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Abstract. Cloud service composition is usually long term based and
economically driven. We consider cloud service composition from a user-
based perspective. Specifically, the contributions are shown in three as-
pects. We propose to use discrete Bayesian Network to represent the
economic model of end users. The cloud service composition problem is
modeled as an Influence Diagram problem. A novel influence-diagram-
based cloud service composition approach is proposed. Analytical and
simulational results are presented to show the performance of the pro-
posed composition approach.

1 Introduction

Cloud computing is increasingly becoming the technology of choice as the next-
generation platform for conducting business [1]. Big companies such as Amazon,
Microsoft, Google and IBM are already offering cloud computing solutions in
the market. A fast increasing number of organizations are already outsourcing
their business tasks to the cloud, instead of deploying their own local infrastruc-
tures [2]. A significant advantage of cloud computing is its economic benefits for
both users and service providers.

Cloud computing has been intertwined with SOC since its inception [3]. Ser-
vice oriented computing (SOC) has been widely accepted as the main technol-
ogy enabler for delivering cloud solutions [4]. Service composition is an active
research area in service-oriented computing [5]. Compared to traditional service
composition, cloud service composition is usually long-term based and econom-
ically driven. Traditional quality-based composition techniques usually consider
the qualities at the time of the composition [6]. This is fundamentally differ-
ent in cloud environments where the cloud service composition should last for a
long period. Specifically, we identify the following problems in existing solutions:
First, end users in cloud environment are usually large companies and organiza-
tions who aim to construct long-term business relationships with cloud service
providers [4]. This aspect is largely lacking in existing service composition solu-
tions, e.g., [5] [6]. Besides, end users and service providers participant in service
composition according to their economic models [7]. However, existing models
addressing economic aspects do not consider service composition but mostly fo-
cus on resource provision to specific applications [8] (e.g. cloud cache, scientific
applications).
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This paper presents a novel quality-based cloud service composition approach.
The research focuses on the selection of composition plans based solely on
non-functional (Quality-of-Service, or QoS) attributes. Our main contributions
include: (1) Economic models are constructed for end users to model their long-
term behaviors. (2) The cloud service composition problem is considered from
a decision analysis perspective. Specifically, this research proposes to use Influ-
ence Diagrams [9] to represent and solve cloud service composition problem. (3)
An exemplary scenario is considered where the composition framework aids a
department in a university compose cloud services to process tenure cases. An-
alytical and simulational results are presented to show the performance of the
proposed approach.

The remainder of the paper is structured as follows: Section 2 presents a moti-
vating scenario. Section 3 provides an overview of the cloud service composition
problem. Section 4 gives a detail analysis of the research challenges and then
elaborates the proposed composition approach. Section 5 evaluates the proposed
approaches and shows the experiment results. Related work are presented in
section 6. Section 7 concludes this paper and highlights some future work.

2 Motivating Scenario

We use the tenure process [10] in the US to motivate and illustrate the cloud
service composition problem. American universities take great care in making
tenure decisions. A junior professor is usually not promoted to a tenured posi-
tion without demonstrating a strong record of research and teaching. Specifically,
tenure decisions are made based mainly on the evaluation of a candidate’s pub-
lication and citation records. A university typically includes dozens of colleges.
Each college includes dozens of departments. Each department deals with multi-
ple (most likely 5 to 10) tenure cases per year. The tenure process is highly labor
intensive. The whole process is usually error prone and conducted manually. To
overcome these problems, universities tend to outsource the tenure tasks (e.g.,
analysis, storage, computation) to clouds.

Let us consider a simple example, where University A contains only one college
and the college contains only one department. Suppose the university outsources
three main tasks to the clouds during 2012 and 2015. The proposed composi-
tion framework would generate a composite tenure application for University
A. Specifically, the tenure application (Fig. 1) has three abstract SaaS. Tenure
application will first search and find the publication and citation records of a
candidate (task 1, T1). It will then find the the publication and citation records
of the comparable professors (task 2, T2). Finally, the tenure application will
generate the evaluation report (task 3, T3). Besides these abstract SaaS, the
composite tenure application also needs CPU, network and storage resources
from IaaS providers. CPU services (denoted as CPU) are used to do computa-
tions on data. Storage services (denoted as Sto) are used to keep intermediate
data. The whole tenure application should be as fair as and as transparent as
possible. Therefore, all the input and output data, should be stored in case some
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Fig. 1. Tenure application for University A

appeals arise. Network services (denoted as Net) are needed to transfer data be-
tween end users and the application, and between components in the composite
application.

University A would have different QoS requirements (response time, cost etc.)
on the composite tenure application during the long period, i.e., from 2012 to
2015. University A presents these preferences through a Score Function [6]. Com-
posite services with higher score are more preferred. University A changes the
preferences by change the weights in the score function for different periods. For
example, in 2012, University A may prefer composite service that has less re-
sponse time. While in 2013, University A may find response time is less important
but want to save the cost as much as possible. To obtain an optimal composi-
tion, the composition framework needs a long-term economically driven model
to model the preferences of the end users. Based on the user’s economic model,
the composition framework makes decisions to select concrete SaaS providers
and IaaS providers for university A. The ultimate goal of the composition is to
find an optimal plan during a long period, which has the maximal score.

3 Background

This section presents the background of the cloud service composition problem.
First, the cloud environment is presented followed by the composition procedure.
The adopted QoS model is then explained. Cloud service composition problem
is defined at the end of this section.

3.1 Cloud Service Composition Framework

In this research, we identify four actors in the cloud environment (Fig. 2): End
Users, Composer, SaaS (Software as a Service) Providers and IaaS (Infrastruc-
ture as a Service) Providers. Platform as a Service (PaaS) layer is omitted as we
assume that it is included in the IaaS layer. End Users are usually large com-
panies and organizations, e.g., universities, governments. The composer in this
paper represents the proposed composition framework. SaaS providers supply
SaaS [4] to end users. IaaS providers supply IaaS [4], i.e., CPU services, storage
services, and network services, to SaaS providers and end users. The composer
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Fig. 2. Four actors in cloud computing

acts on the behave of the end users to form composite services that contains
services from multiple SaaS providers and IaaS providers (Fig. 2). Here, we
make the assumption that the composer interact directly with SaaS providers,
SaaS providers interact directly with IaaS providers. The composer can interact
with IaaS providers indirectly only through SaaSs. This assumption is reasonable
since even if the composer aims to use some CPU/Network/storage resources, it
must invoke these resources through some kind of software interfaces.

Similar to traditional service composition [11], cloud service composition is
conducted in two steps. First, a composition schema is constructed for a compo-
sition request. Second, the optimal composition plan is selected. A composition
plan is formed by choosing concrete cloud service providers for each abstract
SaaS and abstract IaaS in the composition schema. Since the research focuses
on the selection of composition plans based solely on QoS attributes, we assume
that existing composition techniques for matching functional attributes will be
used, e.g., [5] to generate composition schema.

A Composition Schema (or Abstract Composite Service) is constructed using
abstract SaaS and abstract IaaS, and combined according to a set of composition
patterns. There are four Composition Patterns according to the data-flow and
control-flow: Sequential Pattern (SP), Parallel Pattern (PP), Optional Pattern
(OP) and Loop Pattern (LP) [12]. To simplify the discussion, we initially assume
that all the abstract composite services we deal with are acyclic. If an abstract
composite service contains cycles (LP), a technique [6] for unfolding it into an
acyclic composition schema will be applied. Composition schema is represented
using Directed Acyclic Graph (DAG). Ovals denote abstract SaaS. Rectangles
denote abstract IaaS. Arcs among nodes (i.e., ovals and rectangles) represent the
control flow and data flow. To differentiate PP from CP, we use normal lines to
represent PP and dotted lines to represent CP. A composition schema may have
multiple Execution Paths [6] if the schema contains CP patterns. For example,
in the motivating scenario, the composition schema for the tenure requests is
presented in Fig. 3. T1, T2, T3 are abstract SaaSs. CPUi denotes the computa-
tion request for the output data from Ti. For example, the composite application
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Fig. 3. Composition schema for University A

needs CPUs after receives output data from T1. These CPUs adapt the output
data to the input of T2. Stoi denotes the storage request for the intermediate
data NOut)i. All the intermediate data are stored in case someone will appeal
the decisions in the following years. NIni denotes the network resources for
inputs, NOuti represents the network resources for outputs.

3.2 QoS Model

To differentiate composition plans during selection, their non-functional prop-
erties need to be considered. For this purpose, we adopt a discrete QoS model
that is applicable to all the SaaS and IaaS. Without loss of generality, we only
consider the QoS attributes listed as follows. Although the adopted QoS models
have a limited number of attributes, they are extensible and new QoS attributes
can be added. We assume IaaS are homogeneous. One unit of IaaS, i.e., CPU,
network or storage, possess the same resources.

QoS Model for Elementary Services. Three QoS attributes are considered
for component services: throughput, response time, and cost.

– Throughput. Given an SaaS provider SP , the throughput of its SaaS qsr(SP )
is the number of requests the SaaS provider is able to process per sec-

ond. Given an IaaS provider IP , the service rate of its IaaS
−−−−−→
qsr(IP ) =

[qCPU
sr (IP ), qNet

sr (IP ), qSto
sr (IP )] is a three-attribute vector, where qCPU

sr (IP )
(qNet

sr (IP ), qSto
sr (IP )) represents the number of CPU (network, storage) re-

quests the IaaS provider is able to process per second.
– Response time. Given an SaaS provider SP , the response time of its SaaS

qrt(SP ) measures the expected delay in seconds between the moment when
a request is sent and the moment when the results are received. Given an

IaaS provider IP , the capability of its IaaS
−−−−−→
qcap(IP ) = [qCPU

cap (IP ),qNet
cap (IP ),

qSto
cap(IP )] is a three-attribute vector, where qCPU

cap (IP ) (qNet
cap (IP ), qSto

cap(IP ))
is the number of CPU (network, storage) units used for processing a compu-
tation (data transfer, storage) request. For CPU request, the response time
to adapt the output data from task ti is calculated as: qCPU

rt (ti) =
CPUi

qCPU
cap (IP ) .

For network request, the response time of transferring input data for task
ti is denoted as: qINrt (ti) =

NIni

qNet
cap (IP ) . The response time of transferring output
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Fig. 4. Aggregation functions for computing the QoS of a composite service

data for task ti is denoted as: qOUT
rt (ti) =

NOuti
qNet
cap (IP ) . For storage request, no

response time is needed to compute, since we do not consider setup time or
other time for storage resources in this research.

– Cost. Given an SaaS provider, the execution cost qcost(SP ) is the fee that a
customer needs to pay for a single request. If the SaaS provider agrees to sup-
ply SaaS at service rate qsr(SP ). The total execution cost is computed using
the expression: cost = qsr(SP ) · qcost(SP ). Given an IaaS provider IP , the
cost for using unit IaaS for one second is denoted as a three-attribute vector−−−−−−→
qcost(IP ) = [qCPU

cost (IP ), qNet
cost(IP ), qSto

cost(IP )], where qCPU
cost (IP ), qNet

cost(IP )
and qSto

cost(IP ) are the price for using unit CPU IaaS, unit network IaaS
and unit storage IaaS for one second correspondingly. For CPU request, the
cost of computing output data from task ti is represented as: qCPU

cost (ti) =
qCPU
cost (IP ) · qCPU

cap (IP ) · qCPU
rt (ti). The cost to transfer input data for task

ti is calculated using: qINcost(ti) = qNet
cost(IP ) · qNet

cap (IP ) · qINrt (ti). The cost to

transfer output data for task ti can be calculated as: qOUT
cost (ti) = qNet

cost(IP ) ·
qNet
cap (IP ) · qOUT

rt (ti). The cost to store intermediate data Stoi is computed

as: qSTO
cost (Stoi) = qSto

cost(IP ) ·Stoi · time, where time denotes the seconds the
intermediate data should be stored.

QoS Model for Composite Services. The quality criteria defined above are
in the context of elementary cloud services. Aggregation functions are used to
compute the QoS of the composite service. Fig. 4 presents these aggregation
functions:

– Throughput. The throughput of a composite service denotes the number
of requests it serves per second. For an abstract composite service aCS,
the throughput qsr(aCS) is the minimal service rate of the selected SaaS
providers qsr(SP ) and the IaaS provider qsr(IP ).

– Response time. The response time qrt(aCS) of an abstract composite service
aCS is computed using the Critical Path Algorithm (CPA) [13]. Specifically,
the CPA is applied to the execution path Path(aCS) of the abstract com-
posite service aCS. The critical path is a path from the initial node to the
final node which has the longest total sum of weights labeling its nodes.
In the case at hand, a node corresponds to an abstract SaaS or IaaS in an
execution path, and its weight is the response time of the SaaS or IaaS.

– Cost. The cost of an abstract service is the sum of execution cost of all the
selected SaaS and IaaS.



QoS-Aware Cloud Service Composition Based on Discrete QoS Model 117

3.3 Problem Definition

Based on the analysis above, this section presents the general definition of the
cloud service composition problem. Suppose an end user has a set of requests
during a long period. Each request demands the same execution path (denoted
as Path = {Sto0,NIn1, t1, NOut1, Sto1, CPU1, NIn2, t2, NOut2, Sto2, CPU2,
. . ., NInnj , tnj ,NOutnj , Ston}). The end user represents its QoS preferences by
determining the weights in the score function during a long period. We denote
the QoS requirements of the end user as: W (Path) = {W (1), W (2),W (3),. . . ,
W (t)}. Each tuple W (t) represents the weights for different QoS attributes for
the composite service at period periodt. To illustrate the composition problem,
we use the three QoS attributes for saaS discussed earlier, other QoS attributes
can be used instead without any fundamental changes. The QoS dimensions are
numbered from 1 to 3, with 1 = throughput, 2 = response time and 3 = cost.
Hence, Each W (t) is further denoted as a matrix: W (t) = [w1(t), w2(t), w3(t)],
where wa(t) denotes the weight of QoS attribute a for the composite service at
period periodt.

For task Ti, a set of ki candidate SaaS providers can be used to implement the
task: SPi = {SPi(1), SPi(2), . . . , SPi(ki)}. A set of pp candidate IaaS providers
supply IaaS to composite services: SP0 = SP0(1), SP0(2), . . . , SP0(pp)}. A can-
didate composition plan (denoted as Plan[SP0(k0), SP1(k1), SP2(k2), . . .,
SPn(kn)]) is formed by selecting certain SaaS providers and IaaS providers for
an end user. In the composition plan, the composite service is supported by the
IaaS provider SP0(k0). Task Ti is implemented by SaaS provider SPi(ki). The
QoS values for a composition plan Plan is denoted as: q(plan) = {q(1), q(2),
q(3),. . . , q(t)}. Each tuple (q(t)) is further denoted as a matrix: [q01(t), q

1
1(t), . . .,

qi1(t), q
0
2(t), q

1
2(t), . . ., q

i
2(t), q

0
3(t), q

1
3(t), . . .,q

i
3(t)], where q

i
a(t) denotes the adver-

tising QoS value of attribute a for the abstract SaaS Ti at period periodt. Each
composite plan has an aggregated QoS values computed using the aggregation
functions stated above. These values are then scaled using the SAW method in
[6] to a real number in [0, 1]. qta(Plan) denotes the scaled value of QoS attribute a
for the composition plan at period periodt. Each composition plan is associated
with a “score” from the end user’s perspective. A commonly used score function
is the weighted sum of QoS values of the composite service:

St(Plan) = w1(t) · qt1(Plan) + w2(t) · qt2(Plan) + w3(t) · qt3(Plan), (1)

The score function over the long period is then represented as: S(Plan) =∫ t

1
st(Plan)dt. The composition problem is to find an optimal composition plan,

which has the maximal score value.

4 ID-Based Composition Approach

This section first presents the economic model for end users. Influence diagram
approach is then detailed. The proposed composition approach is presented at
the end of this section.
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Fig. 5. Economic model: an example

4.1 Cloud Economic Model

When the composition system makes decisions on which concrete SaaS providers
and IaaS providers should be selected for the end user, it has no idea about how
will the ultimate composite service behave during a long period. To enable long-
term cloud service composition, economic models are needed to predict the long-
term preferences of the end users. An economic model is defined as “a theoretical
construct that represents economic processes by a set of variables and a set of
logical and quantitative relationships between them. ”[14].

We adopt Bayesian Networks (BN) [15] to represent the economic model for
the end users. BN is a probabilistic graphical model that represents a set of ran-
dom variables and their conditional dependency using a directed acyclic graph.
A BN consists of a set of random variables as nodes which are connected through
directed links (arcs). Each node has a conditional probability table that quan-
tifies the effects the parents have on the nodes. If we represent the weights at
different periods as nodes in a BN, we can then leverage the network as a means
to represent the economic model for the end users.

For end users, we make the assumption that all the requests, initialised at the
same period, have the score function with the same weights. However, requests
initialised at different periods have different score functions. For example, Fig. 5
shows the economic model of university A in the tenure example. This economic
model is constructed based on historical data (Fig. 5(a)) from university A.
Fig. 5(a) shows the QoS preferences of university A for the last several years.
The weight for each QoS attribute is a real number between 0 and 1. The larger
the weight the more important is the corresponding QoS attribute to univer-
sity A. The last column represents the number of tenure requests that have the
preferences. Based on these historical data, we construct the economic model
for university A as shown in Fig. 5(b). wa(t), a = 1, 2 denotes the weight for
QoS attribute a at period periodt. In the same period periodt, the weights have
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conditional probability relationship with each other, i.e., w2(t) depends on the
value of w1(t). For different periods, a weight wa(t) at period periodt would
depend on the weights in the previous periods, i.e., wa(1), wa(2), . . . , wa(t− 1).
However, this research only considers two previous weights, since it is reasonable
to assume that the weights at the most recent periods will have more affection
on the weights at present. Hence, as shown in Fig. 5(a), wa(t) depends on the
values of wa(t− 1) and wa(t− 2).

4.2 Influence Diagram Problem

Based on the economic models for the end users, we adopt Influence Diagram to
represent and solve the cloud service composition problem. Influence diagrams
(IDs) [9] are graphical models for representing and solving complex decision-
making problems based on uncertain information. IDs are directed acyclic graphs
that is seen as BN augmented with decision and value nodes.

An ID is a directed acyclic graph (N,A): N = D ∪ C ∪ U . D correspond
to a set of decision variables under the control of the decision maker. C is the
set of chance nodes correspond to random variables. U is a set of utility nodes
that represent the objective functions of the model. A is the set of directed arcs
between the nodes. Arcs pointing to a decision node indicate what information
will be known to the decision maker at the time the decision is made. Arcs to a
chance node indicate which variables condition the probability distribution for
the associated random variables. Arcs to a utility node indicate which variables
condition the associated expected utility. Each node in an ID is associated with a
frame of data. For a chance node x, this data includes the outcome space of x, Ωx,
and the conditional probability distribution of x, πx. For each decision node d,
this data includes the alternatives of the associated decision variable,Ωd. Finally,
the data frame for utility node r contains the conditional expected value of r
conditioned on the predecessors of r. The conditional expectation of r is actually
a deterministic function of the conditioning variables: U [r|C(r)] = g(C(r)). The
outcome space of r is Ωr. To solve an ID problem (or to evaluate an ID problem)
is to find the maximal utility value and the decision values at the time when the
utility values are maximised.

Regarding cloud service composition problem stated above, we model cloud
service composition problem to an ID problem as follows. We represent the
weights from end users and the advertising QoS values from cloud providers as
chance nodes in an ID.The QoS values from cloud service providers have con-
ditional probabilistic relationship. All the selection decisions on abstract SaaS
and IaaS are represented as decision nodes in the ID. Utility nodes represent the
score of a composition plan. For example, Fig. 6 shows the influence diagram
representation for the tenure example. In Fig. 6, node qia(t) in denotes the adver-
tising value of QoS attribute a for task Ti at period periodt. wqa(t) denotes the
weighted score for QoS attribute a at period periodt. S(t) = wq1(t)+ wq2(t)+
wq3(t), denotes the score for the composition plan at period periodt, which can
be computed using Equ. 1. Stotal = S(1)+ S(2)+ S(3), denotes the total score
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Fig. 6. Influence diagram for the tenure example when one QoS attribute is considered

for this ID. The separable nature of the utility function is represented in the
structure of the graph using these multiple utility nodes. In the cloud service
composition problem, there are two kinds of utility nodes. A super utility node
is either a sum node or product node (e.g., S(1), S(2), Stotal), and a non-super
utility node is any other utility node (e.g., wq1(1), wq2(1)). There is exactly one
utility node, the terminal utility node (e.g., Stotal), which has no successors in an
ID. This represents the objective function for the model. Super utility nodes can
only have utility nodes (either super or non-super) as conditional predecessors.
Non-super utility nodes, on the other hand, can only have chance and decision
nodes as conditional predecessors.

4.3 Dynamic Programming Algorithm

ID problems can be solved using two types of solutions [16]: A brute force solution
is first transfer the ID to the corresponding decision tree, then compute all the
possible scenarios with their probability and finally obtains the optimal decision
variables that maximise the utility value. Another type of solution is to itera-
tively reduce the diagram using influence diagram reductions [17]. Considering
the properties of cloud service composition, we propose a dynamic programming
reduction algorithm to solve the ID problem.

Solving an ID problem using reductions involves applying a sequence of max-
imization and expectation operators to the utility function. In the influence
diagram, these operators correspond to remove decision and chance nodes at the
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utility node by performing maximizations or expectations. The special proper-
ties of the maximization and expectation operators when applied to separable
functions are foundation of the proposed dynamic programming algorithm. They
allow maximizations and expectations to be performed over an addend or factor
in the utility function instead of over the entire utility function. In those cases,
only a subspace of the utility function needs to be examined. This may signifi-
cantly reduce the dimensionality of the operations necessary to solve a decision
problem.

Two main reductions to solve an ID problem are: removing a chance node
by expectation and removing a decision node by maximization. Removal of a
chance node by expectation, as in Fig. 7(a), can be performed whenever the
only successor of a chance node is the utility node. In the mathematics this
corresponds to: Utility[U |a, b, c]← UtilityΩx[Utility[U |x, b, c]|a, b]. Note that in
this case, the utility node U inherits the predecessors of chance node x. The
removal of a decision node by maximization, as in Fig. 7(b), can be performed
whenever the decision node has the utility node as its only successor and all
conditional predecessors of that utility node, other than the decision node, are
informational predecessors of the decision node. In the mathematics, decision
node removal corresponds to: Utility[U |b] ← maxd{Utility [U |b, d]} and d∗ =
argmaxd{Utility[U |b, d]}. Note that the utility node U does not inherit any
predecessors of d as a result of this operation. Consider the motivating example
in Fig. 6, the cloud service composition problem can always be solved by reducing
the chance nodes and decision nodes in the following sequence: qia(t), wa(t), Di.
Nodes qia(t) can be removed using expectation operators as in Fig. 7(a). Nodes
Di can be removed using maximisation operators as in Fig. 7(b). Interested
readers can refer to [17] for the details of other basic reductions of ID: e.g., arc
reversal using Bayes theorem, summing a variable out of the joint.

Algorithm. 1 presents the dynamic programming algorithm to solve the com-
position problem as an ID problem. The algorithm will continue reducing nodes
from the ID until there is only one terminal utility node left (line 2). If two util-
ity nodes r1 and r2 have the same successor, a super value node r, and C(r1) is
contained in C(r2), then removing r1 and r2 (if they are the only predecessors of
r, or merging r1 and r2, into new value node r′ if they are not) will not increase
the size of any operation necessary to solve the influence diagram and so we
should remove them (line 3:4). After each step of the algorithm (line 6:11), the
net change in total number of nodes in the diagram will be at least one less. The
algorithm always reduces an influence diagram to the terminal value node thus
producing the optimal policy and maximum expected value for the problem.
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Algorithm 1. Dynamic programming approach to evaluate ID

1: ID ← The influence diagram with the terminal utility node U
2: while C(U) �= ∅ do
3: if there is removable utility nodes then
4: remove all the necessary utility nodes
5: else
6: if there is a removable decision node d then
7: remove d and the necessary utility nodes
8: else
9: there must be a removable chance node x
10: remove x and the necessary utility nodes
11: end if
12: end if
13: end while

5 Experiments and Results

We conduct a set of experiments to assess the performance of the proposed
approach. We use the tenure scenario as our testing environment to setup the
experiment parameters. We run our experiments on a Macbook Pro with 2.2
GHz Intel Core i7 processor and 4G Ram under Mac OS X 10.7.3. Since there is
not any sizable cloud service test case that is in the tenure application domain
and that can be used for experimentation purposes, we focus on evaluating the
proposed approach using synthetic cloud services.

We compare the proposed approach with the brute force ID approach. The
brute force approach is to generate all the possible candidate composition plans,
consider all the possible scenarios for each plan regarding the economic models
and compute the score and the probability for each scenario (i.e., transfer ID
to a corresponding decision tree). The optimal composition plan is the one that
has the maximal weighted sum score. We implement the brute force approach
in Java. The dynamic programming approach is implemented using Elvira [18]
and Java. Computation times are measured in experiments to compare the two
approaches. In this process, the number of alternatives for each chance node and
decision node is varied from 2 to 10 with the step of 1 and the length of the
considered periods is varied from 2 to 5 with steps of 1. All experiments are
conducted 5 times and the average results are computed.

Fig. 8 presents the computation time when the number of alternatives of the
decision nodes is varied from 2 to 10. For these experiments, we set the other
parameters as follows: the number of the decision nodes is set to be 4. The num-
ber of alternatives of chance nodes (Ωwa(t) and Ωqia(t)

) is set to be 2. This means
there are two options for all the chance nodes in the ID. The considered period
is set to be t = 2, i.e., we consider the tenure example for the period during
2012 and 2013. And the number of QoS attributes is set to be 3. From Fig. 8,
we can see that both approaches will have polynomial time complexity. But the
dynamic programming has better performance than the brute force approach.
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Fig. 8. Computation time VS. Ωd

When the number of alternatives of the decision nodes is small (i.e., 2), both
approaches have similar computation time. When the number of alternatives
becomes larger, the dynamic programming approach behaves much better than
the brute force approach.

Fig. 9 presents the computation time when the number of alternatives of the
chance nodes is varied from 2 to 10. For these experiments, we set the other
parameters as follows: the number of the decision nodes is set to be 4. The
number of alternatives of decision nodes (Di) is set to be 4. This means there
are four options for all the decision nodes in the ID. The considered period is set
to be t = 2, i.e., we consider the tenure example for the period during 2012 and
2013. And the number of QoS attributes is set to be 3. From Fig. 9, we can see
that both approaches will have polynomial time complexity. But the dynamic
programming approach behaves much better than the brute force approach.
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Fig. 10 presents the computation time when the considered period is varied
from 2 to 5. For these experiments, we set the other parameters as follows: the
number of the decision nodes is set to be 4. The number of alternatives of decision
nodes (Di) is set to be 4. The number of alternatives of chance nodes (Ωwa(t)

and Ωqia(t)
) is set to be 2. This means there are two options for all the decision

nodes and chance nodes in the ID. And the number of QoS attributes is set to
be 3. From Fig. 10, we can see that both approaches will have exponential time
complexity. When the considered period is short (i.e., 2 years or 3 years), both
approaches have similar computation time. When the consider period becomes
longer, the dynamic programming approach behaves much better than the brute
force approach.

6 Related Work

Service composition is an active research area in service-oriented computing [5].
During the last decade, service composition problem can be categorized into two
groups. One group focuses on the functional composability among component
services. The other group aims to make optimal decisions to select the best
component services based on non-functional properties (QoS).

Functional-driven service composition approaches typically adopt semantic
descriptions of services. Examples of automatic approaches include Policy-based
approach proposed by [19] and composability model driven approach proposed
by [5]. Other functional-driven composition approaches use AI planning methods.
Most of them [20] assume that each service is an action which alters the state of
the world as a result of its execution. The inputs and outputs parameters of a
service act as preconditions and effects in the planning context. Users only need
to specify the inputs and the outputs of the desired composite service, a plan
(or a composite service) would automatically generated by the AI planners.

Functional-driven service composition approaches mostly do not attempt to
find an optimal solution but only to find a solution. However, the non-functional
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properties (QoS) of resulting composite service is a determinant factor to ensure
customer satisfaction. Different users may have different requirements and prefer-
ences regarding QoS. Therefore, QoS-aware composition approaches are needed.
QoS-aware service composition problem is usually modelled as a Multiple Crite-
ria Decision Making [6] problem. The most popular approaches include integer
linear programming and genetic algorithms. An Integer Linear Program (ILP)
consists of a set of variables, a set of linear constraints and a linear objective
function. After having translated the composition problem into this formalism,
specific solver software such as LPSolve [21] can be used. [22] and [23] use Ge-
netic Algorithms (GA) for service composition. Individuals of the population
correspond to different composition solutions, their genes to the abstract com-
ponent services and the possible gene values to the available real services. While
GAs do not guarantee to find the optimal solution, they can be more efficient
than ILP-based methods (which have exponential worst-case time complexity).

Most of the existing composition approaches are not well suited for cloud envi-
ronment [23]. They usually consider the qualities at the time of the composition
[5]. The proposed composition approach consider the problem from a long-term
perspective.

7 Conclusion

This paper proposes a cloud service composition approach to aid end users select-
ing and composing SaaS providers and IaaS providers in the cloud environment.
Compared to traditional service composition framework in SOC, the proposed
approach considers service composition from a long-term perspective. Cloud eco-
nomic models for both end users and cloud service providers are leveraged during
the composition. Specially, an influence diagram approach is adopted to solve
cloud service composition problems. In future work, discrete QoS model will be
extended to continuous model, where each chance node in an ID has infinite
alternatives. Besides, machine learning algorithms will be researched on refining
the economic model for both end users and cloud service providers to improve
the performance.

References

1. Motahari-Nezhad, H., Stephenson, B., Singhal, S.: Outsourcing business to cloud
computing services: Opportunities and challenges. IEEE Internet Computing
(2009)

2. Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud comput-
ing. In: Grid Computing Environments Workshop (2009)

3. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing web
services: issues, solutions, and directions. The VLDB Journal 17(3), 537–572 (2008)

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view
of cloud computing. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28 (2009)



126 Z. Ye, A. Bouguettaya, and X. Zhou

5. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the
semantic web. The VLDB Journal 12(4), 333–351 (2003)

6. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

7. Dash, D., Kantere, V., Ailamaki, A.: An economic model for self-tuned cloud
caching. In: IEEE 25th International Conference on Data Engineering, pp. 1687–
1693 (2009)

8. Kantere, V., Dash, D., Francois, G., Kyriakopoulou, S., Ailamaki, A.: Optimal
Service Pricing for a Cloud Cache. IEEE Transactions on Knowledge and Data
Engineering (2011)

9. Shachter, R.: Probabilistic inference and influence diagrams. Operations Research,
589–604 (1988)

10. Gelmon, S., Agre-Kippenhan, S.: Promotion, tenure and the engaged scholar.
AAHE Bulletin 54(5), 7–11 (2002)

11. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Computing, 51–59 (2004)

12. Wu, B., Chi, C., Chen, Z., Gu, M., Sun, J.: Workflow-based resource allocation to
optimize overall performance of composite services. Future Generation Computer
Systems 25(3), 199–212 (2009)

13. Pinedo, M.: Scheduling: theory, algorithms, and systems. Springer (2012)
14. Baumol, W., Blinder, A.: Economics: principles and policy. South-Western Pub.

(2011)
15. Jensen, F.: An introduction to Bayesian networks, vol. 74. UCL Press, London

(1996)
16. Shachter, R.: Evaluating influence diagrams. Operations Research 34(6), 871–882

(1986)
17. Tatman, J., Shachter, R.: Dynamic programming and influence diagrams. IEEE

Transactions on Systems, Man and Cybernetics 20(2), 365–379 (1990)
18. Elvira, a Java implementation of influence diagram (2005),

http://www.ia.uned.es/~elvira

19. Chun, S.A., Atluri, V., Adam, N.R.: Using semantics for policy-based web service
composition. Distributed and Parallel Databases 18(1), 37–64 (2005)

20. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web
Services Composition Using SHOP2, p. 195 (2003)

21. Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: Open source (mixed-
integer) linear programming system. Eindhoven U. of Technology (2004)

22. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation, pp. 1069–1075 (2005)

23. Ye, Z., Zhou, X., Bouguettaya, A.: Genetic Algorithm Based QoS-Aware Service
Compositions in Cloud Computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.)
DASFAA 2011, Part II. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011)

http://www.ia.uned.es/~elvira

	QoS-Aware Cloud Service Composition Based on Economic Models
	Introduction
	Motivating Scenario
	Background
	Cloud Service Composition Framework
	QoS Model
	QoS Model for Elementary Services.
	QoS Model for Composite Services.

	Problem Definition

	ID-Based Composition Approach
	Cloud Economic Model
	Influence Diagram Problem
	Dynamic Programming Algorithm

	Experiments and Results
	Related Work
	Conclusion
	References




