
PerCAS: An Approach to Enabling Dynamic

and Personalized Adaptation
for Context-Aware Services

Jian Yu1, Jun Han1, Quan Z. Sheng2, and Steven O. Gunarso1

1 Faculty of Information and Communication Technologies,
Swinburne University of Technology,

Hawthorn, 3122, Melbourne, Victoria, Australia
{jianyu,jhan}@swin.edu.au, 7253702@student.swin.edu.au

2 School of Computer Science,
The University of Adelaide, SA 5005, Australia

qsheng@cs.adelaide.edu.au

Abstract. Context-aware services often need to adapt their behaviors
according to physical situations and user preferences. However, most of
the existing approaches to developing context-aware services can only do
adaptation based on globally defined adaptation logic without consider-
ing the personalized context-aware adaptation needs of a specific user.
In this paper, we propose a novel model-driven approach called PerCAS
to developing and executing personalized context-aware services that are
able to adapt to a specific user’s adaptation needs at runtime. To enable
dynamic and personalized context-aware adaptation, user-specific adap-
tation logic is encoded as rules, which are then weaved into a base process
with an aspect-oriented mechanism. At runtime, the active user-specific
rule set will be switched depending on who is using/invoking the service.
A model-driven platform has been implemented to support the devel-
opment and maintenance of personalized context-aware services from
specification, design, to deployment and execution. Initial in-lab perfor-
mance experiments have been conducted to demonstrate the efficiency
of our approach.

Keywords: Context-aware services, web services, personalized adapta-
tion, model-driven development, aspect-oriented methodology, business
rules.

1 Introduction

Context awareness refers to the system capability of both sensing and reacting
to situational changes, which is one of the most exciting trends in computing
today that holds the potential to make our daily life more productive, convenient,
and enjoyable [7,14,10]. Recently, with the rapid development of service-oriented
computing paradigm, Web services have become a major technology for building
distributed software systems and applications over the Internet [21]. Through the

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 173–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

174 J. Yu et al.

use of context, a new generation of smartWeb services is currently emerging as an
important technology for building innovative context-aware applications [27,29].

To date, how to build context-aware Web services (CASs in short) that are
able to dynamically change its adaptation logic is still a major challenge [13]. Al-
though CASs are meant to be aware of and adaptive to context change, in most
existing approaches context-awareness logic is usually tightly coupled with the
main functionality of a service and thus not able to change at runtime [26,23].
Another issue that hinders the usability of CASs is that existing context-aware
systems and services usually define the context-awareness logic based on a spe-
cific context instead of a specific user, which may lead to system behavior that is
not in accord with this user’s preference. For example, in a context-aware travel
booking system, one of the context-awareness features is that if the weather
forecast in the destination is rainy when the customer arrives, then a pickup
service will be arranged. Such context-awareness logic may be suitable for Alice,
but may not be suitable for Bob, who wants to have a rent-car service instead.
Because user’s long tail of needs can never be exhausted [1], CASs that are able
to do context-aware adaptation according to user’s personalized needs are highly
desirable.

To tackle the above-mentioned challenges, in this paper, we present a novel
approach called PerCAS to developing and executing a type of dynamically
adaptive CASs that are able to automatically switch context-awareness logic at
runtime according to a user’s unique adaptation needs. We call such CASs the
personalized CASs. We have designed and implemented a model-driven develop-
ment approach to facilitate the modeling of personalized context-aware adapta-
tion logic and the automatic generation of executable service code. A high-level
business rule language is proposed to facilitate the specification of a user’s per-
sonalized context-aware adaptation logic, and an aspect-oriented mechanism is
used to integrate the adaptation logic into the main functionality. A runtime en-
vironment that integrates both a rule engine and a Web service process engine is
implemented to support the dynamic switching between personalized adaptation
logic and the execution of personalized context-aware services.

The rest of the paper is organized as follows. Section 2 introduces a motivating
scenario that will be referred to throughout the paper. Section 4 describes the
PerCAS approach in detail. Section 4 introduce the PerCAS model-driven de-
velopment platform. Section 5 discusses the execution environment architecture
and demonstrates how dynamic and personalized adaptation is achieved in this
architecture. In this section, we also discuss an initial performance evaluation of
the execution environment. Section 6 is related work discussion and we conclude
our paper in Section 7.

2 A Motivating Scenario

In this section, we present a context-aware travel booking service as a motivating
scenario. It is worth noting that part of this scenario is borrowed from the case
study used in [13].

PerCAS: Enabling Dynamic and Personalized Adaptation 175

Fig. 1. The travel booking scenario

Figure 1 is the main process of the travel booking service. As we can see, the
travel booking service is started when a customer issues a booking request. When
the request is received, the service invokes three ticket booking services provided
by three different airlines. After that, according to the weather forecast, if it is
rainy at the destination when the customer arrives, a pickup service is invoked.
Finally the offer is sent to the customer.

The context-awareness features of the travel booking service are as following:
1) if the customer is PriceConscious, then the lowest quote from the three
airlines will be used; 2) if the customer is BrandConscious, then only one airline
service needs to be invoked instead of three; 3) if it is forecasted to be rainy at
the destination, a pickup service will be invoked.

At runtime, it is highly desirable that this context-aware travel booking service
can dynamically change its context-awareness logic to suit the personalized needs
of customers. For example, if a customer Alice happens to be RegionConscious,
which means she prefers to fly airlines from a certain region because of her food
preference, how can we introduce this new context and its associated context-
awareness logic to the service? Furthermore, the other customer Bob may want
to use a rent car service instead of the pickup service if it rains, while Alice still
wants to use the pickup service. How can we solve this conflict by providing
personalized context-awareness logic unique to individual customers?

176 J. Yu et al.

3 The PerCAS Approach

3.1 Overview

In this section, we briefly introduce the PerCAS approach and discuss several
key principles used in the design of this approach.

Fig. 2. Overview of the PerCAS approach

As illustrated in Figure 2, PerCAS is a model-driven approach that contains
a Platform Independent Model (PIM) and a Platform Specific Model (PSM).
In the PIM, the main components include a Base Functionality Model (BFM
in short) that represents the core functionality of the service, a Personalized
Context-Awareness Logic Model (PCLM in short) that represents the person-
alized context-awareness logic of the user, a Weave Mechanism that integrate
the above two models using an aspect-oriented technique, and a Personalization
Mechanism for switching context-awareness logic between individual users. Be-
cause dynamically adaptive systems are generally difficult to specify due to its
high complexity and variability [30,20], we adopt the separation of concerns prin-
ciple [15] to manage complexity and variability: the context-awareness logic that
needs to be changed is separated from the main functionality. The BFM repre-
sents the relatively stable processing procedure of a service; while the PCLM
represents the variable context-awareness logic. A process language adapted
from BPMN (Business Process Modeling Notation)1 has been designed as the
modeling language for the BFM. As to the PCLM, we have designed a natu-
ral language-like high-level rule language as its modeling language. We adopt

1 http://www.bpmn.org/

http://www.bpmn.org/

PerCAS: Enabling Dynamic and Personalized Adaptation 177

a rule language to specify the PCLM because: i) Business-level rules are eas-
ier to be used by technically non-experienced users because of their atomic and
declarative nature [25,5]. In our case, the user may use our rule language to
define his/her personalized context-awareness rules. ii) Context-awareness rules
as a type of business rules are one of the core components in specifying re-
quirements. Keeping rules in the design model instead of translating them into
complex conditional branches of a process not only prevents the paradigm shift
from declarative rules to procedural processes but also maintains the modular-
ity and traceability of rules. We adopt an aspect-oriented approach to integrate
the BFM and the PCLM using the Weave Mechanism. This approach ensures
the modularity of the BFM and the PCLM so that they can evolve indepen-
dently. If we directly translate rules into process structures and insert them into
a process, both modularity and traceability of the rules are lost. Based on the
aspect-oriented methodology [8], context-awareness rules can be applied before,
after a service, or around it to replace this service. Finally, a personalization
mechanism is applied to the BFM for switching between personalized context-
awareness rules that are encapsulated in PCLM.

In the PSM, WS-BPEL (BPEL in short) [9], the de facto industry standard
for service composition, is used as the process execution language, and Drools2

is used as the rule execution language. Accordingly, the BFM is transformed to a
BPEL process and the PCLM is translated to Drools rules. An aspect service that
encapsulates the invocation logic to Drools rules is used as the communication
bridge between the BPEL engine and the Drools rule engine. At runtime, the
aspect service takes the unique URL to the Drools rule file (corresponding to
a unique PCLM, or user) to switch aspects containing personalized context-
awareness rules.

3.2 The Base Functionality Model

The BFM captures the main processing logic of a service, excluding all the
context-awareness logic. Mainly we reuse the language constructs defined in
BPMN for its popularity. To make the BFM and PCLM semantically inter-
operable, we have extended the Business Activity element of BPMN with
semantic annotations.

As illustrated in Figure 3, the BFM modeling language in general has two
types of elements: the Flow Object and the Connecting Object, where flow ob-
jects are processing entities and connecting objects specify the flow relations
between flow objects. There are three types of flow objects: the Business Activ-
ity, the Event, and the Parallel Gateway. Business activities represent the main
processing unit of a service. Events have the common meaning as defined in
BPMN: they are happenings that affect the execution of a process, for exam-
ple start events and exceptions. Gateways also have the common meaning as
defined in BPMN: they determines forking and merging of paths. It is worth
noting that although context-awareness logic usually can be specified as static

2 http://www.jboss.org/drools/

http://www.jboss.org/drools/

178 J. Yu et al.

Fig. 3. The BFM language structure

gateway structures, but in our approach, such logic must not be specified in
BFM, instead, they should be specified in PCLM.

The detailed definition of the Business Activity is given as follows. A business
activity is a tuple of name, inputs, and outputs: t = <name: Name, I: Name×
C, O: Name×C>, where Name is a finite set of names; C is a finite set of types,
and every input or output of a business activity has a name and a type. The
type of an input or output parameter is a concept or property defined in an
ontology. As we know, an ontology provides a shared vocabulary, which can be
used to model a domain—that is, the type of objects and concepts that exist,
and their properties and relations [2]. The purpose that we associate an I/O
parameter with an ontology concept or property is twofold: first, the ontology
serves as the common ground between the BFM and the PCLM and thus makes
these two models semantically interoperable; second, the semantics attached
to business activities later can be used to semantically discover services that
implement business activities. For example, suppose the BookTicket activity
needs to use the customer information as an input parameter, then we may use
an ontology concept Customer that has properties such as firstName, lastName,
and passportNumber, to give a semantic meaning to this input parameter.

Figure 4 shows the BFM of the motivating example. It only contains two
business activities: BookTicket and SendOffer. We do not include the arrival
service in it because the arrival service is part of the context-awareness logic,
and such logic needs to be defined in the PCLM instead.

Fig. 4. The BFM of the motivating scenario

PerCAS: Enabling Dynamic and Personalized Adaptation 179

3.3 The Personalized Context-Awareness Logic Model

The PCLM captures the context-awareness logic. Usually there are more than
one PCLM defined for one BFM. PCLMs can be defined either at design time or
runtime, and a specific user can choose one of the PCLM or dynamically defines
a new PCLM as his/her PCLM.

A PCLM is composed of a set of rules, and each rule r is defined as a 3-tuple:
r = < type, condition, action >. Type is defined based on the context related
to a PCLM. For example, two contexts PriceConscious and BrandConscious

have the same context type TicketingPreference. Rules having the same type
can be switched dynamically at runtime. The definition of condition and action
follows the typical event-condition-action (ECA) pattern but the event part is
specified in the weave mechanism (see the next subsection for details) because
the triggering of rules is determined by point cuts in the aspect.

We have designed a natural-language-like high-level rule language to facilitate
the specification of PCLM. This language is defined based on the propositional
logic based constraint languages such as WSCoL [3] and JML [4], . The syntax
of this rule language is defined as follows:

<rule > ::= <type >, <cond > , <action >

<type > ::= <concept >

<cond > ::= not <cond > | <cond > and <cond > |

<cond > or <cond > | <term > <relop > <term >

<term > ::= <property > | <term > <arop > <term > |

<const > | <fun > (<term > <term >*)

<property > ::= <concept >(_<n>)?(.< obj_prop >)*.

<datatype_prop >

<relop > ::= less than | less than or equal to |

equal to | greater than or equal to |

greater than

<arop > ::= + | - | * | /

<n> ::= 1 | 2 | 3 |...

<fun > ::= <predef > | <usrdef >

<predef > ::= abs | replace | substring | sum | avg

| min | max | ...

<action > ::= (<activity >) | (<property > | <concept >(_<n>)?

= <term > | <activity >))*

As we can see, ontology concepts and properties are used in the specification of a
PCLM rule. Because of the atomic feature of rules, in many situations, only one
instance (or variable) of the same concept/type is involved in the definition of a
rule. In such cases, the name of an ontology concept is directly used to represent
one of its instances to bring certain convenience to the rule author. For example,
to define the condition “if the customer is price conscious”, we can just write the
following natural-language-like condition expression: “Customer.PriceConscious

180 J. Yu et al.

equal to true”, in which the ontology concept Customer actually means a specific
customer in the context of the rule. If more than one instance of the same con-
cept is needed in a rule expression, number subscriptions, such as Customer 1,
Customer 2, are used to identify a specific instance. Based on Web Ontology
Language (OWL) [19], an ontology concept could be a complex structure having
both object properties and datatype properties, where an object property navi-
gates to another concept in the ontology and a datatype property has a specific
primitive data type such as integer, boolean, or string. For example, suppose the
Customer concept has an object property contact whose range is the concept
Contact, and phoneNumber is a string datatype property of Contact. Finally, for
the action part, we can either assign the result of a term expression to a variable,
or assign the result of the invocation of a business activity to a variable.

The following are examples of three PCLM rules:

R1: If a customer is brand conscious, use the airline with the specified
brand.

[type] TicketingPreference

[Cond] Customer.Preference .brandConscious equal to

"true"

[Action] BookTicket (Customer.Preference .brand).

R2: If it rains at the arrival airport, use the pickup service:

[type] Weather

[Cond] ArrivalAirport .weatherCondition equal to "

Rainy"

[Action] Pickup(Customer).

R3: If it rains at the arrival airport, use the rent-car service:

[type] Weather

[Cond] ArrivalAirport .weatherCondition equal to "

Rainy"

[Action] RentCar(Customer).

The user can dynamically put rules into his/her own PCLM. For example, Alice’s
PCLM is composed of two rules R1 and R2: PCLM1 = {R1, R2}, while Bob’s
PCLM contains one rule R3 only: PCLM2 = {R3}. It is worth noting that
because the rule type is used for dynamic switching between rules, rules with the
same type are not allowed to be put in the same PCLM to achieve deterministic
selection.

3.4 The Weave Mechanism and Personalization Mechanism

The weave mechanism connect PCLM rules to BFM business activities based on
the concept of aspect: each aspect asp weaves a type of PCLM rules to a BFM
activity: asp ∈ {Before,Around,After} × T × R.Type, where T is the set of

PerCAS: Enabling Dynamic and Personalized Adaptation 181

BFM business activities and R.Type is the set of PCLM rule types. Similar
to AspectJ [11], we also identify three types of aspect: before aspects, around
aspects, and after aspects. An aspect is always associated with a business activity.
Both before aspects and around aspects are executed before the execution of the
associated activity, but if an activity has an around aspect, the execution of this
activity will be skipped after the execution of the around aspect. In another
word, the around aspect replaces its associated activity. From the perspective of
the ECA pattern, event ∈ {Before,Around,After}×T becomes the triggering
event of a PCLM rule.

PCLM rules are associated with an aspect based on their types. So it is a
type (or set) of PCLM rules that are associated with a BFM activity instead of
a single PCLM rule. For example, we can define two context-awareness aspects
for the travel booking service discussed in Section 2:

asp1 = {Around,BookT icket, T icketingPreference}
asp2 = {After, ArrivalService,Weather}

In asp2, Because R2 and R3 belong to the same type Weather, they can be
dynamically switched and applied to the ArrivalService activity.

It is worth noting that the interoperability between an BFM activity and
its associated PCLM rules is established through the predefined ontology. For
example, the input parameters of the BookTicket activity must contain two pa-
rameters having semantic annotation DepartureAirport and ArrivalAirport,
so that the associated rule (for example R2) can use these properties in its defi-
nition.

Finally the personalization mechanism is used to associate a user to a PCLM,
for example PCLM1.user = Alice, so that at runtime when it is identified
that the invocation is from this user, his/her specific PCLM will be used, and
rules will be selected from this PCLM to apply to the corresponding BFM. If
a context-awareness aspect is defined while there is no rule can be used (based
on the rule type) in the specific PCLM, then this aspect will be ignored. For
example, suppose Bob’s PCLM has no rule with type T icketingPreference,
then asp1 will be ignored when Bob invokes the travel booking service.

4 The PerCAS Development Platform

We have implemented a model-driven platform for graphically specifying the
PerCAS PIM models and for automatic transformation of these models to exe-
cutable PSM code.

4.1 The Graphical Development Interface

Figure 5 shows the main graphical development interface of the PerCAS plat-
form. There are totally three tabs: the left tab is an OWL viewer used for users
to explore ontology concepts defined in OWL; the middle tab, as shown in Fig-
ure 5, is the main environment for defining PerCAS models; the right tab is for

182 J. Yu et al.

Fig. 5. Snapshot of the PerCAS Platform

transforming models to executable code. For space limitation, we only introduce
the main graphical environment (the middle tab). As we can see, the left pane
displays the structure of the PCLM rule repository: there are two PCLMs de-
fined: one contains the BrandConscious rule (R1) and the Pickup rule (R2), and
the other contains the RentCar rule (R3). As discussed in Section 3.4, PCLM1

may be used by Alice, and PCLM2 by Bob. In the rest of the structure, two rule
types: TicketingPreference and Weather are defined, with each type contains
two rules.

The middle pane is the main canvas for composing a PerCAS service. BFM
language constructs are displayed as a list of buttons on top of the canvas. When
the user creates a BFM activity, its semantics can be specified in the bottom
pane. If we select a concept or datatype property from the drop-down menu
that contains all the concepts and datatype properties in the domain ontology
as the type for a parameter, a variable is automatically created to represent this
parameter. As shown in the snapshot, the BookTicket activity has three input
parameters with type Customer, DepartureAirport and ArrivalAirport, and
one output parameter with type Flight.

After the BFM model is created, the user may drag-n-drop one of the rule
types from the left pane to an activity in the middle canvas. The platform then
will ask the user whether weave the rule type before, around, or after the
activity. As shown in the figure, the TicketingPreference type is weaved as an

PerCAS: Enabling Dynamic and Personalized Adaptation 183

Fig. 6. The PCLM Rule Editor

around aspect, and the Weather type is weaved as an after aspect. It is worth
noting that if a BFM activity is attached with PCLM rules, then the solid line
of its shape becomes the dash line to indicate that it is context-dependent and
adaptive.

A new PCLM rule can be created in the “Rule Editor” dialog box, which will
appear if we right-click one of the folder icons in the left rule repository pane and
select “New Rule” from the pop-up menu. As shown in Figure 6, the rule editor
uses the concepts in the domain ontology to define the condition and action
components of a rule. It is worth noting that all the I/O parameter variables
in the base model that are visible to a rule will be automatically bound to the
corresponding concepts or properties in the rule.

4.2 Transformation

Before we can transform the defined PerCAS PIM to executable code, we need
to associate each BFM activity with a Web service. This can be done in the
“Association and Transformation” tab of the graphical interface.

Each PCLM rule is automatically transformed to an executable Drools rule.
Figure 7 shows the generated Drools rule code for rule R1 discussed in Sec-
tion 3.3. In order to keep the invocation of Web services associated with activities
defined within rules self-contained, service information for Web services associ-
ated with activities defined within rules are encoded directly into the rule code.
First, the bindings for ontology classes used in the rule as well as an enabler
helper-class are defined (Lines 5-6), followed by the condition statement as trans-
lated into Drools syntax (Lines 8). If the condition is evaluated as true, the Web
service associated with the BookT icket will be invoked, using the enabler helper
class (Lines 12-25).

The weaved BFM model is transformed to a BPEL process. Constructs such
as Start Event and Activity that does not have aspects are translated directly
into their corresponding BPEL constructs (in this case, receive and invoke).

184 J. Yu et al.

1 rule "BrandConscious "

2 dialect "java"

3

4 when

5 $enabler : Enabler ()

6 $Customer : Customer ()

7

8 Customer ((Preference (brandConscious == "true"))

9

10 then

11

12 try {

13 String[] wsInfo = { "http :// localhost :8080/

14 BookTicket ",

15 "bookTicket ", "BookTicketService ",

16 "ContactServicePort ",

17 "http :// localhost :8080/

18 BookTicketService /BookTicketService

?

19 wsdl"};

20

21 String [][] varInfo = {{ $Customer .getBrand ()}};

22 String [][] varNames = { { " CustomerBrand " }};

23

24 $enabler.runService (wsInfo , varInfo , varNames);

25 } catch (Exception e) { e.printStackTrace () };

26

27 end

Fig. 7. Drools rule code corresponding to Rule R1

For activities that have aspects, we use a special Web service called aspect
service as the communication bridge between the BPEL process and the rules
running on the Drools rule engine. An aspect service will be invoked before
invoking an activity if it has before and/or around aspects, and another as-
pect service will be invoked after invoking an activity if it has after aspects.
To achieve dynamic switching between PCLMs, each PCLM is translated to a
Drools rule file, and the aspect service takes as input a URI to the Drools rule
file, along with the values and ontology class names of all variables involved in
the aspect. When a user invokes a PerCAS service, his/her unique PCLM URL
will be used as an parameter to the aspect service. The aspect service returns
two Boolean values corresponding to abort and skip evaluation outcomes, as well
as the values of all variables that may have been updated based on rule evalua-
tion. Finally, conditional constructs are inserted around the activity invocation
to handle abort and skip actions based on the return of the aspect service.

PerCAS: Enabling Dynamic and Personalized Adaptation 185

Fig. 8. The architecture of the PerCAS runtime environment

5 The Runtime Environment

We have implemented the PerCAS runtime environment based on Riftsaw-2.3.0
open source BPEL engine 3 and Drools-5.0 rule engine. Both engines are running
inside the JBoss Application Server-7.0.

Figure 8 is the architecture of the PerCAS runtime environment. The bottom
level of the anatomy includes the main components of the runtime environment:
a Drool engine, a BPEL engine, and a generic aspect service that encapsulates
the rule invocation logic. The aspect service is written in Java and exposed as a
Web service for the BPEL process to invoke. Every time when an aspect in the
process is reached for execution, the aspect service is invoked and corresponding
variables (including the IO parameters of its associated activity and user selected
variables) are passed from the process to it; these variables are used in the
execution of the rules of the aspect. After all the rules in the aspect are executed,
these variables are updated and passed back to the process.

Next we use this architecture and the motivating scenario to briefly demon-
strate how dynamic and personalized adaptation is achieved in PerCAS. Suppose
Alice is using the travel booking service, then the url to PCLM1 (defined in Sec-
tion 3.3) will be used as an parameter to the aspect service, and because asp1
(defined in Section 3.4) is an around aspect to the BookTicket service, this as-
pect will select a rule with type TicketingPreference from PCLM1, which
is R1. Similarly, when Bob is invoking the service, PCLM2 will be used and
R2 will be selected and executed instead. Because the BFM process and the
PCLM rules are separately deployed, it is possible to change the PCLM rules
while the process is still running. For example, when the BookTicket service is
still running, Alice may change the rules defined in PCLM1, e.g., change her
arrival service preference from Pickup to RentCar. If the modified PCLM1 is
successfully deployed before asp2 (the after aspect) is executed, the new rule will
be used in asp2.

3 http://www.jboss.org/riftsaw/

http://www.jboss.org/riftsaw/

186 J. Yu et al.

Number of Passed Variables

T
im

e
(m

s)

0 10 20 30 40 50 60 70 80 90 100
22

24

26

28

30

32

Fig. 9. Execution time of a single aspect service w.r.t. the number of passed variables

According to the above discussed architecture, we can see that the main per-
formance impact of this runtime environment lies in the aspect service, which
is responsible for executing the context-awareness logic outside the BPEL en-
gine. We have conducted an initial experiment to test the impact of invoking a
single aspect service with various number of randomly generated primitive type
variables passed. Every setting is tested five times and the average execution
time of an empty aspect service w.r.t. the number of passed variables is shown
in Figure 9. As we can see, it costs 22 ms to invoke an empty aspect service
without passing any variables and costs 32 ms to invoke an empty aspect service
with 100 variables passed to it. This result shows that the variable exchange
between the Riftsaw BPEL server and the Drools server is very fast, and there
is only 10 ms increase from passing no variable to passing 100 variables. The
reason could be that these two servers are two components that both run inside
the same JBoss application server.

6 Related Work

The PerCAS approach presented in this paper is closely related to two categories
of research work: one is model-driven development of context-aware services, and
the other is dynamic context-aware process adaptation. In the rest of this section,
we discuss related work from these two perspectives.

As mentioned by Kapitsaki et al. [16], the model-driven approach is a popu-
lar approach to developing context-aware services because of its strong support
to the development process. ContextServ [26] is a platform that uses UML4

to model contexts, context-awareness, and services, and then transforms the
model to an executable context-aware Web service. Composite contexts can be
modeled by composing atomic contexts using UML state diagrams. The main
context-awareness features that can be modeled by ContextServ include con-
text binding, which binds a context to the input parameter of a service, and

4 http://www.uml.org/

http://www.uml.org/

PerCAS: Enabling Dynamic and Personalized Adaptation 187

context triggering, which modifies the output of a service to suit a specific con-
text. CAMEL (Context Awareness ModEling Language) and its associated de-
velopment tools [12,28] combine model-driven development and aspect-oriented
design paradigms so that the design of the application core can be decoupled
from the design of the adaptation logic. In particular, CAMEL categorizes con-
text into state-based which characterizes the current situation of an entity and
event-based which represents changes in an entity’s state. Accordingly, state con-
straints, which are defined by logical predicates on the value of the attributes
of a state-based context, and event constraints, which are defined as patterns of
event, are used to specify context-aware adaptation feature of the application.
CAAML (Context-aware Adaptive Activities Modeling Language) [17] aims at
modeling context-aware adaptive learning activities in the E-learning domain.
This language focuses on modeling two classes of rules - rules for context adap-
tation and rules for activity adaptation - to support pedagogical designing. The
above approaches mainly focus on how to specify context-awareness features of
a single service or software component at design time. The focus of the PerCAS
approach instead is on making the context-awareness features changeable at
runtime based on user preferences. Also, PerCAS supports to do context-aware
adaptation on a process instead of a single service, which is the reason that we
adopt BPMN instead of UML as the base modeling language.

In terms of dynamic context-aware process adaptation, Apto [13] is a model-
driven approach for generating the process variants that corresponding to the
changes in requirements and context. Necessary changes to a process is mod-
eled as evolution fragments using UML, and a process variant can be created
by applying an evolution fragment to the base process. Dynamic adaptation is
achieved by first generating a new process variant, then transforming the process
variant to a BPEL process, and then re-deploying this new BPEL process. Al-
though both Apto and PerCAS can achieve the same goal of creating dynamic
and personalized context-aware services, Apto clearly needs more professional
experience to create a correct evolution fragment as it needs full understanding
of both the process logic and the process language constructs, while PerCAS
advocates to use natural language-like rules to define context-awareness logic.
There are quite a few works aiming at extending the dynamic adaptability of
BPEL processes using aspects and rules. AO4BPEL [6] is an aspect-oriented ex-
tension to BPEL that supports dynamic weaving of aspects in BPEL processes.
Although they also advocate to use rules in an aspect, a rule engine is not inte-
grated in their approach and rules are manually mapped to BPEL conditionals.
Marconi et al. [18] also proposed a set of constructs and principles for embedding
the adaptation logic within a flow language specification and showed how BPEL
can be extended to support the proposed constructs. Rosenberg and Dustdar [24]
proposed a runtime environment where both a BPEL engine and a rule engine
are connected to a service bus. Dynamic adaptation is achieved through inter-
cepting the messages exchanged between the process and a partner service and
invoking business rules running on the rule engine before and after the execu-
tion of the partner service. This approach may not be able to implement the

188 J. Yu et al.

around aspect as rules are inserted before and after the invocation of a partner
services while the partner service cannot be disabled or replaced. Paschke and
Teymourian [22] discussed a rule based business process execution environment
where a rule engine is deployed on an ESB (Enterprise Service Bus) and exposed
as Web services. Dynamic adaptation is achieved by explicitly defining and inte-
grating Rule Activities, which invoke the rule service, in the BPEL process, and
rules can be modified and applied without re-deploying the process. The above
works mainly focus on the execution language and environment, while PerCAS
is a systematic engineering approach with a graphical modeling language and
development platform.

7 Conclusion

In this paper, we have presented PerCAS, a model-driven approach for devel-
oping dynamic and personalized context-aware services using aspects and rules.
We have introduced the models and methodology of separating the context-
awareness logic from the base functionality logic of a service, as well as weaving
the context-awareness logic to the base process. A natural language-like rule lan-
guage is proposed for specifying context-awareness logic and personalized rules
can be dynamically switched at runtime. We have also developed a development
platform to support the graphical modeling and transformation of such services,
and a runtime environment that integrates both a BPEL engine and a Drools
rule engine for their execution. In the future, we plan to apply this approach in
more real-life case studies to validate its effectiveness. We also plan to investi-
gate runtime validation techniques that can be used to check the consistency of
context-awareness logic switching.

References

1. Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More.
Hyperion Books (2006)

2. Arvidsson, F., Flycht-Eriksson, A.: Ontologies I (2008),
http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf

3. Baresi, L., Guinea, S.: Self-Supervising BPEL Processes. IEEE Transaction on
Software Engineering 37(2), 247–263 (2011)

4. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An Overview of JML Tools and Applications. Int’l J. Software
Tools for Technology Transfer 25(3), 40–51 (2005)

5. Charfi, A., Mezini, M.: Hybrid Web Service Composition: Business Processes Meet
Business Rules. In: Proc. of the 2nd International Conference on Service Oriented
Computing (ICSOC 2004), pp. 30–38 (2004)

6. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. World
Wide Web 10, 309–344 (2007)

7. Dey, A.K., Mankoff, J.: Designing Mediation for Context-aware Applications. ACM
Trans. on Computer-Human Interaction 12(1), 53–80 (2005)

8. Elrad, T., Filman, R.E., Bader, A.: Aspect-Oriented Programming: Introduction.
Commun. ACM 44(10), 29–32 (2001)

http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf

PerCAS: Enabling Dynamic and Personalized Adaptation 189

9. Evdemon, J., Arkin, A., Barreto, A., Curbera, B., Goland, F., Kartha, G., Kha-
laf, L., Marin, K., van der Rijn, M.T., Yiu, Y.: Web Services Business Process
Execution Language Version 2.0. BPEL4WS Specifications (2007)

10. Ferscha, A.: 20 Years Past Weiser: What’s Next? IEEE Pervasive Computing 11,
52–61 (2012)

11. Gradecki, J.D., Lesiecki, N.: Mastering AspectJ: Aspect-Oriented Programming in
Java. Wiley (2003)

12. Grassi, V., Sindico, A.: Towards Model Driven Design of Service-Based Context-
Aware Applications. In: Proc. of the International Workshop on Engineering of
Software Services for Pervasive Environments: In Conjunction with the Sixth ES-
EC/FSE Joint Meeting, pp. 69–74 (2007)

13. Jaroucheh, Z., Liu, X., Smith, S.: Apto: A MDD-based Generic Framework for
Context-Aware Deeply Adaptive Service-based Processes. In: Proc. of the 2010
IEEE International Conference on Web Services (ICWS 2010), pp. 219–226 (2010)

14. Julien, C., Roman, G.C.: EgoSpaces: Facilitating Rapid Development of Context-
Aware Mobile Applications. IEEE Trans. on Software Engineering 32(5), 281–298
(2006)

15. Kambayashi, Y., Ledgard, H.F.: The Separation Principle: A Programming
Paradigm. IEEE Software 21(2), 78–87 (2004)

16. Kapitsaki, G.M., et al.: Context-Aware Service Engineering: A Survey. J. Syst.
Software (2009)

17. Malek, J., Laroussi, M., Derycke, A., Ben Ghezala, H.: Model-Driven Development
of Context-aware Adaptive Learning Systems. In: Proc. of the 10th IEEE Interna-
tional Conference on Advanced Learning Technologies (ICALT 2010), Washington,
DC, USA, pp. 432–434 (2010)

18. Marconi, A., Pistore, M., Sirbu, A., Eberle, H., Leymann, F., Unger, T.: Enabling
Adaptation of Pervasive Flows: Built-in Contextual Adaptation. In: Baresi, L., Chi,
C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 445–454.
Springer, Heidelberg (2009)

19. Mcguiness, D.L., van Harmelen, F.: OWLWeb Ontology Language Overview. W3C
Recommendation (February 2004), http://www.w3.org/TR/owl-features/

20. Morin, B., Barais, O., Nain, G., Jezequel, J.M.: Taming Dynamically Adaptive
Systems using Models and Aspects. In: Proc. of the 31st International Conference
on Software Engineering (ICSE 2009), pp. 122–132 (2009)

21. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. Computer 40(11), 38–45 (2007)

22. Paschke, A., Teymourian, K.: Rule Based Business Process Execution with
BPEL+. In: Proc. of I-KNOW 2009 and I’SEMANTICS 2009, pp. 588–601 (2009)

23. Prezerakos, G.N., Tselikas, N., Cortese, G.: Model-Driven Composition of Context-
Aware Web Services Using ContextUML and Aspects. In: Proc. of the IEEE In-
ternational Conference on Web Services 2007 (ICWS 2007), pp. 320–329 (2007)

24. Rosenberg, F., Dustdar, S.: Usiness Rules Integration in BPEL - a Service-Oriented
Approach. In: Proc. of the 7th IEEE International Conference on E-Commerce
Technology, pp. 476–479 (2005)

25. Ross, R.G.: Principles of the Business Rules Approach. Addison-Wesley (2003)
26. Sheng, Q.Z., Pohlenz, S., Yu, J., Wong, H.S., Ngu, A.H.H., Maamar, Z.: Con-

textServ: A Platform for Rapid and Flexible Development of Context-Aware Web
Services. In: Proc. of the 31st International Conference on Software Engineering
(ICSE 2009), pp. 619–622 (2009)

27. Sheng, Q.Z., Yu, J., Dustdar, S. (eds.): Enabling Context-Aware Web Services:
Methods, Architectures, and Technologies. CRC Press (2010)

http://www.w3.org/TR/owl-features/

190 J. Yu et al.

28. Sindico, A., Grassi, V.: Model Driven Development of Context Aware Software Sys-
tems. In: Proc. of the International Workshop on Context-Oriented Programming
(COP 2009), New York, NY, USA, pp. 7:1–7:5 (2009)

29. Truong, H.L., Dustdar, S.: A Survey on Context-Aware Web Service Systems.
International Journal of Web Information Systems 5(1), 5–31 (2009)

30. Zhang, J., Cheng, B.H.C.: Model-Based Development of Dynamically Adaptive
Software. In: Proc. of the 28th International Conference on Software Engineering
(ICSE 2006), pp. 371–380 (2006)

	PerCAS: An Approach to Enabling Dynamic
and Personalized Adaptation for Context-Aware Services
	Introduction
	A Motivating Scenario
	The PerCAS Approach
	Overview
	The Base Functionality Model
	The Personalized Context-Awareness Logic Model
	The Weave Mechanism and Personalization Mechanism

	The PerCAS Development Platform
	The Graphical Development Interface
	Transformation

	The Runtime Environment
	Related Work
	Conclusion
	References

