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Abstract. Botnet is becoming the biggest threat to the integrity of Internet and
its resources. The advent of P2P botnets has made detection and prevention of
botnets very difficult. In this paper, we propose a set of metrics for efficient bot-
net detection. The proposed metrics captures the unique group behavior that is
inherent in bot communications. Our premise for proposing group behavior met-
rics for botnet detection is that, group behavior observed in botnets are unique
and this unique group behavior property is inherent in the botnet architecture.
The proposed group behavior metrics uses three standard network traffic char-
acteristics, namely, topological properties, traffic pattern statistics and protocol
sequence and usage to derive the proposed metrics. We derive six group behav-
ior metrics and illustrate the efficiency of botnet detection using these metrics. It
was observed that, group behavior metrics offers a promising solution for botnet
detection.

1 Introduction

Malicious botnets has become a major security threat to the integrity of Internet [19]. A
bot is an autonomous software agent which is programmed to perform some designated
tasks automatically. A network formed by a set of bots residing in different hosts is
referred to as a botnet. Though the concept of botnet was initially designed for benign
purposes, its current usage in Internet serves for more malicious causes [3].

Peer to Peer (P2P) botnets [16] is new generation botnets which have replaced the
old centralized IRC/HTTP based botnets [8]. P2P botnets are more stealthy and hard to
detect. Due to the distributed and autonomous network structure of P2P systems, it is
almost impossible to shutdown a botnet [6]. Attackers have become aware to strengths
of P2P botnets and there has been steady increase in bot malwares that use P2P protocol
for malicious botnets.

In this paper, we propose a set of metrics that capture group behavior among hosts to
detect botnets. Our premise for proposing group behavior metrics for botnet detection
is that, group behavior observed in botnets are unique and this unique group behavior
property is inherent in the botnet architecture. As bots are software agents and follow
a fixed protocol, their communication patterns are similar. In our work, we exploit this
property of bot behavior to detect them. The proposed work uses topological properties,
traffic pattern statistics and protocol based signatures for identifying hosts which have
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similar communication patterns. In evaluating the group behavior metrics for botnet
detection, we found that the metrics deliver accurate and precise detection of bots in the
traffic.

The paper is organized as follows. The succeeding section discusses the relevant
work with respect to group behavior based botnet detection. Section 3 gives an overview
on the inherent group behavior of botnets. The derivation of the proposed group be-
havior metrics is presented in section 4. The group behavior metrics is evaluated for
accuracy on detecting P2P botnets in section 5. Section 6 concludes the paper by sum-
marizing the contribution of the work and brief comments on future work.

2 Related Work

Botnet detection is a non-trivial problem [5]. Experience with respect to centralized
IRC/HTTP based botnet detection and mitigation will prove that[19]. Now, the chal-
lenge of botnet detection has become harder due to the advent of P2P botnets. Research
is yet to provide standard and efficient system for botnet detection [12]. Existing botnets
detection methodologies suffer from the tactics used by attackers to thwart detection.
Just like software, the bot malware is constantly updated and new revised versions are
released, periodically. With P2P technology, this update process is distributed and au-
tonomous, which make botnet resilient to detection and mitigation.

Existing work on group behavior based detection of botnets are very few [2,1,18].
Group behavior is often looked due to the intuitive belief that presence of groups of
bots within the same subnet is highly unlikely. However, a look at the traffic through
an ISP gateway will prove otherwise. Due to bot propagation mechanism, it is highly
likely that more than few bots exist in the traffic of a subnet.

Choi.H et al [2] proposed BotGAD, a framework for capturing group activity in net-
work traffic for botnet detection. They provided a comprehensive overview of current
climate in botnet detection research and the usefulness of group behavior as a measure
for botnet. Chang.S and Daniels [1] proposed a set of schemes to detect C&C chan-
nel of P2P botnets. In this work, the authors characterize a host behavior by jointly
considering the spatial and temporal correlations within the traffic. These correlations
essentially capture the group behavior of hosts within the network traffic. Hosseinpour
and Borazjani [18] proposed a botnet detection framework that uses Artificial Immune
System (AIS) to detect common network behavior in the traffic. This approach primarily
focuses on detecting spam messages and port scan activity of infected hosts. Spamming
and port scanning activities exhibits strong group behaviour among the infected hosts
and this property of the malicious behaviour is used to detect them.

3 Group Behavior in P2P Botnets

The generic development cycle of a malicious botnet consists of three primary stages
[13] , as shown in figure 1. First, the malicious bot is made to install on an end-user ma-
chine by various techniques such as, social engineering, spamming, etc. This process
is referred to as bot infection or initial infection. In the second stage of botnet devel-
opment cycle, the bot searches and connects to bots that reside in other infected hosts.
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Fig. 1. Bot Development Cycle

Thus, the malicious botnet is formed. This stage also establishes a command and con-
trol (C&C) channel for the botmaster (attacker) to control the bot. Additionally, bots
try to propagate itself to hosts in the infected host’s network neighborhood. Bots are
generally equipped with propagation mechanisms which will spread the bot malware
to hosts which are connected to the infected host. At the third stage, the bot downloads
infection vectors through C&C channel which will program the bot for future malicious
tasks. This process is referred to as secondary injection. After the three stages, the bots
and botnet is ready for malicious attacks controlled by the botmaster.

As mentioned earlier, group behavior among bots is inherent due to the botnet archi-
tecture. After the initial infection, each phase in the development cycle of the malicious
botnet adds strong group behavior properties to the bot behavior.

Once a host is being infected with the malicious bot code, the bot tries to propagate
itself to other hosts that are connected to the infected host. Through this process, the bot
infects other neighboring hosts with the same bot code. As the hosts that are infected
using the propagation mechanism are infected with the same bot code, the bots’ network
behavior is completely identical. However, this identical network behavior is often dif-
ficult to notice, as this behavior is hidden within the hosts’ network traffic generated
by other benign applications within the infected host. The proposed group metrics in
this paper aim to capture the bots’ identical network behavior that is hidden within the
infected hosts’ benign traffic.

In the second stage of botnet development cycle, the malicious bot installed in the
infected host tries to connect to other bots (peers). This process in P2P terminology is
referred to as peer discovery process [11]. This peer discovery process causes a bot to
exhibit strong group behavior with respect to common network connectivity. In most
bots, the peer discovery process starts by trying to connect to a set of peers whose IP
addresses are hard-coded within the bot code. This property causes the bots to have
high common connectivity, as bots infected with the same malware will connect to the
same list of peers. Even between different versions of bot malware, large number of
peers in the hard-coded peer list remains unchanged. After the peers in the hard-coded
peer list are connected, the bot downloads a list of active peers in the botnet through the
successfully connected peers. This downloaded peer list is almost the same for different
bots in the botnet. This further strengthens the common network connectivity among the
bots. Thus, the similarity between the network topology among bots is inherent. If the
attacker tries to hide this similarity by randomizing and sub-grouping the peer list, thus
formed botnet will be disconnected and hard to manage for the attacker. Thus, similarity
in network topology is key feature for detecting group behavior in bots.

During the attack phase of a botnet, bots exhibit strong group behavior. This is pri-
mary due to the fact that attacks are coordinated using a set of bots. For example, Denial



96 J. Felix, C. Joseph, and A.A. Ghorbani

of Service (DoS) attacks using bots are usually coordinated using a set of bots. Hence,
bots tend to behave in the same fashion. Additionally, the command and control channel
is not unique to a bot. Due to the propagation mechanism of P2P protocols, there is a
high probability of bots in the same subnet to receive the same attack commands. In P2P
networks, such as eDonkey, local peers are preferred over distant peers for propagation.
This property of the botnet system make the bots to exhibit strong group behavior in
terms of network connectivity, traffic pattern and protocol sequence and usage.

4 Group Behavior Metrics

The group behavior metrics for hosts in the network are derived using three network
traffic characteristics, namely, topology, traffic pattern and protocol usage. The process
of deriving the group behavior metrics from the network traffic is illustrated in figure 2.
The process comprises of five stages. In the succeeding sections, we discuss each stage
of deriving the group behavior metrics.

For each of three network traffic characteristics, we use features that capture group
behavior in network behavior. Common connectivity among hosts is derived from the
topological properties of the network and is used for capturing the group connectivity.
Similarity in packet sizes and frequency is used to measure the group behavior in traffic
patterns. Similarity in protocol sequence exhibited by hosts in their network traffic is
used to measure the group behavior in protocol usage. Thus, the process uses the three
primary characteristics of network traffic to derive the group behavior metrics.

Fig. 2. Group Behavior Metrics
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4.1 Topological Properties

In the first step, the topology of the network that is represented in the network is ex-
tracted, as shown in figure 2. A directional graph GIP (V,E) is used to represent the
topology, with vertices (V ) being the set of unique host IPs found in the network traffic
and edges (E) represent the communication links between source IP and destination IP
found in the packet header. Similarly, a directional graph GIP/PORT (V,E) is used to
represent the topology that considers both IP address and port numbers. The vertices in
graph GIP/PORT (V,E) is a set of unique host IP address and port number pairs found
in the network traffic and edges (E) represent the link between source IP / source port
and destination IP / destination port.

After the topology graphsGIP (V,E) and GIP/PORT (V,E) are defined, each topol-
ogy is divided into groups based on the connectivity between the hosts. Sub-graphs
are defined for each graphs GIP (V,E) and GIP/PORT (V,E). These sub-graphs are
formed by considering the connectivity of hosts in the graph, such that strongly con-
nected hosts are formed into sub-graphs. The process of deriving this sub-graphs is
discussed later in this section.

The purpose of dividing the topology into sub-graphs is to reduce the complexity
of deriving the group behavior metrics. Without grouping, deriving the group behavior
metric for each host with all remaining hosts in the topology is almost impossible due
to computational complexity. In this case, for deriving the group behavior metric, each
host’s network behavior has to be compared with the remaining hosts in the network.
Such a process has computational complexity in the order of O(N2), where N is the
number of hosts in the network. By dividing the topology into groups, the group behav-
ior is evaluated for hosts only within the sub-graphs of the topology. This reduces the
complexity of the group behavior metric computation, significantly.

To find the groups of strongly connected hosts in the topology, we use community
detection algorithm [4]. The fundamental idea behind community detection algorithms
is that, the nodes of a network can be formed into groups based on the connectivity
between them. Newman [10], in his seminal work proposed the notion of modularity
which is used as a measure to group nodes in a network. Modularity is a benefit function
which quantifies the quality of grouping a certain set of nodes in the network based
on connectivity. Modularity [10] is high for set of nodes which have a high degree
of connectivity between them but less to nodes with few connections. Hence, in other
words, modularity aims to maximize the number links within the group and minimize
the links between the groups. We use the community detection algorithm proposed by
Schuetz and Caflisch [14].

Community detection algorithm aim to group strongly connected nodes. The out-
come from the community detection algorithm is a group index to each host in the
topology. The nature of strong connectivity among bots will be preserved by the com-
munity structure detection algorithm. In community detection terminology, groups or
clusters are referred to as communities. Therefore, hereinafter, the terms communities
and groups will be used interchangeably.

At stage two, the group behavior within the topological properties of the network is
evaluated. For each graph,GIP (V,E) andGIP/PORT (V,E), the common connectivity
[9] of nodes is derived by computing the number of common neighbors between two
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hosts within the community. The common neighbor for every node pairs in the sub-
graphs is computed. The property of bot to have high common connectivity is captured
using this metric.

4.2 Traffic Pattern Statistics

As discussed in section III, bots exhibit a common traffic pattern. However, this traffic
pattern similarity is often hidden within the network traffic generated by the benign ap-
plications in the infected host. Typical features of network traffic statistics [15] include,

– Aggregated number of incoming packets
– Aggregated number of incoming bytes
– Aggregated number of outgoing packets
– Aggregated number of outgoing bytes

The above four features are most common used traffic statistics features in existing
detection systems. It should be noted here that, the four features represent only the
incoming and outgoing bandwidth of a specific host communication. Traffic patterns,
however, cannot be perceived using the above four features. Furthermore, the aggre-
gation of packet and byte count for host traffic allows the bot traffic properties to be
hidden within the benign traffic. Thus, the conventional features of traffic statistics are
inadequate for deriving group behavior.

For representing the traffic pattern, we primarily use packet size feature of the net-
work traffic. At stage three, we extract the traffic information for each host in the net-
work. For each host, we record different packet sizes that are observed within the host’s
network traffic. Additionally, the frequency of packet sizes within the host’s commu-
nication is also extracted. Hence, for ith host in the network, the traffic information is
represented as

(
P I
E , F

I
E

)
, where P I is the set of packet sizes observed for the ith host,

F I is the set of frequency of corresponding packet size and S is the number of unique
packet sizes observed within the host’s network traffic.

After the traffic pattern is extracted, the common traffic pattern is evaluated for every
two hosts within every group in the topology. Similarity in traffic pattern using the
packet size representation is computed as follows:

P I,J
Common = P I ∩ P J ∀I ∈ C and ∀J ∈ C (1)

F I,J
Common =

∑

K=PCommon

min
(
F I
K , F I

K

)
(2)

Equation 1 finds common packet sizes observed between ith and jth host in the topol-

ogy community C. The number of packets
(
F I,J
Common

)
between ith and jth host that

have similar packet size is computed in equation 2. The two features namely, F I,J
Common

and number of elements in P I,J
Common are used to represent the group behavior in traffic

pattern between the ith and jth host. Similarly, traffic pattern similarity is computed for
all hosts pairs within the different topology communities.
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4.3 Protocol Sequence Signature

Protocol usage is an important property for botnet detection. This feature is more impor-
tant in group behavior metrics, as the protocol among the bots is fixed and the protocol
sequence exhibited by bot traffic is highly similar. This phenomenon in bots is fur-
ther illustrated in the results section of the paper, where we discuss the efficiency of this
particular metric. Protocol sequence of a host represents the different protocols and pro-
tocol states of the host network behavior and also the various protocol state transitions
exhibited by the host’s network communications.

At stage four, the protocol usage and sequence is extracted from the network traffic.
First, we identify the protocol of each packet in the network traffic by using
wireshark’s protocol dissectors. The wireshark’s protocol dissectors identifies the pro-
tocol and also the type of protocol message, for example, HTTP get request, eDonkey
protocol’s kademlia hello request/response, etc. The wireshark dissectors searches the
packet payload for keywords to identify protocol message type of the packet. For each
packet, the protocol state is defined in the following format:<Network Layer Protocol>
. <Transport Layer Protocol> . <Application Layer Protocol> . <Application Layer
Message Type> . <Application Layer Message sub-type>. Hence, a protocol state def-
inition looks like ”ip.tcp.edonkey.helloreq”.

After protocol analysis, for each host, the sequence of protocol communication is
captured in a state graph. For every ith host in the network, a state graph (SI) represents
the protocol sequence of host’s network traffic. In the state graph, the different unique
protocol states observed in the host’s traffic is defined. The sequence of protocol usage
is represented as state transitions in the state graph.

With the protocol sequence state graphs defined for all hosts in the network, we then
compute the similarity in protocol sequence between every two hosts in a network topol-
ogy community. The similarity between state graphs of two hosts is used to compute
the common behavior in protocol sequence and usage. For measuring the similarity be-
tween two state graphs, we use two different similarity measures, namely, Levenshtein
distance [17] and Jaccard similarity [7]. Levenshtein distance is most commonly used
approach for comparing DNA sequences in bio-sciences. The distance measure com-
putes the number of minimum steps necessary to change a graph/sequence A to another
graph/sequence B. The computed number of steps represents the Levenshtein distance
between graph A and B. The Jaccard similarity is a more generic similarity measure
that computes the ratio of number of common elements between graph A and B with
the total number of unique elements in A and B.

PSI,J
Levenshtein = L

(
SI , SJ

)
, ∀I ∈ C and ∀J ∈ C (3)

PSI,J
Jaccard =

(
SI ∪ SJ

)− (
SI ∩ SJ

)

SI ∪ SJ
∀I ∈ C and ∀J ∈ C (4)

Equation 3 computes the Levenshtein distance between protocol sequence state graphs
of every ith and jth host in the topology community C. The algorithm for computing
the Levenshtein distance function L() can be found here [17]. Similarly, equation (4)
computes the Jacobian similarity measure between state graphs and of every ith and jth

host in the topology community, respectively.
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4.4 Group Behavior Graph

The metrics derived from the above three group behavior properties is used to define a
group behavior graph. The features used include,

– CN I,J
IP − Number of Common Neighbors between two hosts in graph GIP (V,E)

– CN I,J
IP/PORT− Number of Common Neighbors between two hosts in graph

GIP/PORT (V,E)

– P I,J
Common− Number of Similar Packet Size

– F I,J
Common− Frequency of Similar Packet Size

– PSI,J
Levenshtein− - Levenshtein Distance between protocol sequence

– PSI,J
Jaccard− Jaccard Similarity measure between protocol sequence of two hosts.

Host pairs, which have non-zero values for all the above six group behavior features are
added to group behavior graph. That is, if the derived six group behavior metrics are
non-zero for Ith and J th host, then the host I and J are added to the group behavior
graph as vertices and the added vertices are connected using an edge. Thus, all hosts
which exhibit strong common behavior are captured in the group behavior graph.

In order to filter hosts which exhibit benign group behavior, we define a threshold (T )
for each of the above group behavior features. Hence, hosts which has group behavior
feature values below the threshold are removed from the group behavior graph. We
propose to train the threshold value for the six group behavior features using known
bot group behavior. In the next section, we illustrate that finding the threshold is not
difficult and can be statically defined.

After the threshold based filtering, the group behavior graph consists only of infected
hosts and the botnet topology is represented by this graph.

5 Results and Evaluation

In this section, the proposed group behavior metrics is evaluated for accuracy in detec-
tion of botnets. Furthermore, the properties of the observed group behavior with respect
to the three network traffic characteristics, namely, topology, traffic pattern and protocol
usage are discussed.

The results using the group behavior metrics is summarized in Table 1. The threshold
for filtering hosts in group behavior graph is trained as a simple Bayesian classifier. The
trained threshold is listed in Table 1.

5.1 Experimental Setup

Among our research community, real botnet traffic is a scarce resource. Due to the
sensitive nature of the content in network traffic traces, ISPs are reluctant to share their
traffic captures. It is even more difficult to obtain network traffic traces that contain few
bots in the traffic. To evaluate the efficiency of group metrics, we needed a traffic data
that has few bots in the traffic. Thus, we had to build our own network traffic data.
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Table 1. Detection Accuracy

Number of Hosts in Benign Traffic 42456
Number of Hosts in Benign Traffic 8556

with Group Behavior
Threshold for Group Behavior Graph

CNI,J
IP CNI,J

IP/PORT
P I,J
Common F I,J

Common PSI,J
Levenshtein PSI,J

Jaccard

143 59 15 2964 62 0.7
Bots used for Training Threshold 6

Bots used for Testing 4
Detected Bots 4

Detection Accuracy 100%

Initially, we collected from various sources, bot traffic captures from different ver-
sions of the same bot malware. We were able to collect network traffic generated by
10 different versions of Stormbot [13]. The malware network traffic is captured using
honeypots which ran different versions of the Stormbot.

To create the network setup, we use traffic captured from an ISP’s gateway. The
captured network traffic is real-world traffic data, thus, gives a realistic network setup.
We select the 10 IPs from the ISP traffic data and map the IP addresses to the 10 different
Stormbot attack traffic data. Once the IP address in the attack traces are modified, we
merge and synchronize the 10 attack traffic data with the ISP traffic dataset. Now, the
merged network traffic data comprises of 10 bots that run different versions of Stormbot.
Using this network data, we evaluate the efficiency of botnet detection using group
behavior metrics.

For testing the detection accuracy of the proposed group behavior metrics, two net-
work traffic datasets are built using the above technique. The first traffic dataset com-
prises of 6 bots within traffic, that is merged using 6 bots and ISP traffic data. ISP traffic
data acts as the background traffic for the network setup. This dataset is used for training
the threshold (T) that is used to filter the group behavior graph. Similarly, the second
dataset, comprises of 4 bots within traffic. This dataset is used for testing the detection
accuracy of the proposed group behavior metrics.
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Fig. 3. (a) Group Behavior in Topology (b) Group Behavior in Traffic Pattern
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5.2 Group Behavior in Topology

In this section, we discuss the topology properties that were observed in normal topol-
ogy and P2P botnet topology. Analyzing the structure of groups identified by the com-
munity detection algorithm, it was found that the topological properties within and
between groups of normal and P2P botnet topology differs significantly.

In normal topology, communities are evenly and sparsely connected, whereas, in
botnet topology, communities are strongly connected with many intra community links.
Density of links within communities is relatively high in P2P botnet topology, whereas,
in normal P2P, hosts and links are evenly distributed within communities.

The most notable observation in the group structure is that, in normal topology, the
hosts are connected in one-to-many connectivity configuration (tree structure) within
the community. In most cases, communities have one or two central host to which all
other hosts in the community are connected. Due to the above intra community struc-
ture, most of the hosts within the community have one common neighbor. On the other
hand, in P2P botnet communities, the hosts are connected in many-to-many connectivity
configuration. Botnet communities are very strongly connected. Due to many-to-many
connectivity, infected hosts have many common neighbors (mostly > 150 and < 400).
This is shown in Figure 3a. It can be clearly observed from Figure 3a, that number
of common neighbors observed is different between normal topology and P2P botnet
topology. In normal topology, 99.56% of hosts in the network have less than two com-
mon neighbors. Whereas, in botnets, number of common neighbors ranges between 236
and 396.

Thus, the number of common neighbors between hosts found within the community
is efficient to be used for botnet detection and it is key feature describing the group
behavior of hosts.

5.3 Group Behavior in Traffic Pattern

Packet size and frequency of packet size within traffic of a specific host is used in
our approach to represent the traffic pattern. This is a unique way of representing
the traffic pattern and these features truly captures the traffic pattern of network be-
havior. In this section, we discuss the efficiency of using similarities between packet
size and frequency of packet size to compute group behavior of hosts for botnet
detection.

Figure 3b shows the unique packet size similarities observed between hosts which
exhibit group behavior. It can be observed that, in benign traffic, number of similar
packet size ranges between 0 and 9. Whereas, the infected hosts in the botnet show high
similarity in packet size which range between 16 and 24. In other words, the number of
similar packet size between bots is between 16 and 24. Therefore, there is a clear dis-
tinction between packet size similarities between benign hosts and infected hosts of the
botnet. This distinction is captured in this metric and used for botnet detection. Similar
distinction in similarity was also observed over the second group behavior metric for
traffic pattern - frequency of packet size.
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5.4 Group Behavior in Protocol Sequence

Using protocol sequence as a feature for botnet detection is an unprecedented approach.
As mentioned earlier in the paper, the Levenshtein distance and Jaccard distance is used
to represent the protocol sequence similarity between hosts in the network community.
Figure 4 shows the Levenshtein distance observed between protocol sequence of benign
hosts and botnets.

Similarity in protocol sequence between bots and benign hosts are not completely
different. The probability distribution of Levenshtein distance observed from figure 4
shows that the two distributions overlap. Hence, protocol sequence similarity is not a
distinct metric as observed in group behavior metrics derived using topology and traffic
pattern characteristics. However, though distributions overlap in Figure 4, the distri-
butions are not completely similar. The center of distributions lies far apart. Protocol
sequence similarity measure is still efficient for botnet group behavior detection.

Inferring from Figure 4, Levenshtein distance observed for protocol sequence be-
tween infected hosts range between 49 and 98. Within this range, 22% of the hosts that
exhibit group behavior in benign traffic are observed. As 21% of the uninfected hosts in
the network exhibit group behavior, the false positives using only this metric for botnet
detection is 4̃ % and the true positives is 100%. This illustrates the strength of group
behavior metrics for botnet detection. With better protocol analysis techniques, the false
positives can still reduce further.

6 Conclusion

In this paper, we have presented a set of group behavior metrics which are efficient
for botnet detection. The property of bots to exhibit similar communication patterns is
exploited to derive these metrics. Three network properties, namely, topological char-
acteristics, traffic statistics and protocol usage sequence is used to derive the group
behavior for each host in the network. It is observed that, group behavior of bots is
distinctly captured by these metrics.



104 J. Felix, C. Joseph, and A.A. Ghorbani

References

1. Chang, S., Daniels, T.E.: P2p botnet detection using behavior clustering & statistical tests. In:
Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence, pp. 23–30.
ACM (2009)

2. Choi, H., Lee, H., Kim, H.: Botgad: detecting botnets by capturing group activities in net-
work traffic. In: Proceedings of the Fourth International ICST Conference on Communication
System Software and Middleware, pp. 2:1–2:8. ACM (2009)

3. Dagon, D., Gu, G., Lee, C.: A taxonomy of botnet structures. In: Botnet Detection, vol. 36,
pp. 143–164. Springer US (2008)

4. Fortunato, S., Castellano, C.: Community structure in graphs, pp. 1141–1163 (2009)
5. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer botnets:

overview and case study. In: Proceedings of the First Conference on First Workshop on Hot
Topics in Understanding Botnets, p. 1. USENIX Association (2007)

6. Ha, D.T., Yan, G., Eidenbenz, S., Ngo, H.Q.: On the effectiveness of structural detection and
defense against p2p-based botnets. In: IEEE/IFIP International Conference on Dependable
Systems Networks, pp. 297–306 (2009)

7. Honov, S.A., Ivchenko, G.I.: On the jaccard similarity test. Journal of Mathematical Sci-
ences 88(6), 789–794 (1998)

8. Kang, B., Nunnery, C.: Decentralized peer-to-peer botnet architectures. Advances in Infor-
mation and Intelligent Systems 251, 251–264 (2009)

9. Choi, S., Kang, Y.: Common Neighborhood Sub-graph Density as a Similarity Measure for
Community Detection. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009, Part I.
LNCS, vol. 5863, pp. 175–184. Springer, Heidelberg (2009)

10. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Re-
view E - Statistical, Nonlinear, and Soft Matter Physics 69(62), 066133-1–066133-5 (2004)

11. Rossi, D., Sottile, E., Veglia, P.: Black-box analysis of internet p2p applications. In: Peer-to-
Peer Networking and Applications, pp. 1–19 (2010)

12. Van Ruitenbeek, E., Sanders, W.H.: Modeling peer-to-peer botnets. In: Proceedings of the
2008 Fifth International Conference on Quantitative Evaluation of Systems, pp. 307–316.
IEEE Computer Society (2008)

13. Stover, J.H.S., Dittrich, D., Dietrich, S.: Analysis of the storm and nugache trojans: P2p is
here (2007)

14. Caflisch, A., Schuetz, P.: Efficient modularity optimization by multistep greedy algorithm
and vertex mover refinement. Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics 77(4) (2008)

15. Strayer, W., Lapsely, D., Walsh, R., Livadas, C.: Botnet detection based on network behavior.
In: Botnet Detection, vol. 36, pp. 1–24. Springer US (2008)

16. Wang, P., Wu, L., Aslam, B., Zou, C.C.: A systematic study on peer-to-peer botnets. In:
International Conference on Computer Communications and Networks, pp. 1–8 (2009)

17. Bo, L., Yujian, L.: A normalized levenshtein distance metric. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29(6), 1091–1095 (2007)

18. Borazjani, P.N., Zeidanloo, H.R., Hosseinpour, F.: Botnet detection based on common net-
work behaviors by utilizing artificial immune system(ais) 1, V121–V125 (2010)

19. Kadobayashi, Y., Zhang, Z.: A holistic perspective on understanding and breaking botnets:
Challenges and countermeasures. Journal of the National Institute of Information and Com-
munications Technology 55(2-3), 43–59 (2008)


	Group Behavior Metrics for P2P Botnet Detection
	Introduction
	Related Work
	Group Behavior in P2P Botnets
	Group Behavior Metrics
	Topological Properties
	Traffic Pattern Statistics
	Protocol Sequence Signature
	Group Behavior Graph

	Results and Evaluation
	Experimental Setup
	Group Behavior in Topology
	Group Behavior in Traffic Pattern
	Group Behavior in Protocol Sequence

	Conclusion
	References




