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Abstract. One typically expects classifiers to demonstrate improved
performance with increasing training set sizes or at least to obtain their
best performance in case one has an infinite number of training sam-
ples at ones’s disposal. We demonstrate, however, that there are clas-
sification problems on which particular classifiers attain their optimum
performance at a training set size which is finite. Whether or not this
phenomenon, which we term dipping, can be observed depends on the
choice of classifier in relation to the underlying class distributions. We
give some simple examples, for a few classifiers, that illustrate how the
dipping phenomenon can occur. Additionally, we speculate about what
generally is needed for dipping to emerge. What is clear is that this kind
of learning curve behavior does not emerge due to mere chance and that
the pattern recognition practitioner ought to take note of it.

1 On Learning Curves and Peaking

The analysis of learning curves, which describe how a classifier’s error rate
behaves under different training set sizes, is an integral part of almost any
proper investigation into novel classification techniques or unexplored classifi-
cation problems [7]. Though sometimes interest goes only to its asymptotics [9],
the learning curve is especially informative in the comparison of two or more
classifiers when considering the whole range of training set sizes. It indicates
at what samples sizes the one classifier may be preferable over the other for a
particular type of problem. Also, by means of extrapolation, the curve may give
us some clue on how many additional samples may be needed in a real-world
problem to reach a particular error rate. Such analyses are readily impossible
on the basis of a point estimate as, for example, obtained by means of leave one
out cross-validation on the whole data set at hand.

The learning curve one typically expects to observe falls off monotonically with
increasing training set size (see Figure [I). The rate of decrease depends on the
particular problem considered and the complexity of the classifier employed. Such
behavior can indeed be demonstrated in certain settings in which the classifier
selected typically fits the underlying data assumptions well, see for instance
[1I10]. In a similar spirit, various bounds on learning curves also show monotonic
decrease for the expected true error rate with increasing training set sizes [5I16].
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Fig. 1. An idealized learning curve in which the error rate drops monotonically with
an increasing training set size

That such monotonic behavior can, however, not always be guaranteed has
already been known at least since the mid nineties. Both Opper and Kinzel [12]
and Duin [4] describe what is nowadays referred to in pattern recognition as the
peaking phenomenon for learning curves: the error rate attains a local maximum
that does not coincide with the smallest training sample size considered. This
phenomenon has been described and investigated, for instance, for the Fisher
discriminant classifier [AIT3[T4], for particular perceptron rules [I2JTT], and for
lasso regression [8]. The naming of this phenomenon alludes to the peaking
phenomenon for increasing feature sizes (as opposed to increasing training set
sizes, which this paper is concerned with) as originally identified by Hughes [6]
in the 1960s. Hughes’ phenomenon for such feature curves shows that, for a fixed
training sample size, the error initially drops but beyond a certain dimensionality
typically starts to rise again.

On the basis of what we know about peaking, we may adjust our expecta-
tion about learning curves and speculate classifiers to at least obtain their best
performance when an infinite number of training samples is used. But also this
turns out to be false hope as this work demonstrates. It appears there are classifi-
cation problems on which particular classifiers attain their optimal performance
at a training set size which is finite. In contrast with peaking, we term this
phenomenon dipping as it concerns a minimum in the learning curve, in fact, a
non-asymptotic, global minimum.

The next three section of the paper, Sections Bl Bl and Ml give some sim-
ple examples, for three artificial classification problems in combination with
specific classifiers, which demonstrate how the dipping phenomenon emerges.
Though artificial, the examples clearly illustrate that this kind of learning curve
behavior does not merely emerge due to chance, e.g. due some unfortunate
draw of training data, but that it is an issue structurally present in particular
problem-classifier combinations. The final section, Section Bl speculates on what
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generally is needed for dipping. It also offers some further discussions and con-
cludes this contribution.

2 Basic Dipping for Linear Classifiers

Consider a two-class classification problem consisting of one Gaussian distribu-
tion and one mixture of two Gaussian distributions (Figure 2)). The Gaussians
of the second class appear on either side of the Gaussian of the first class. A per-
fectly symmetric situation is considered here: there is symmetry in the overall
distribution and the class priors are equal. It should be stressed, however, that
this perfect symmetry is definitely not needed to observe a dipping behavior,
just like there is no need to stick to Gaussian distributions. This configuration,
however, enables us to easily explain why dipping occurs.
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Fig. 2. Distribution of two-class data used to illustrate basic dipping

Let us consider what happens when we would make an expected learning curve
for the nearest mean classifier (NMC, [3]). In the case of large total training
set sizes, both means will be virtually on top of each other and the expected
classification error will reach a worst case performance of 0.5. If, however, we go
to smaller and smaller sample sizes, these means will in expectation be further
and further apart due to their difference in variance. In the extreme case in
which we have one observation from both classes, the one mean will be around
the mode of class one and the other will be near one of the two modes of class
two. Though one will still have means that lead to an error rate of about 0.5,
chances are very slim. There will, however, be many configurations that both
classify the first class and one lobe of the second class more or less correctly,
which gives an expected error of around 0.25 as only the second lobe of the
second class gets misclassified.

In conclusion, the smaller the sample size is the higher the probability is that
the NMC delivers a performance considerably better than chance. Figure Bl gives
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Fig. 3. Dipping learning curves for three linear classifiers, viz., NMC, Fisher discrim-
inant, and logistic regression, based on the one-dimensional distribution presented in
Figure

the expected learning curve (an average over 1000 repetitions) for training set
sizes ranging from 2% to 22 (compare to Figure [M). The same figure displays
learning curves for the Fisher discriminant and logistic regression as well. Both
linear classifiers also suffer from dipping and an explanation for this goes along
the same lines as for the NMC.

3 Delayed Dipping

The following example demonstrates that the occurrence of the dip can be at
any point along the learning curve. Let us again consider the NMC but now the
classification problem changes to the one illustrated in Figure [dl The first class
is a Gaussian distribution and the second class is a noisy ring positioned around
the first class with a variable radius. Again the priors are taken equal.

When the radius of the ring is small, we are basically back in a situation
similar to the one in Section [2] and one would observe dipping as in Figure [3
The more training samples one would have, the closer the two means would get.
Though this is bad in case the ring is near the center class, when the ring grows
larger and larger, while the noise level stays the same, more observations in fact
lead to improved performance up to a certain level. Having one observation per
class would mean that the larger part of the ring is going to be misclassified to
the center class. Increasing the total training set size, however, moves the mean
of the second class closer and closer to the mean of the first class. As long as the
second class mean does not move into the region where the first class becomes
dense, moving closer to the center will lead to a better classification of class
two and therefore a better overall performance. When the ring grows infinitely
large, the two means can be virtually the same (relative to the size of the ring)
while the first class is classified nearly perfect and as good as half of the ring is
correctly classified. This happens when the training set grows infinite as well.



314 M. Loog and R.P.W. Duin

Feature 1

30

0
Feature A

Fig. 4. Single instantiation of a distribution of two-class data used to illustrate early
and late dipping for the NMC. The outer ring can vary in diameter based on which
the time of dipping can be controlled.
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Fig. 5. Learning curve for the NMC based on the two-class distribution in Figure @ It
shows the dipping phenomenon to occur away from the smallest sample sizes.

In conclusion, by means of the variable ring diameter, one can tune the occur-
rence of the dip for the NMC to an arbitrary position along the learning curve.
Figure [l gives a learning curve that dips at a training sample of 16, which is
obtained for a radius of 20 with a Gaussian standard deviation and a ring noise
level standard deviation of 1.

4 Dipping of QDA

Our final example shows that dipping is not limited to linear discriminants
but may also be encountered when employing more flexible classifiers. Here we
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consider classical quadratic discriminant analysis (QDA, [10]). Figure [Bl shows
the class configurations used—a variation to the one from Section Pl Figure [1]
displays the learning curve obtained by QD. A reason rather similar to the
one given in Section 2l can be given for the observed dipping, though it is slightly
more involved because of the more complex classifier considered. Here we merely
note that in case of large sample sizes the decision boundary is close to the mid-
dle and the error rate gets close to the worst case solution, which is slightly less
than 0.5. For smaller sample sizes the decision boundary shifts away from the
middle, which on average leads to an improvement in classification error as can
be observed in the learning curve from Figure [7
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Fig. 6. Distribution of two class data used to let QDA dip
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Fig. 7. Learning curve for QDA related to the two-class distribution in Figure Bl illus-
trating that dipping is not limited to the simplest of classifiers.

1 As the per class sample sizes sometimes equals one, the covariance matrices in QDA
were moderately regularized in this experiment.
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5 Discussion and Conclusion

For four different classifiers we have demonstrated that the dipping phenomenon
can be observed. We explained why it emerges in a basic setting using linear clas-
sifiers, sketched how the dipping point can attain an arbitrary location along the
learning curve, and illustrated the possibility that also discriminants more com-
plicated than linear can show dipping behavior. What seems to be a essential
requirement is that the model underlying the classifier does not suit the classifi-
cation problem considered very well. Curves similar to those on Figure 2l can be
generated for linear discriminant analysis (LDA), the perceptron, or the linear
support vector machine. All in all, it raises the question at what complexity
classifiers will not suffer from dipping any longer. More specifically: can we find
problems for which k nearest neighbors or the Parzen classifier show this type
of behavior? Or are nonparametric techniques immune to dipping? Certainly
for the Parzen classifier, when one would keep the kernel’s bandwidth fixed, we
would not be surprised if particular data configurations will even make this clas-
sifier dip. To date, however, we have been unsuccessful in finding an illustration
of such behavior.

It may even be that still less is needed for dipping to potentially happen. Even
if the type of decision boundaries that can be modeled by a particular classifier is
in principle rich enough to include the Bayes decision boundary for the problem
at hand, the learning routine or estimation procedure might be unable to find
the correct fit. An example is the Fisher discriminant, which is not always able
to separate linearly separable classes. The underlying problem is that we want to
minimize the expected classification error but in reality we always have to settle
for a surrogate loss that is all but a bad approximation to the 0-1 loss. Maybe
due to this discrepancy, “anything” can happen: for any classifier one might be
able to find a, potentially rather pathological, data set for which the classifier
dips. That this state of affairs may not be completely accurate is, however,
demonstrated by the existence of so-called universally consistent classifiers (see,
for instance, [I5]). Though such results on universality should, in turn, also be
interpreted with care [2].

A completely different question this work also raises is whether one should
treat the training set size just like any other free parameter a classifier has.
Should one, for example, also cross-validate over the number of training sam-
ples to be used for training? Another issue of interest is whether the phe-
nomenon can be observed in any real-world problem and how it affects such
setting.

Irrespective of the previous questions, we think dipping is a phenomenon
that one should keep in mind when studying learning curves. When observed,
it may not be ascribed blindly to chance or a bad training sample. It might
just be inherent in the combination of problem at hand and classifier
employed.
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