
in this case is still using RDBMS, but in some other cases (e.g. Web2 social
applications) dirty reads might be tolerated and, if needed, recovery policies
might be implemented at the application level. NoSQL solutions widen the
spectrum of design choices for storage management. A recent comparison of
scalable data stores is provided by Cattell in [6].

Multi-tenancy: a multi-tenant architecture is one that serves a single software
to multiple “tenants”. Tenants can be different organizations, company di-
visions, or generic clients. In a multi-tenant architecture data and process-
ing for each client may have different ranges of sharing/isolation requirements
(e.g., for data: dedicated physical servers, shared virtualized hosts, dedicated
database on shared servers, dedicated schema within shared database, shared
tables) as well as customization (e.g., schema customization, UI customiza-
tion). Higher isolation translates into higher costs for the software (SaaS)
provider. Multi-tenancy goes hand in hand with Cloud computing, since the
SaaS provider can for instance leverage application elasticity to serve multi-
ple global clients working across time zones with one customizable application
and relatively few VM instances. A representative example is Salesforce.com
that has 772,500 customers who are supported by 8 to 12 multi-tenant in-
stances (meaning TaaS/PaaS instances) in a 1:5000 ratio. In other words, each
multi-tenant instance supports 5,000 tenants who share the same database
schemafl. Multi-tenancy is a key resource for software providers, since it al-
lows optimizing and reducing costs for serving software to multiple clients.

MapReduce and large scale data processing: MapReduce [14] is a pro-
gramming model for the distributed processing of large datasets. While its
initial (and still main) purpose is to be used for the massive paralleliza-
tion on commodity hardware of long-running tasks, in common practice it is
also used in NoSQL databases for data processing and even simple aggrega-
tion queries over distributed datasets (e.g., in MongoDBH . The most widely
known implementation of MapReduce is Apache Hadoop.

3 Web Engineering Concerns

Web engineering methodologies can potentially become the enablers of new Saas
providers that use a single interface to seamlessly model, deploy, run, manage,
evolve, and sell new Cloud-based Web applications. These SaaS providers will
not need to own any computing infrastructure, but their only required assets will
be modelling tools and the models of applications to be sold. This is very much
in line with Gartner’s expectations for the medium term: ”By 2015, 50% of all

' http://www. computerworld.com/s/article/9175079/
Multi tenancy in the cloud Why it matters ?

2 http://www.mongodb.org/display/DOCS/MapReduce

3 http://hadoop.apache.org
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new application independent software vendors (ISVs) will be pure software-as-
a-service (SaaS) providers” [13].

In order to do this, it is up to the WebEng community to seize the opportunity
and update the current methodologies and tools. In the following paragraphs we
will discuss why and how, but first, with the sole purpose of identifying the main
areas of intervention, we need to briefly sketch what a WebEng approach looks
like. Simplifying, we can roughly say that a generic Web engineering approach
consists of:

— a methodology covering the complete Web application life-cycle;

— platform-independent models (data, “navigational”, etc.);

tools for model visualization and editing;

— tools for model transformation / code generation;

— libraries for the runtime support of the generated Web applications.

In WebEng, the separation between platform independent and platform depen-
dent models and realizations is the abstraction that frees Web engineers from
considering the technological details of the actual Web deployment letting them
concentrate on the (core) functionality of their applications. The realization of
platform-independent models (e.g., data and navigational models) into platform-
dependent models (the application code / library configurations) is accomplished
by the code-generation tools that embed the mapping / realization choices hiding
them (and typically preventing changes) from developers.

We claim that for WebEng to support Cloud-based Web applications inter-
ventions are needed to:

1. adapt the runtime support and code generation techniques to Cloud APIs
and technologies (platforms). This is a technological aspect required to ad-
dress elastic Web applications;

2. include paradigmatic changes and patterns in the platform-independent mod-
els, and consequently update model editors. The aim is that of generalizing
common patterns and make them available as clear design options to the
application designer/analyst;

3. make modelling tools available for online usage, integrate with PaaS/IaaS
providers realizing the view of “Web modelling as a Service”.

Admittedly, the third is not really a hard requirement, but rather a new and
promising opportunity for WebEng approaches.

3.1 Code Generation

Current WebEng tools can generate Web application code for different platforms
(e.g., Java, .NET) but are typically not concerned with systemic aspect of the
production deployment, such as load balancing, scaling out, replication, and per-
formances in general. In Section 2l we have seen how considerable effort has been
invested in addressing application elasticity in Cloud development together with
a brief list of the specific technologies that make this possible. These technologies
can be accessed in different ways depending on the chosen Cloud model (PaaS
or TaaS).
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PaaS Deployment. In this scenario, the set of available elastic technologies is
limited and depends on PaaS provider choices and expertise. This allows PaaS
providers to control and manage the scaling out of applications. The biggest
problem with PaaS is that in most cases access to scalable services and compo-
nents needs to go through the PaaS provider API, locking-in applications to a
single provider’s infrastructure.

Considering that addressing all current PaaS providers’ APIs is not a viable
option, the first step in adapting a WebEng methodology for PaaS deployment
would therefore be the choice of the (set of) PaaS provider(s) to support.

Then, for each PaaS provider API, the code generation and runtime support
of every single modelling primitive (e.g., units in WebML [7]) would have to
be rewritten and tested to invoke the correct provider methods. For instance,
in Google App Engine the default data storage mechanism is the “App Engine
Datastore”, an implementation of a NoSQL storage for objects that needs to be
reached through a specific APTin J avall. Only recently, Google extended the App
Engine storage options with a relational offer ( “Google Cloud SQL”) based on
MySQL; for the moment being it is still in preview and with some limitations.
It is a perfectly plausible scenario one in which, for reasons of opportunity,
some application domain entities will be mapped to the relational data storage
and some others to the NoSQL one. This is an example of design decision that
will have to be made at model level, but needs to be supported by the code
generation.

IaaS Deployment. In this scenario the atomic units of deployment are virtual
machines (VMs). While each infrastructure provider supports its own VM spec-
ification (e.g., AMIs for Amazon EC2) and interoperability is not given as-is,
lock-in issues are less severe in IaaS since application providers can freely choose
their development platforms and OSs and can (re-)package them as disk images
supported by each hypervisor technology.

The main problem instead is identifying and managing a set of components
(load balancers, application servers, data storage implementations) so that they
can be packaged in a coherent set of VMs, configured through code generation,
and appropriately scaled out at runtime. Given the vast number of technologies
currently available, it is by itself a challenging endeavour.

A sensible approach for adapting a Web engineering tool for IaaS might be
building on pre-packaged (and modular) VMs adopting Cloud-specific patterns
such as the ones provided by AppScal [8]. A viable solution would then be
updating code generation and runtime libraries to support for example at least
one implementation per type of scalable storage (SQL vs NoSQL).

3.2 Model Extension

In our opinion, some of the aspects and patterns we introduced in Section 2]
deserve to be promoted into platform-independent model concerns. We leave

4Thttp://code.google.com/appengine/docs/java/datastore/queries . html
® http://appscale.cs.ucsb.edu/
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the full proposal of how to include them and the evaluation of the possible
alternatives to future work. In this paper, we want to give extensive justifications
as to why and in which direction WebEng methodologies need to be updated.

For instance, the fact that some PaaS providers do not support sticky sessions
can either be kept hidden in the code generation logic or explicitly taken into
account at model level. In the first case, when generating code for a specific
PaaS, all HTTP session-related logic has to be translated into storage queries
and updates. Another option is to make designers aware of this choice by us-
ing warning mechanisms to prevent them from using HT'TP session. The second
choice impacts heavily on navigational modelling, and in case of multiple plat-
forms might require model changes. The positive aspect is that the designer will
have a clear perception of what the application actually does and will be aware
of the eventual monetary costs and implications of the modelling choices, which
might eventually lead to alternative designs.

As we stressed in Section [2, NoSQL storage is probably the Cloud-specific
pattern with the most implications. Nowadays it is common for Cloud applica-
tions to use a combination of RDBMS and NoSQL data storage respectively to
manage entities with hard consistency requirements (e.g., orders, item stocks,
tickets, seats) and entities with eventual consistency (e.g., message chats, com-
ments, events, logs). Designers will need to decide which kind of consistency
they need for entities in their domain models. We argue this is not just a data
mapping concern, since the type of entity (hard- or eventual- consistency) might
need different navigational patterns.

We can give some practical examples. For instance, NoSQL objects are typ-
ically designed as self-contained elements to be accessed “in one scoop” with a
query over a single collection (there are no join operations in NoSQL). For ex-
ample, a blog post and all its comments can be stored and retrieved as a single
navigable “object” (very much like beans in EJB) requiring a specific naviga-
tional pattern. Also giving up consistency for scalability (using NoSQL) one
can find ways to mitigate transactionality: single object in NoSQL can support
atomicity, and some failure and roll-back policies could be explicitly modelled
at application level. For example, an online shop could use NoSQL data storage
to manage items in stock and send out order cancellation notifications at a later
time in case of stock depletion.

Multi-tenancy is another very interesting pattern for WebEng. Depending on
the level of isolation, a SaaS provider could for example: 1) deploy multiple
instances of the same application model with different Uls for each customer;
or use the same application model and 2) explicitly trigger user-specific cus-
tomizations at model level (e.g., add functionalities) as a sort of personalization,
or 3) extend the modelling approach to add client customization (e.g., change
UI with customer) as a separate/implicit concern to be dealt with at runtime.
Many other possibilities are available and deserve some investigation, the mes-
sage here is that WebEng can prove itself a powerful technique to achieve the
rationalization of the SaaS provider multi-tenancy offering.
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3.3 Web Engineering as a Service

The natural consequence of “everything as a service” is Web engineering as a
service, where what is offered is a Web engineering approach as a modelling,
development, and management platform. Let’s not consider the practical impli-
cations of realizing such an environment for the moment; the advantages “on
paper” would be:

— no need to install any software, accessibility from everywhere and for every-
one (possibly with a browser?);

— easier and more controlled user licensing model for the WebEng approach
provider;

— asingle interface for modelling, generation, deployment, management of Web
application;

— integration with PaaS / IaaS providers, access to online monitoring and
management of the deployment;

— omne-click deploy of staging / production application models;

— online sharing of models, components, patterns;

— online consulting to solve, help with, signal issues with applications and
models;

— immediate signalling and propagation of failure and bug warnings across all
deployed applications (in a software product line way).

Clearly, considerable work to extend the current modelling tools would be needed
in order to deliver the full functionality. Some of the above advantages are already
within reach, some others require investments and a costs and benefits analysis.
We believe that in the end it will prove being worth the effort, especially if
the WebEng approach can yield measurable benefits when applied to the Cloud
paradigm, as we will argue in the following paragraphs.

4 Putting Non-functional Aspects Back on the Map

The Cloud pay-per-use model yields the most financial benefits to companies
providing elastic applications (or having flexible requirements). Following this
consideration, it is clearly of tantamount importance for elastic applications to
be able to scale efficiently, that is avoiding to waste resources (hence money)
while offering elastic performance. In WebEng concerns, we argue that while it
is a good idea to keep platform-specific aspects out of the way, now is a very
good time to partially reconsider, since elastic scenarios make non-functional
considerations critical. In this section and the next one we suggest how put these
aspects back on the map in a non-intrusive (sort-of aspect-oriented) fashion.

As we have already said, platform-independent models in WebEng abstract
from technological details to let designers focus on functionality. The downside
to this is that, once the technological / system aspects are out of the way, it
is very hard to put them back in the loop for an engineer to consider. As a
consequence, Web engineering methodologies do not account for non-functional
aspects (in particular performances) of the modelled applications.
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In our opinion the fact that Cloud applications are elastic should be an in-
centive, rather than an excuse not to be concerned with the non-functional
properties of Web applications. We try to contend in this direction with two
examples.

Let’s first consider a PaaS scenario, Google’s App Engine for instance. Taking
a look at the billing documentation® one can see that, apart from virtual ma-
chine usage, developers are charged also for datastore operations, and that, in
order to limit running costs, they can set a maximum budget for running their
apps. While a thorough look at how Google API high-level datastore operations
map to low-level (billed) operations might save some money, a developer should
make modelling decisions (and receive confirmatory feedback that they work by
deploying) preventing the application from consuming its resource quotas and
simply stop working’. In fact, application instance scaling is controlled by the
number of requests in the queue of each machine instancdd: complex pages mean
higher latency, which means lower throughput, queues filling up, and higher cost
for running the application. The trade-off is therefore between complex feature-
rich pages and low latency and lower cost. In the end, given the relatively small
control PaaS offer to developers, fine tuning the application logic and knowing
in detail the performance profile of each of its page / operation / component
are the only instruments available to achieve performance- and cost-effective
applications.

For enterprise applications the predicted evolution is that they will partially
move to the Cloud, keeping mission-critical resources on premises and follow-
ing a hybrid (private/public cloud) approach [I3]. In this case, a IaaS scenario
can accommodate for more technological flexibility than PaaS since application
providers can decide which components and platforms to use in their own virtual
machines. This will be the most common requirement when adapting/migrating
legacy applications to a hybrid cloud environment. In this case, non-functional
aspects of applications become even more critical: enterprise applications have to
deliver in terms of QoS (Quality of Service, e.g., with service level objectives on
response times and availability) and face the risk of monetary penalties in case of
violations. In TaaS, the design space for application logic, services, components,
and VMs is considerable, and application elasticity (and their cost) is under
the complete control of the application provider. Hence, in IaaS it is even more
essential than in PaaS for application providers to have a complete grasp of
their application behaviour in functional (F) and non-functional (NF) terms
in order to make the right design decisions. The sought equilibrium is striking
the balance between under- and over-provisioning, considering the effects that
design decisions will have on performances, cost, and revenue.

In the following section we introduce the framework we foresee to support the
all-around (F+NF) quality of Web applications deployed on the Cloud.

5 http://code.google.com/appengine/docs/billing.html
"http://code.google.com/appengine/docs/quotas . html
8 http://code.google.com/appengine/docs/adminconsole/instances . html


http://code.google.com/appengine/docs/billing.html
http://code.google.com/appengine/docs/quotas.html
http://code.google.com/appengine/docs/adminconsole/instances.html

Web Engineering for Cloud Computing 15

5 Model-Driven F+NF Quality Framework

The functional quality of model-driven applications is one of the cornerstones
of Web engineering. It stems directly from software product lines [I8] concepts
combined with model-driven development and domain specific languages (DSLs).
Briefly, WebEng DSLs allow modelling primitives to be implemented once by
expert developers and then consistently reused by instantiating and configuring
these primitives in the application models. In WebML [7] for example, the run-
time service implementing each type of “unit” is a single parametric class that
gets configured at runtime through unit descriptors: one descriptor specifying
which attributes to show, how to sort, how to query for each unit instance in
the model. The net result of this is that, once the parametric class for a unit
has been thoroughly tested, the only way for one of its deployed instances to
produce a failure is wrong conﬁguratiorﬂ Simply said, WebEng DSLs strongly
enforce reuse, a proven way of reducing faults and improving quality.

The other great advantage of WebEng approaches with respect to traditional
development is productivity. Notwithstanding the (still) limited industrial
adoption of WebEng techniques, it has been repeatedly proven in practice (see
for instance the work by Acerbis et al. [I]) that, where the language primitives
are sufficient to represent the needed application logic, model-driven approaches
yield an advantage in terms of time and effort needed to design, develop, deploy,
and maintain Web applications. There is a general trend that recognises the ben-
efits of factoring out some concerns to be considered as separate aspects (e.g.,
CSS for style and appearance) in Web development, but so far only WebEng
modelling has been able to offer instruments to do it effectively for Web appli-
cation logic. In the end, increased productivity allows more flexibility in face
of enterprise-specific and ever-changing requirements, maintenance, and contin-
uous development of new features that are typical of the Web today. No need to
recode, re-factor, or deal with software modules and artefacts, just update the
model and generate the new code.

Cloud computing complements the functional flexibility of WebEng
DSLs with flexibility in the non-functional aspects: application elasticity.
In order to preserve and combine the benefits of both worlds, we propose an
extension to WebEng methodologies that caters for quality (both functional and
non-functional) of Cloud-based Web applications across their complete life-cycle.
A high-level overview of the framework is shown in Figure[Il For space reasons,
we only illustrate it considering the more complete and complex scenario of
TaaS deployment. PaaS deployment would only use a subset of the considered
activities, which are:

1. DSL modelling: to achieve reuse, quality, productivity, and flexibility of a
model-driven approach.

2. Model transformation: in order to add elasticity to the equation, WebEng
model transformation, code-generation, and runtime support need to leverage

 To mitigate this, most WebEng tools provide warning generation mechanisms to
prevent misconfigurations by checking the models through language-specific rules.
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Fig. 1. Quality framework for Cloud-based Web applications

scalable technologies and patterns. Furthermore, appropriate monitoring
probes need to be implemented and embedded in VMs to enable runtime mon-
itoring and control [9].

Cloud deployment: the advantage of using Cloud computing in this case
is the relative simplicity in setting up dynamic staging and production en-
vironments thanks to virtualization of resources.

. Adaptive control: it consists in the management of the application elas-

ticity. In production, most TaaS providers offer a user interface for dynam-
ically adding and removing virtual machines at runtime, another common
approach is to set up auto-scaling rules based on some low level metric (e.g.,
CPU load, memory usage). When considering enterprise applications, with
several components and complex service mixes, manual scaling and rules
can be too simplistic and model-based controllers are needed [2]. Traditional
design-time capacity planning techniques (e.g., linear models, simple queues)
also have drawbacks in a Cloud computing setting as they are unable to
keep up with changes and emerging behaviour and tend to become unre-
alistic over time [3]. The solution we suggest is using system performance
models to achieve autonomic control. For instance, a statistical model and
an evaluation is proposed by Bodik et al. in [3]; while the authors propose
an approach using Kriging models and their evaluation of model prediction

quality in [I7].

. Learning: Autonomic controller models keep updating themselves at run-

time. The knowledge gathered in this learning process makes the controllers
robust to the environmental (e.g., workload peaks) and application changes
to which Cloud-based systems are constantly exposed.
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6. Prediction: Collected knowledge from the running system can be leveraged
for parameter estimation of layered queue networks (LQN) or other models,
allowing performance prediction across the whole application elasticity range.

7. Non-functional modelling: Finally, performance models from data ob-
tained at runtime and LQNs can be combined with WebEng models to close
the loop. This, as we proposed in [12], enables modelling taking into account
non-functional concerns. For each modelling action, Web developers can re-
ceive an immediate feedback of the effects it will have in terms of system
performances and costs. By providing a model of the expected workload
range and performance service level objectives (SLOs) for each page / oper-
ation, a warning system can be implemented to explicitly signal when SLO
violations or budget exceedances are predicted in the workload range.

The users of the framework are not required to be performance experts nor system
engineers. In this aspect, all non-functional concerns can be considered separately
using software automation. Given a formal set of SLOs, solutions like the ones
we proposed in [12] and [I7] can be integrated and work in a totally autonomous
fashion. In this way, novice users will only receive warnings in case the modelled
pages / operations might violate SLOs, while more advanced users will be able
to get complete predictions and monitoring of the response time, throughputs,
and system configurations. The advantage of this approach is that it allows Web
engineers to change their design incrementally and in a controlled way
keeping at all times application’s performances and costs under strict supervision.

6 Related Work

To the best of our knowledge, this is the first work that addresses the problem
of adapting Web engineering methodologies for the Cloud computing paradigm;
some of its aspects are however not new. The concept of Model-Driven Perfor-
mance Engineering, for instance, was introduced by Frietzsche and Johannes
in [I1] and consists annotating models with performance information to enable
performance analysis, for example with LQNs as in [I5]. As we discuss more
extensively in [I2] our approach is similar, but in our case we can benefit from
a continuous online estimation of LQN parameters and an arbitrarily accurate
definition of the LQN starting from WebEng and PaaS models.

Various authors have addressed the topic of migrating applications to the
Cloud, focusing in particular on legacy applications as in [16]. With respect to
these works, our proposed approach has the unique feature of dealing with model-
driven methodologies that, by leveraging reuse, allow for a rationalized migration
process. In fact, only the runtime primitives of each modelling language need to
be migrated to Cloud-specific technologies (as we explain in Section B]), then
model transformation can generate the rest of the needed configuration.

A relatively large amount of work has focused on automatic control of ap-
plication elasticity, we cited some relevant works in Section [Bl With respect to
the framework we propose, these are all interchangeable solutions that can be
adopted (e.g., different autonomic controller implementations), the paper claims
no contribution in this area.
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Escalona and Koch survey how WebEng approaches deal with capturing,
specifying, and validating Web requirements [10]. However, the considered non-
functional requirements are mainly concerning usability aspects; no formal spec-
ification or assurance of performance aspects is explicitly considered by any
methodology at platform-independent model level. Instead, in this work, we
claim that performance aspects directly reflect on application running costs in
a Cloud computing scenario, and therefore should be explicit.

Finally, the concept of “Web engineering as a service” is not new, as it is in-
troduced as “modelling as a service” in [5]. However, this is the first contribution
that proposes (admittedly at very high level) a methodology for it that caters for
functional, performance, and monetary aspects in the continuous-development
life cycle of Web applications.

7 Conclusions

In this paper we discuss how to enable Web engineering methodologies to ad-
dress Cloud computing development. We report that one of the main economical
reasons for Cloud computing adoption is in the savings that the “pay-per-use”
model enables for elastic applications.

We argue that current Web engineering methodologies do not make use of
elastic technologies and would need an update to support Cloud development.
More importantly, we sustain that Web engineering methodologies are gener-
ally too focused on functional concerns to be able grasp the main drivers of
Cloud-based Web applications, which are performances and costs. To this end,
we discuss the main interventions we deem necessary in order to combine the
functional flexibility of WebEng DSLs with the flexibility in the non-functional
aspects offered by the Cloud paradigm. In particular we relate on: 1) updating
code generation and runtime libraries to support elastic technologies; 2) expos-
ing Cloud-specific design decision in platform-independent models; 3) upgrading
modelling tools to achieve Web engineering “as a service”. Additionally, we pro-
pose a methodological framework to extend WebEng methodologies to consider
non-functional (and in particular performance) concerns that are crucial in the
Cloud pay-per-use model.
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