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Abstract. Most of the state-of-the-art methods for protein seconday
structure prediction are complex combinations of discriminant models.
They apply a local approach of the prediction which is known to induce a
limit on the expected prediction accuracy. A priori, the use of generative
models should make it possible to overcome this limitation. However,
among the numerous hidden Markov models which have been dedicated
to this task over more than two decades, none has come close to providing
comparable performance. A major reason for this phenomenon is pro-
vided by the nature of the relevant information. Indeed, it is well known
that irrespective of the model implemented, the prediction should benefit
significantly from the availability of evolutionary information. Currently,
this knowledge is embedded in position-specific scoring matrices which
cannot be processed easily with hidden Markov models. With this obser-
vation at hand, the next significant advance should come from making
the best of the two approaches, i.e., using a generative model on top
of discriminant models. This article introduces the first hybrid architec-
ture of this kind with state-of-the-art performance. The conjunction of
the two levels of treatment makes it possible to optimize the recognition
rate both at the residue level and at the segment level.

Keywords: protein secondary structure prediction, discriminant mod-
els, class membership probabilities, hidden Markov models.

1 Introduction

With the multiplication of genome sequencing projects, the number of
known protein sequences is growing exponentially. Knowing their (three-
dimensional/tertiary) structure is a key in understanding their detailed function.
Unfortunately, the experimental methods available to determine the structure,
x-ray crystallography and nuclear magnetic resonance (NMR), are highly labor-
intensive and do not ensure the production of the desired result (e.g., some
proteins simply do not crystallize). As a consequence, the gap between the num-
ber of known protein sequences and the number of known protein structures is
widening rapidly. To bridge this gap, one must resort to empirical inference. The
prediction of protein structure from amino acid sequence, i.e., ab initio, is thus
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a hot topic in molecular biology. Due to its intrinsic difficulty, it is ordinarily
tackled through a divide and conquer approach in which a critical first step is
the prediction of the secondary structure, the local, regular structure defined
by hydrogen bonds. Considered from the point of view of pattern recognition,
this prediction is a three-category discrimination task consisting in assigning a
conformational state α-helix (H), β-strand (E) or aperiodic/coil (C), to each
residue (amino acid) of a sequence.

For almost half a century, many methods have been developed for protein sec-
ondary structure prediction. Since the pioneering work of Qian and Sejnowski
[1], state-of-the-art methods are machine learning ones [2–5]. Furthermore, a
majority of them shares the original architecture implemented by Qian and Se-
jnowski. Two sets of classifiers are used in cascade. The classifiers of the first
set, named sequence-to-structure, take in input the content of a window sliding
on the sequence, or the coding of a multiple alignment, to produce an initial
prediction. Those of the second set, named structure-to-structure, take in input
the content of a second window sliding on the initial predictions. The structure-
to-structure classifiers act both as ensemble methods (combiners) and filters of
the initial predictions. The goal of filtering is to increase the biological plausi-
bility of the prediction by making use of the fact that the conformational states
of consecutive residues are correlated. Other specifications can be incorporated
in the combiners, such as the requirement to output indices of confidence in the
prediction or, even better, class posterior probability estimates. Currently, the
recognition rate of the best cascades is roughly 80%, depending on the details
of the experimental protocol (see [5] for a survey). However, it is commonly
admitted that their prediction accuracy faces a strong limiting factor: the fact
that local information is not enough to specify utterly the structure. This limi-
tation is only partly overcome by using recurrent neural networks [2]. A natural
alternative consists in using generative models. The first hidden Markov model
(HMM) [6] dedicated to protein secondary structure prediction was presented
in [7]. Since then, new models have regularly been introduced, with the focus
being laid on the derivation of an appropriate topology [8, 9]. However, their
recognition rate has never exceeded 75% so far [9]. The main reason that can
be put forward to explain this disappointing behavior rests in the fact that they
are not well-suited to exploit evolutionary information under its standard form,
i.e., a profile of multiple alignment, or more precisely a position-specific scoring
matrix (PSSM) produced by PSI-BLAST [10]. A generative model that appears
more promising to process PSSMs is the dynamic Bayesian network (DBN) [11].
However, the assessment of its potential is still in its infancy [5].

All these observations suggest the assessment of hybrid architectures cascad-
ing discriminant and generative models so as to combine the advantages of both
approaches. This idea was popularized twenty years ago in the field of speech
processing (see for instance [12]), and introduced more recently in bioinformatics,
precisely for protein secondary structure predicition [13–15]. In short, discrim-
inant models are used to compute class posterior probability estimates from
which the emission probabilities of HMMs are derived, by application of Bayes’
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formula. This approach widens the context used for the prediction, and makes
it possible to incorporate some pieces of information provided by the biologist,
such as syntactic rules. So far, the best prediction method based on this kind of
hybrid architecture was YASPIN [15], whose recognition rate is only slightly su-
perior to 77%. In this article, we introduce a new hybrid architecture for protein
secondary structure prediction. It is obtained by post-processing the outputs of
the prediction method we have developed during the last few years, MSVMpred2
[16, 17], with an “inhomogeneous HMM” (IHMM) [18]. It exhibits state-of-the-
art prediction accuracy both at the residue level and at the segment level. The
gain of roughly 5% in recognition rate compared to YASPIN is partly due to the
recent availability of a very large data set of proteins with known structure and
low sequence identity: CM4675.

The organization of the paper is as follows. Section 2 summarizes the main
characteristics of MSVMpred2. Section 3 introduces the whole hybrid architec-
ture, and focuses on the features of the upper part of the hierarchy, i.e., the spec-
ification and implementation of the IHMM. Experimental results are reported
in Section 4. At last, we draw conclusions and outline our ongoing research in
Section 5.

2 MSVMpred2

MSVMpred2, the lower part of the hierarchy of treatments, is a cascade of dis-
criminant models implementing the architecture introduced by Qian and Se-
jnowski. Its main specificities can be summarized as follows. First, the sequence-
to-structure prediction is performed by dedicated classifiers. Second, the com-
biners at the structure-to-structure level are chosen so as to satisfy two require-
ments: they must output class posterior probability estimates and cover a wide
range in terms of capacity. Third, capacity control at this level is implemented
through a convex combination of the combiners (with the consequence that the
global outputs of the cascade are also class posterior probability estimates). The
topology of MSVMpred2 is depicted in Figure 1.

2.1 Sequence-to-Structure Prediction

We first characterize the descriptions (vectors of predictors) x ∈ X processed at
this initial level of the prediction. The predictors are derived from PSSMs pro-
duced by PSI-BLAST. The sliding window is centered on the residue of interest.
The description xi processed at this level to predict the conformational state of
the ith residue in the data set is thus obtained by appending rows of the PSSM
associated with the sequence to which it belongs. Let n1 be the integer such
that 2n1 + 1 is the size of the sliding window. Then, the indices of these rows
range from i′−n1 to i′+n1, where i

′ is the index of the residue of interest in its
sequence. Since a PSSM has 20 columns, one per amino acid, this corresponds
to 20 (2n1 + 1) predictors. More precisely, X ⊂ Z

20(2n1+1).
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sliding window S︸ ︷︷ ︸

Fig. 1. Topology of MSVMpred2. The method computes estimates of the class posterior
probabilities for the residue at the center of the sliding window S, here a valine (V).

Two kinds of classifiers are implemented at this level: multi-class support
vector machines (M-SVMs) [19] and bidirectional recurrent neural networks
(BRNNs) [20]. The kernel of the M-SVMs is an elliptic Gaussian kernel function
applying a weighting on the predictors as a function of their position in the win-
dow. This weighting is learned by application of the principle of multi-class ker-
nel target alignment [17]. The BRNNs are recurrent neural networks exploiting
a context from both sides of the sequence processed. This makes them especially
well-suited for the task at hand. Indeed, they obtain the highest prediction accu-
racy among all the neural networks assessed so far in protein secondary structure
prediction [2, 14, 21]. Contrary to the BRNNs, the M-SVMs do not output class
posterior probability estimates. In order to introduce homogeneity among the
outputs of the different base classifiers, and more precisely ensure that they all
belong to the probability simplex, the outputs of the M-SVMs are post-processed
by the polytomous (multinomial) logistic regression (PLR) model [22].

2.2 Structure-to-Structure Prediction

We start with the characterization of the descriptions z ∈ Z processed at this
level. Let N be the number of classifiers available to perform the sequence-to-
structure prediction. The function computed by the jth of these classifiers (after

the post-processing in the case of an M-SVM) is denoted h(j) =
(
h
(j)
k

)
1�k�3

.
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The second sliding window, of size 2n2 + 1, is also centered on the residue of
interest. As a consequence, the description zi processed by the combiners to
estimate the probabilities associated with the ith residue in the data set is:

zi =
(
h
(j)
k (xi+t)

)
1�j�N,1�k�3,−n2�t�n2

∈ U
(2n2+1)N
2 ,

where U2 is the unit 2-simplex.
The four discriminant models used as structure-to-structure classifiers are the

PLR, the linear ensemble method (LEM) [23], the multi-layer perceptron (MLP)
[24] and the BRNN. They have been listed in order of increasing capacity [25].
Indeed, the PLR and the LEM are linear separators. An MLP using a softmax
activation function for the output units and the cross-entropy loss (a sufficient
condition for its outputs to be class posterior probability estimates) is an exten-
sion of the PLR obtained by adding a hidden layer. The boundaries it computes
are nonlinear in its input space. At last, the BRNN can be seen roughly as an
MLP operating on an extended description space. The availability of classifiers
of different capacities for the second level of the cascade is an important fea-
ture of MSVMpred2. It makes it possible to cope with one of the main limiting
factors to the performance of modular architectures: overfitting. The capacity
control is implemented by the convex combination combining the four structure-
to-structure classifiers. The behavior of this combination is predictable: it assigns
high weights to the combiners of low complexity when the training set size is
small (and the combiners of higher complexity tend to overfit the training set).
On the contrary, due to the complexity of the problem, the latter combiners are
favored when this size is large (see [17] for an illustration of the phenomenon).

3 Hybrid Prediction Method

In the field of biological sequence processing, the rationale for post-processing the
outputs of discriminant models with generative models is two-fold: widening the
context exploited for the prediction and incorporating high-level knowledge on
the task of interest (mainly in the topology of the generative models). The gen-
erative model selected here to meet these goals is an IHMM with three states,
one for each of the three conformational states. The advantage of this model
compared to the standard HMM rests in the fact that its state transition prob-
abilities are time dependent. This makes it possible to exploit a more suitable
model of state durations, a necessary condition to get a high prediction accu-
racy at the conformational segment level. The global topology of the hierarchy
is depicted in Figure 2.

For a given protein sequence, the final prediction is thus obtained by means
of the dynamic programming algorithm computing the single best sequence of
states (path), i.e., the variant of Viterbi’s algorithm dedicated to the IHMM [18].
It must be borne in mind that this calls for a slight adaptation of the formulas,
since MSVMpred2 provides estimates of the class posterior probabilities, rather
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Fig. 2. Topology of the hybrid prediction method. The context available to perform
the prediction exceeds that resulting from the combination of the two sliding windows
of MSVMpred2.

than emission probabilities. Since the IHMM has exactly one state per confor-
mational state, and the conformational state of each residue in the training set
is known, the best state sequence is known for all the sequences of the training
set. As a consequence, applying the maximum likelihood principle to derive the
initial state distribution and the transition probabilities boils down to computing
the corresponding frequencies on the training set.

Implementing a hybrid approach of the prediction is fully relevant only if
the quality of the probability estimates computed by the discriminant models
is high enough for the generative model to exploit them efficiently. Our hybrid
architecture incorporates an optional treatment specifically introduced to ad-
dress this issue: a basic post-processing of the outputs of MSVMpred2. This
post-processing aims at constraining the final prediction so as to keep it in a
vicinity of that of MSVMpred2. For each residue, the vector of probability esti-
mates is replaced with a vector that is close to the binary coding of the predicted
category. Precisely, given a small positive value ε, the highest of the class mem-
bership probability estimates is replaced with 1 − 2ε, the two other estimates
being replaced with ε. In this setting, the influence of the Viterbi algorithm on
the path selected vanishes when ε goes to zero.
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4 Experimental Results

4.1 Protein Data Sets

Our prediction method was assessed on two data sets. The first one is the well-
known CB513 data set, fully described in [26], whose 513 sequences are made
up of 84119 residues. The second one is the newly assembled CM4675 data set.
It contains 4675 sequences, for a total of 851523 residues. The corresponding
maximum pairwise percentage identity is 20%, i.e., it is low enough to meet the
standard requirements of ab initio secondary structure prediction.

To generate the PSSMs, the version 2.2.25 of the BLAST package was used.
Choosing BLAST in place of the more recent BLAST+ offers the facility to ex-
tract more precise PSSMs. Three iterations were performed against the NCBI
nr database. The E-value inclusion threshold was set to 0.005 and the default
scoring matrix (BLOSUM62) was used. The nr database, downloaded in May
2012, was filtered by pfilt [27] to remove low complexity regions, transmembrane
spans and coiled coil regions. The initial secondary structure assignment was
performed by the DSSP program [28], with the reduction from 8 to 3 conforma-
tional states following the CASP method, i.e., H+G → H (α-helix), E+B → E
(β-strand), and all the other states in C (coil).

4.2 Experimental Protocol

The configuration chosen for MSVMpred2 includes the four main models of M-
SVMs: the models of Weston and Watkins [29], Crammer and Singer [30], Lee,
Lin, and Wahba [31], and the M-SVM2 [32]. At the sequence-to-structure level,
they are used in parallel with four BRNNs. The programs implementing the
different M-SVMs are those of MSVMpack [33], while the 1D-BRNN package
is used for the BRNNs. The sizes of the first and second sliding windows are
respectively 13 and 15 (n1 = 6 and n2 = 7).

To assess the accuracy of our prediction method, we implemented a distinct
experimental protocol for each of the data sets. The reason for this distinction
was to take into account the difference in size of the two sets. For CB513, the
protocol was basically the 7-fold cross-validation procedure already implemented
in [16, 17] (with distinct training subsets for the sequence-to-structure level and
the structure-to-structure level). At each step of the procedure, the values of the
parameters of the IHMM that had to be inferred were derived using the whole
training set. As for CM4675, it was simply split into the following indepen-
dent subsets: a training set for the kernel of the M-SVMs (500 sequences, 98400
residues), a training set for the sequence-to-structure classifiers (2000 sequences,
369865 residues), a training set for the post-processing of the M-SVMs with a
PLR (300 sequences, 52353 residues), a training set for the structure-to-structure
classifiers (1000 sequences, 178244 residues), a training set for the convex com-
bination (200 sequences, 34252 residues), and a test set (675 sequences, 118409
residues). Once more, the missing values of the parameters of the IHMM were
derived using globally all the training subsets (4000 sequences, 733114 residues).
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It can be inferred from the introduction that a secondary structure prediction
method must fulfill different requirements in order to be useful for the biologist.
Thus, several standard measures giving complementary indications must be used
to assess the prediction accuracy [34]. We consider the three most popular ones:
the recognition rate Q3, Pearson-Matthews correlation coefficients Cα/β/coil, and
the segment overlap measure (Sov) in its most recent version (Sov’99).

4.3 Results

The experimental results obtained with MSVMpred2 and the two variants of the
hybrid model (with and without post-processing of the outputs of MSVMpred2)
are reported in Table 1.

Table 1. Prediction accuracy of MSVMpred2 and the hybrid model on CB513 and
CM4675. Results in the last row were obtained with the optional treatment of the
outputs of MSVMpred2 described in Section 3.

CB513 CM4675
Method Q3 (%) Sov Cα Cβ Ccoil Q3 (%) Sov Cα Cβ Ccoil

MSVMpred2 78.3 74.4 0.74 0.64 0.60 81.8 78.9 0.79 0.73 0.65

Hybrid 77.3 73.1 0.74 0.64 0.57 80.8 77.5 0.78 0.71 0.63

Hybrid (ε = 0.01) 78.3 75.5 0.74 0.64 0.60 81.8 80.0 0.79 0.73 0.65

In applying the two sample proportion test (the one for large samples), one
can notice than even when using CB513, the superiority of MSVMpred2 over
YASPIN appears statistically significant with confidence exceeding 0.95. Of
course, such a statement is to be tempered since the figures available for YASPIN
correspond to a different set of protein sequences. The recognition rate is always
significantly above 80% when CM4675 is used. This highlights a fact already no-
ticed in [5]: the complexity of the problem calls for the development of complex
modular prediction methods such as ours. The feasibility of their implementa-
tion increases with the growth of the protein data sets available. The hybrid
method is only superior to MSVMpred2 when it implements the post-processing
described in Section 3. In that case, the gain is emphasized, as expected, by
means of the Sov. This measure increases by the same amount (1.1 point) on
both data sets.

The value of ε for which the results of the last row of Table 1 were obtained
is a favorable one. We now present a short study of the prediction accuracy as
a function of this parameter. Figures 3 and 4 illustrate the main phenomena
observed.

The gain in Sov induced by the introduction of the IHMM can be obtained
for ε varying is a relatively large interval (the precise boundaries depend on the
data set chosen). In addition, to ensure that this gain is not balanced by a de-
crease of the Q3, it suffices to choose a small enough value. This implies that the
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Fig. 3. Prediction accuracy on CB513 in terms of Q3 (left) and Sov (right) as a function
of the value of ε for MSVMpred2 (alone) and the hybrid model. In both cases, two
variants of MSVMpred2 are considered: the one specified in Section 4.2 (a) and a
simplified one including a single structure-to-structure classifier (b).
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Fig. 4. Prediction accuracy on CM4675 in terms of Q3 (left) and Sov (right) as a
function of the value of ε for MSVMpred2 (alone) and the hybrid model

selection of an appropriate value for ε does not raise particular difficulties. Fig-
ure 3 also displays the results obtained with a simplified variant of MSVMpred2.
By focusing on the difference between these results and those obtained with the
standard MSVMpred2, we also see that the performance of the hybrid model is
positively correlated with the prediction accuracy of the classifier providing the
class membership probability estimates.

To sum up, these experiments support the thesis that hybrid models can
be used to increase the performance of secondary structure prediction methods
(at least at the level of the structural elements), while directly benefiting from
improvements of the latters. The negative aspect is that we have not yet been
able to make full use of the values of the class posterior probability estimates
provided by MSVMpred2.
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5 Conclusions and Ongoing Research

This article has introduced a new method for protein secondary structure pre-
diction. This method, based on a hierarchical architecture obtained by cascading
MSVMpred2 and an IHMM, is the first hybrid model exhibiting state-of-the-art
performance. It takes benefit of the availability of a very large data set of pro-
teins with known structure and low sequence identity: CM4675. So far, the main
improvement resulting from introducing the generative model is an increase of
the Sov’99 measure, i.e., an improvement of the prediction accuracy at the seg-
ment level. This should prove especially useful for the biologist using our method
as an intermediate step of a tertiary structure prediction.

Obviously, there are many options one can think of to improve our method.
A simple one consists in taking benefit of its flexibility to integrate knowledge
sources and modules borrowed from the literature [4, 5]. The researcher in ma-
chine learning should be primarily interested in the following question: can we
expect the class posterior probability estimates produced by MSVMpred2 to be-
come accurate enough to be exploitable as is by the generative model? Answering
this fundamental question is currently our main goal.

Acknowledgements. The authors would like to thank C. Magnan for providing
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10. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research 25, 3389–3402 (1997)

11. Yao, X.-Q., Zhu, H., She, Z.-S.: A dynamic Bayesian network approach to protein
secondary structure prediction. BMC Bioinformatics 9, 49 (2008)

12. Krogh, A., Riis, S.K.: Hidden neural networks. Neural Computation 11, 541–563
(1999)

13. Guermeur, Y.: Combining discriminant models with new multi-class SVMs. Pat-
tern Analysis and Applications 5, 168–179 (2002)

14. Guermeur, Y., Pollastri, G., Elisseeff, A., Zelus, D., Paugam-Moisy, H., Baldi, P.:
Combining protein secondary structure prediction models with ensemble methods
of optimal complexity. Neurocomputing 56, 305–327 (2004)

15. Lin, K., Simossis, V.A., Taylor,W.R., Heringa, J.: A simple and fast secondary struc-
ture prediction method using hidden neural networks. Bioinformatics 21, 152–159
(2005)

16. Guermeur, Y., Thomarat, F.: Estimating the Class Posterior Probabilities in Pro-
tein Secondary Structure Prediction. In: Loog, M., Wessels, L., Reinders, M.J.T.,
de Ridder, D. (eds.) PRIB 2011. LNCS (LNBI), vol. 7036, pp. 260–271. Springer,
Heidelberg (2011)

17. Bonidal, R., Thomarat, F., Guermeur, Y.: Estimating the class posterior probabil-
ities in biological sequence segmentation. In: SMTDA 2012 (2012)

18. Ramesh, P., Wilpon, J.G.: Modeling state durations in hidden Markov models for
automatic speech recognition. In: ICASSP 1992, pp. 381–384 (1992)

19. Guermeur, Y.: A generic model of multi-class support vector machine. International
Journal of Intelligent Information and Database Systems (in press, 2012)

20. Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past and
the future in protein secondary structure prediction. Bioinformatics 15, 937–946
(1999)

21. Chen, J., Chaudhari, N.S.: Cascaded bidirectional recurrent neural networks for
protein secondary structure prediction. IEEE/ACM Transactions on Computa-
tional Biology and Bioinfomatics 4, 572–582 (2007)

22. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, London (1989)
23. Guermeur, Y.: Combining multi-class SVMs with linear ensemble methods that es-

timate the class posterior probabilities. Communications in Statistics (submitted)
24. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations.

Cambridge University Press, Cambridge (1999)
25. Guermeur, Y.: VC theory of large margin multi-category classifiers. Journal of

Machine Learning Research 8, 2551–2594 (2007)
26. Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence meth-

ods for protein secondary structure prediction. Proteins 34, 508–519 (1999)
27. Jones, D.T., Swindells, M.B.: Getting the most from PSI-BLAST. Trends in Bio-

chemical Sciences 27, 161–164 (2002)
28. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recog-

nition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637
(1983)

29. Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report
CSD-TR-98-04, Royal Holloway, University of London, Department of Computer
Science (1998)



A Hybrid Method for Protein Secondary Structure Prediction 177

30. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research 2, 265–292 (2001)

31. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines: Theory and
application to the classification of microarray data and satellite radiance data.
Journal of the American Statistical Association 99, 67–81 (2004)

32. Guermeur, Y., Monfrini, E.: A quadratic loss multi-class SVM for which a radius-
margin bound applies. Informatica 22, 73–96 (2011)

33. Lauer, F., Guermeur, Y.: MSVMpack: a multi-class support vector machine pack-
age. Journal of Machine Learning Research 12, 2293–2296 (2011)

34. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the
accuracy of prediction algorithms for classification: an overview. Bioinformatics 16,
412–424 (2000)


	Cascading Discriminant and Generative Models
for Protein Secondary Structure Prediction
	Introduction
	MSVMpred2
	Sequence-to-Structure Prediction
	Structure-to-Structure Prediction

	Hybrid Prediction Method
	Experimental Results
	Protein Data Sets
	Experimental Protocol
	Results

	Conclusions and Ongoing Research
	References




