
Scrum Conceptualization

Using K-CRIO Ontology

Yishuai Lin, Vincent Hilaire, Nicolas Gaud, and Abderrafiaa Koukam

Laboratoire Systèmes et Transports (SeT)
Université de Technologie de Belfort-Montbéliard (UTBM)

90010 Belfort Cedex, France
vincent.hilaire@utbm.fr

www.multiagent.fr

Abstract. Many enterprises are on the path towards the automation
of their business processes. To be fully efficient this kind of automation
needs to rely on rich models of business processes. This paper presents an
ontology, named K-CRIO, that allows the description of a specific kind of
business processes: those that are dedicated to the design of a product.
This ontology draws from organizational theories. The contribution of
this paper is twofold. On the one hand, it described the key concepts and
relationships of the k-CRIO ontology and on the other hand it illustrates
this ontology by taking the example of the Scrum development process.

1 Introduction

Many enterprises are on the path towards the automation of their business pro-
cesses. To be fully efficient this kind of automation needs to rely on rich models
of business processes. This paper presents an ontological approach that allows
the description of a specific kind of business processes: those that are dedicated
to the design of a product. This ontology draws from organizational theories.

As stated in [3], an ontology of organizations ”is the first, fundamental and
ineliminable pillar on which to build a precise and rigorous enterprise modeling”.
Obviously, the field of ontologies for organizations is very broad, among the
works in this domain one can cite [3,8]. As the term organization covers a wide
range of entities we have chosen to reduce our field of investigation. In our case
the targeted organizations are those composed of human actors involved in the
design of a product. These human actors follows a previously defined design
process to frame their design activities. Even if this statement reduce our filed
of investigation it is general enough to cover the description of many enterprises.

This ontology is the first building block of a software environment, based on
muti-agent systems, that will support enterprises engaged in products design
during their day-to-day works. Example of such support can be file sharing,
enhanced communications, wikis, etc. The goal of this ontology is used to support
knowledge management within the described organizations. More specifically,
the ontology will provide means for annotating resources, reasoning, monitoring
design processes, enabling searches and to proactively propose tips and proper

K. Aberer, E. Damiani, and T. Dillon (Eds.): SIMPDA 2011, LNBIP 116, pp. 189–211, 2012.
c© IFIP International Federation for Information Processing 2012

www.multiagent.fr


190 Y. Lin et al.

contents. These resources and contents are those handled by the multi-agent
system.

The presented approach is based upon the use of an existing organizational
metamodel, namely CRIO [5], already used for the description of Multi-Agent
Systems (MAS) organizations. In our case, the concepts of this metamodel are
used to model human activities. The concepts and relationships of this meta-
model are represented by the K-CRIO ontology.

The chosen ontology language is OWL [12] as it is widely used and allows the
representation of the underlying concepts such as human interactions by using
the OWL-WS sub-ontology [2].

This paper is organized as follows: Section 2 introduces the background of our
work. Section 3 details the application of K-CRIO to the SCRUM methodology.
Section 4 reviews and discusses related works. Eventually, Section 5 concludes
and describes some future work directions.

2 Background

2.1 K-CRIO

In the following, we will try to single out which are the main concepts of an
ontology that represent organizations. The K-CRIO ontology is presented in
Figure 4.

The targeted organizations are those dedicated to product design. We have
then defined a concept named DesignObject (owl:class) which is the root of all
possible products that an organization can produce.

An organization can be seen as a set of interacting entities: sub-organizations
or roles, which are regulated by social rules and norms.

– With respect to the ontology, an organization may be seen as a concept
connected to other concepts by various kinds relationships, such as hierar-
chical relations between organizations and sub-organizations, or composed
of relation between an organization and its roles.

– With respect to the human processes in enterprises, an organization may
be considered as a collective global system able to achieve particular goals
through its collaborative members.

Using OWL, the concept of organization may be specified as following: Organiza-
tion is an owl:class which may be linked to sub-organizations with ”isSubOrgani-
zationOf” (owl:ObjectProperty)and ”includes” (owl:ObjectProperty) a collection
of Roles (an owl:class), with ”provided” (owl:ObjectProperty) Capacity (as well
as an owl:class) and ”hascontext” (owl:ObjectProperty) Ontology (an owl:class).
The latter class defines a specific context for the concerned organization. Ad-
ditionally, organizations are linked by ”isThePlaceOf” (owl:ObjectProperty) to
Interaction (owl:class) which conceptualize interactions occuring in the organi-
zation context. It may be expressed as detailed in Figure 1.

In the rest of this paper, we denote these definition with logic language:



Scrum Conceptualization Using K-CRIO Ontology 191

Organization(X) means that X is an Organization.

DesignObject(X) means that X is a DesignObject.

Role(X) means that X is a Role.

Capacity(X) means that X is a Capacity.

Ontology(X) means that X is an Ontology.

Interaction (X) means that X is an Interaction.

isSubOrganizationOf (X,Y) means that X is a sub-Organization of Y and {X:
Organization(X), Y:Organization(Y)}.

includes (X,Y) means that X includes Y and {X: Organization(X), Y: Role(Y)}.

provided (X,Y) means that X includes Y and {X: Organization(X), Y: Ca-
pacity(Y)}.

hasContext (X,Y) means that X hasContext Y and {X: Organization(X), Y:
Ontology(Y)}.

isThePlaceOf (X,Y) means that X is the place of Y happening and {X: Or-
ganization(X), Y: Interaction(Y)}.

We also define some necessary restrictions between Organization and associated
classes, which are represented by qualified cardinality restrictions in OWL (cardi-
nality constraints including owl:cardinality, owl:minCardinality,
owl:maxCardinality [16]) and axiomatized by logic language.

Specially, one Organization may have an unspecified number of sub-
organizations (zero or more). Moreover, the ObjectProperty: isSubOrganizationOf
is transitive objectProperty. For example, if we consider a university as one Orga-
nization, different departments may be seen as its sub-organizations. In the other
side, one department is usually composed of diverse majors, which may be seen
as sub-organizations of this department. Because of transitivity, these majors
are also the sub-Organizations of the university. Expressed by owl:Restriction,
the sub-Organization ”isSubOrganizationOf” its Organization with minCardi-
nality 0 (owl:restriction). The logic expression of transitivity of ObjectProperty:
isSubOrganizationOf as:

isSubOrganizationOf (O1, O2), isSubOrganizationOf (O2, O3) → isSubOrgani-
zationOf (O1, O3)



192 Y. Lin et al.

Fig. 1. Organization in K-CRIO

Moreover, one Organization must include one Role at least (inversely, one
Role must be included by one Organization at least) and in which one or more
interactions must be occurred. That means, describing with owl:Restriction, Or-
ganization ”includes” Role with minCardinality 1 (owl:restriction) and ”isTheP-
laceOf” interaction happening with minCardinality 1 (owl:restriction). The logic
axiomatization expression as:

∀ O Organization (O) → ∃ R { Role (R)
∧

includes (O,R) }

∀ R Role(R) → ∃ O { Organization (O)
∧

includes (O,R) }

∀ O Organization (O) → ∃ I { Interaction (I)
∧

isThePlaceOf (O,I) }

It is detailed in the Figure 2 that these property restrictions used the xsd names-
pace declaration made in the header element to refer to the XML Schema doc-
ument.

A role may identify a person, an activity or a service which is a necessary
part to achieve social objectives (goals of its organization). In order to fulfill this
common target, each role may have specific individual capacities. An Organiza-
tion (an owl:class) ”includes” (owl:ObjectProperty) Roles (an owl:class) which
may ”required” (owl:ObjectProperty) Capacity (an owl:class):

required (X,Y) means X required Y and {X: Role(X), Y: Capacity(Y)}.



Scrum Conceptualization Using K-CRIO Ontology 193

Fig. 2. Restrictions of Organization in K-CRIO

Moreover, Interaction (owl:class) occurring in Organization ”hasParticipants”
(owl:ObjectProperty) that are Roles.

hasParticipants (X,Y) means the at X hasParticipants Y happening and {X:
Interaction(X), Y: Role(Y)}.

A capacity is a know-how and ability, which may be considered as an interface
between the role and the role-players. Capacities are required by the role and
provided by the organization to define the behaviors of other roles. With the re-
spect of K-CRIO, beside the relationship with Organization and Role described
above, Capacity is represented by an owl:class. This class is related to some Con-
textOntologyElement (which are parts of the Organization Ontology defining it
context) divided in two sets ”input” and ”output” (both are owl:ObjectProperty).
The Capacity class is also related to properties which are conceptualized by the
Predicate concept. A predicate is an assertion on a property of some Contex-
tOntologyElement. There are two types of relationships between Capacity and
Predicate. The first type is named ”requires” and represents the properties that
are required by the capacity. The second type is named ”ensures” and represents
the effects of the capacity.

Interactions are mandatory for modeling human processes. The aim of an in-
teraction in this context is to achieve a goal or to contribute to a goal of one
organization. Interactions may be divided into Casual Interaction and Formal-
ized Interaction. The former ones depict interactions between roles which are



194 Y. Lin et al.

not defined initially in the model and that can take place in a non determined
fashion. Inversely, formalized interactions identify how different roles belonging
to the same organization can interact with each other so as to achieve the com-
mon goal of the organization and in the meanwhile produce DesignObjects of
any sort. Interactions may then be seen as a description of possible patterns
of actions and exchanges between the participant roles that is very similar to
a workflow. In order to conceptualize FormalizedInteraction, we have chosen to
reuse and improve an existing ontology, OWL-WS, dedicated to the description
of workflows [2] and inspired from OWL-S [11]. OWL-WS is based on the as-
sumption that a workflow is a kind of complex service and therefore it can be
represented in OWL-WS as a full OWL-S Service. This service can be a simple
one or composed of simpler services using the OWL-S control constructs such
as: Sequence, RepeatUntil, Split, etc.

A process may be an atomic process which is a description of one (possibly
complex) message and returning one (possibly complex) message in response. A
process may also be a composite which means that it can be divided into atomic
processes describing a behavior (or a set of behaviors) sending and receiving a se-
ries of messages. If we consider the formalized interaction as a composite process
owning an overall effect, the the entire process must be performed in order to
achieve that objective. Moreover, the definition of formalized interaction express
the different ways of executing this interaction and correlative results. Let’s take
the example of a selling service, represented by one organization named selling
service including two roles: Client and Bank Service. The formalized interaction
details how to perform this trade between these two roles (exchanging messages).

• The initial state is when the Client inputs the Credit Card Number and
code,which is a message sent to Bank Service.

• When Bank Service receives a message from the Client role, there should be
a control accompanying different situations as
– Both datum are right, Bank Service returns confirm message to Client;
– One datum is invalid, Bank Service returns error message to Client,
simultaneously, the state of Client returns to original state (waiting for
an input of the Credit Card Number and Password and waiting new
answer of Bank Service);

• This sequence is repeated until the Client receives the confirm message from
Bank Service, he can then send Verify Paying message to Bank Service;

• Bank Service validate the charge following the message Verify Paying from
Client.

From the point of view of K-CRIO, CasualInteraction and FormalizedInteraction
are represented by two owl:class both subclasses of Interaction (an owl:class),
which are related by ”hasParticipants” (owl:ObjectProperty) to Roles:

CasualInteraction (X) means X is CasualInteraction.

FormalizedInteraction (X) means X is FormalizedInteraction.



Scrum Conceptualization Using K-CRIO Ontology 195

Interaction (X) ≡ CasualInteraction (X)
⋃

FormalizedInteraction (X).

The FormalizedInteraction class is related by the ”produces” (owl:ObjectProperty)
relationships to the ”DesignObject” (an owl:class) concept:

produces (X,Y) means X produces Y and {X: FormalizedInteraction(X), Y:
DesignObject(Y)}.

Moreover, concerning the state of each formalized interaction, we defined For-
malizedInteraction is in (an ObjectProperty) some State (an owl:class), which
has three sub-classes: NotStart, Doing, Done. In certain situations, a formalized
interaction has its Pre-Interaction (hasPre-Interaction is an objectProperty, the
domain and range of which are both FormalizedInteraction):

at (X,Y) means X is at Y state and {X: FormalizedInteraction(X), Y: State(Y)}.

hasPre-Interaction (X,Y) means X has pre-interaction Y and {X: Formal-
izedInteraction(X), Y: FormalizedInteraction(Y)}.

In order to test whether the interaction is executed following the schedule or
not, we defined an owl:class: Time which is related with FormalizedInteraction
by the objectProperty: follows. Specially, Time has four sub-classes: Beginning-
Time, EndTime, RealBeginningTime, RealEndTime, in which, BeginningTime
and EndTime expresses the planning schedule and RealBeginningTime and Real-
EndTime expresses the real schedule. Comparing the subtraction of two types
of beginning time and end time, we could express whether the process is earlier
or later than the schedule actually:

For Follows(FormalizedInteraction, BeginningTime)
∧

(FormalizedInteraction,
EndTime)

∧
(FormalizedInteraction, RealBeginningTime)

∧
(FormalizedInteraction,

RealEndTime):

(EndTime - BeginningTime) > (RealEndTime - RealBeginningTime) means
the FormalizedInteraction is earlier than the schedule.

(RealEndTime - RealBeginningTime) > (EndTime - BeginningTime) means
the FormalizedInteraction is later than the schedule.

In summary, the whole K-CRIO Ontology is presented in Figures 3 and 4.

2.2 Introduction to Scrum

Scrum is an iterative, incremental framework for projects and products or appli-
cation developments and is often seen as an agile software development process.
Scrum structures development in cycle of work called Sprints (or iterations).
These iterations last no more than one month each, and take place one after



196 Y. Lin et al.

Fig. 3. K-CRIO taxonomy

the other without pause. The people involved in Scrum could be divided into
two groups. The first group denotes the Scrum team and has a figurative name
: ”Pig”, where are three core roles: The Product Owner, The Scrum Master and
The Team. All these roles are committed to the project in the Scrum process, who
are the ones producing the product (objective of the project). The other group
delegates Ancillary people, relatively, which is named ”Chicken”. Precisely, the
ancillary people in Scrum are those with no formal role and infrequent involve-
ments in the Scrum process and must nonetheless be taken into account, such
as some Stakeholders, Customers, Vendors or Managers (that represents a kind
of people who will set up the environment for product development).

The Scrum process could be presented by the Figure 5 from [7]. In this figure,
we could see that during the first step, the Product Owner needs to communicate
with all the Stakeholders in order to transform each User Story into one item
or one feature in the Product Backlog, which is the basic document containing
prioritized descriptions which will be referred by the Scrum Team during the
Scrum Process. In a second step, before the beginning of each Sprint, a cross-
functional team selects items (customer requirements) from the prioritized list



Scrum Conceptualization Using K-CRIO Ontology 197

Fig. 4. K-CRIO Ontology

(Product Backlog) [7]. This phase occurs in the Sprint Planning Meeting. The
team should commit to complete these items by the end of the Sprint, which
may be called task and represented in the Sprint Backlog. More informations
about Scrum could be found in [7,17].

3 Scrum Represented by K-CRIO

In this section, we will use the K-CRIO Ontology [10] to describe human roles
and interactions during the Scrum process, containing actors, their capacities
and how these roles interacts with others in each phase during a Scrum pro-
cess. Based on general understand of Scrum above, we could see that the whole
Scrum contains diverse kinds of people working together with a specific interac-
tive mode in order to achieve a common goal, such as delivering a product or
exploring a project. Following the definition of K-CRIO, Scrum may be seen as
one Organization in K-CRIO, in which there are smaller groups also seen as Or-
ganizations (sub-organization of Scrum), like the groups ”Pig” and ”Chicken”,
or some explicit people seen as Role, like Scrum Master, Product Owner,etc.
The expression of definition with logic language as:

Scrum: Organization (Scrum)
∧

isSubOrganization (Pig, Scrum)
∧

isSub-
Organization (Chicken, Scrum)

– In the Organization: Scrum, the group ”Pig” (Scrum Team) aims at releas-
ing the product following the requirement of customers and vendors through



198 Y. Lin et al.

Fig. 5. The process of Scrum

its members contributions. Therefore, the group ”Pig” (Scrum Team) may
be seen as the Organization: ”Pig”(Organization: Scrum Team) in K-CRIO,
which is sub-Organization of Organization: Scrum. As three significant mem-
bers of ”Pig”(Scrum Team), the Product Owner (PO), the Scrum Master
(SM) and the Developing Team (DT) fulfill the objective of Organization:
”Pig” through accomplishing their jobs. Therefore, we could define ”Pig” as:

Pig(ScrumTeam): Organization (Pig)
∧

isSubOrganization (Pig, Scrum)∧
isSubOrganization (DT, Pig)

∧
includes (Pig, PO)

∧
includes (Pig, SM)∧

provided (Pig, Capacities for PO)
∧

provided (Pig, Capacities for SM)

Because of the transitivity of isSubOrganization, there is:

isSubOrganization (Pig, Scrum), isSubOrganization (DT, Pig) → isSubOr-
ganization (DT, Scrum)

Considering about the two Roles of the Pig Group, Product Owner represents
the voice of the customer and writes customer-centric items (typically user
stories), prioritizes them, and adds them to the product backlog, which is
accountable for ensuring that the Team delivers value to the business:

PO: Role (PO)
∧

includes (Pig, PO)
∧

provided (Pig, Capacities for PO)



Scrum Conceptualization Using K-CRIO Ontology 199

As an enforcer of rules, Scrum Master is accountable for removing impedi-
ments to the ability of the team to deliver the sprint goal/deliverables and
ensures that the Scrum process is used as intended:

SM: Role (SM)
∧

includes (Pig, SM)
∧

provided (Pig, Capacities for SM)

Differently, as one of necessary members in the group ”Pig”, Developing
Team is typically made up of 5 to 9 developers with cross-functional skills
who do the actual work (analyze, design, develop, test, technical communi-
cation, document, etc.) for releasing the product. For this reason, we may
see Product Owner and Scrum Master as two Roles included in the Or-
ganization: ”Pig” and the Developing Team is one Organization which is
sub-Organization of Organization: ”Pig”. Additionally, the Developer in De-
veloping Team may be seen as Role in K-CRIO, which is included in Orga-
nization: Developing Team.(Sometimes, Product Owner and Scrum Master
may be as members in the Developing Team [1,7], that means Organiza-
tion: Developing Team may include Role: Product Owner and Role: Scrum
Master in certain situation. However, generally these two Roles are out of
Developing Team.):

DT: Organization (DT)
∧

isSubOrganization (DT, Pig)
∧

includes (DT,
Developer)

∧
provided (DT, Capacities for Developer)

Developer: Role (Developer)
∧

includes (DT, Developer)
∧

required (De-
veloper, Capacities for Developer)

Following the analysis above, Organization: ”Pig” and Organization: Devel-
oping Team provide the following capacities required by the roles composing
it.
• Organization: ”Pig” provides:

∗ Capacity: Representing interests of stakeholder, Capacity: Writing
User Stories, Capacity: Prioritizing Users Stories, Capacity: Main-
taining the Product Backlog, etc. (required by Role: Product Owner);

∗ Capacity: Protecting and keeping team focused on its tasks, Capacity:
Enforcing rules,Removing impediments, Capacity: Ensuring Scrum
Process used as intended,etc. (required by Role: Scrum Master);

• Organization: Developing Team provides: Capacity: Cross-functional de-
veloping skills, Capacity: Delivering the Product (required by Role: De-
veloper).

– Similarly, in the Organization: Scrum, the group ”Chicken” (Ancillary Peo-
ple) is a group of people including Stakeholder and Manager. This group may
be seen as the Organization: ”Chicken” (Organization: Ancillary People) in
K-CRIO, which is sub-Organization of Organization: Scrum. Especially, the
Stakeholder represents people for whom the project will produce the agreed-
upon benefits, which justify its production, such as the Customer and the
Vendor. Furthermore, Manager is the people who will set up the environment



200 Y. Lin et al.

for product development. Consequently, Organization: ”Chicken” includes
one Role:Manager and has one sub-Organization Organization: Stakeholder,
which includes Role: Customer and Role: Vendor :

Chicken: Organization (Chicken)
∧

includes (Chicken, Manager)
∧

isSub-
Organization (Stakeholder, Chicken)

∧
provided (Chicken, Capacities for

Manager)

Stakeholder: Organization (Stakeholder)
∧

isSubOrganizationOf (Stake-
holder, Chicken) includes (Stakeholder, Customer)

∧
includes (Stakeholder,

Vendor)
∧

provided (Stakeholder, Capacities for Customer)
∧

provided (Stake-
holder, Capacities for Vendor)

Moreover, we could reason:

isSubOrganization (Chicken, Scrum), isSubOrganization (Stakeholder, Chicken)
→ isSubOrganization (Stakeholder, Scrum)

Finally, we denote various capacities supplied to corresponding roles.
• Organization: ”Chicken” provides Capacity: Setting up environment for
product development, which is required by Role: Manager.

• Organization: ”Stakeholder” providesCapacity: Enabling project required
by both Role: Customer and Role: Vendor.

Following K-CRIO definitions, the above description may be expressed as pre-
sented in Figure 6. Organization, Role and Capacity are represented in purple,
black and green respectively. Additionally, as an example describing how to de-
fine these elements by OWL, Figure 7 expresses Role: Scrum Master by OWL.

So far we have declared relevant Organizations, Roles and Capacities in Scrum.
In order to describe the whole Scrum process, we will state the interactions
occurring during the different Scrum phases. Interactions in K-CRIO may be
considered as Casual Interaction or Formalized Interaction separately. Chat is
a kind of Casual Interaction between different persons (Roles), other examples
may be Exchanging Mail or Joining Conference Meeting, etc. It is Formalized
Interactions of Scrum that produces relative DesignObjects. In the process of
Scrum, we maybe define the following objects as DesignObject : Product, Product
Backlog, a release of its sprint, Sprint Backlog, Updated Burndown Chart and
represent Formalized Interaction by an OWL-WS process.

As sketched by Figure 8, the whole Scrum process may be seen as a Composite
Process in order to produce the DesignObject: Product, which is composed by
the Control Construct Sequence: a Composite Process:Articulate Product Vision
(also called The Pregame Phase), a Composite Process: The Game Phase and
a Composite Process: The Postgame Phase [17]. In all the figures describing
Processes, a single rectangle means an Atomic Process and a double rectangle
means a Composite Process.

Precisely, Articulate Product Vision may be seen as a Composite Process with
the Control Construct Sequence (showing in the Figure 9): an Atomic Process:



Scrum Conceptualization Using K-CRIO Ontology 201

Fig. 6. Scrum with K-CRIO



202 Y. Lin et al.

Fig. 7. Role: Scrum Master in OWL

Fig. 8. A Composite Process: Scrum Process



Scrum Conceptualization Using K-CRIO Ontology 203

Get Requirement from Stakeholder, in which the Product Owner communicates
with the stakeholder of the product for collecting User Stories and an Atomic
Process: Make Product Backlog in order to output the DesignObject: Product
Backlog.

Fig. 9. A Composite Process: Articulate Production Vision

The Figure 10 details The Game Phase, which may be seen as a composite
process with the Control Construct Repeat-While for producing the DesignOb-
ject: Product. The Condition Has Next Sprint controls the loop and is initialized
to true. While Has Next Sprint is true, the processes: Sprint Planning Meeting,
Sprint, Sprint Review Meeting and Sprint Retrospective Meeting are executed
orderly by the Control Construct Sequence and return a new value of Has Next
Sprint. If Has Next Sprint is false, the Composite Process: The Game Phase is
finished.

Sprint Planning Meeting may be seen as a composite process aiming at pro-
ducing the DesignObject: Sprint Backlog as the Figure 11, which is composed
of two sequential Atomic Processes: Sprint Planning Meeting PartOne which is
for discussing what items of product are chosen for being realized in this Sprint,
and Sprint Planning Meeting PartTwo which is focusing on how to finish these
tasks.

Sprint may be seen as a composite process with the Control Construct Repeat-
While as the Figure 12. Every sprint is producing the DesignObject: a release
of its sprint. The Condition Sprint Is Not Finished controls the loop and is
initialized to true. While Sprint Is Not Finished is true, the Atomic Process:
Daily Scrum (producing DesignObject: Updated Burndown Chart) is executed
and return a new value of Sprint Is Not Finished. If Sprint Is Not Finished is
false, the Composite Process Sprint is finished and Sprint Review Meeting and
Sprint Retrospective Meeting are executed sequentially. Moreover, in the Figure



204 Y. Lin et al.

Fig. 10. A Composite Process: The Game Phase

Fig. 11. A Composite Process: Sprint Planning Meeting



Scrum Conceptualization Using K-CRIO Ontology 205

13, we use this simple formalized interaction, the Composite Process: Sprint to
express defining the Formalized Interaction by OWL-WS.

Fig. 12. A Composite Process: Sprint

Eventually, The Postgame Phase may be seen as a composite process, which
may be composed of the processes: Integration Testing, Writing User Document,
Training Users, Marketing Material Preparation and so on.

These concepts and relationships of Scrum represented by K-CRIO Ontology
will be used in a tool for managing knowledge in really enterprise working un-
der Scrum Method. The tool will be developed as Multi-Agent System in the
environment Janus [6]. we now take some query examples to address how the
ontology could help people managing knowledge during the activities.

– we want to know that one project is executed in which process at present?
We suppose P is the process we want to find. Hence:
P: FormalizedInteraction (P)

∧
at (P, Doing)

∧
hasPre-Interaction (P, P′)∧

at (P′ , Done)

– we want to know which developers are late for the schedule during all the
sprint process?



206 Y. Lin et al.

Fig. 13. A Composite Process: Sprint by OWL-WS

We suppose D is the Developer we want to find. Hence:
D: Developer (D)

∧
hasParticipants (Sprint, D)

∧
follows (Sprint, Begin-

ningTime)
∧

follows (Sprint, RealBeginningTime)
∧

follows (Sprint, End-
Time)

∧
follows (Sprint, RealEndTime)

∧ {(RealEndTime - RealBeginning-
Time) > (EndTime - BeginningTime)}

4 Related Works

Formal structures such as OWL and RDFS have been used for Personal Infor-
mation Management before; the PIMO model [15] aims to represent parts of the
Mental Model necessary for tasks involving knowledge. The Mental Model is part
of the cognitive system of a person. Subjective to a person, the mental model is
individual and cannot be externalized thoroughly. The definition for a Personal
Information Model (PIMO) is given as follow: A PIMO is a Personal Information
Model of one person. It is a formal representation of parts of the users Mental
Model. Each concept in the Mental Model can be represented using a Thing or a
subclass of this class in RDF. Native Resources found in the Personal Knowledge
Workspace can be categorized, and are occurrences of Thing. The vision is that
a Personal Information Model reflects and captures a user’s personal knowledge,
e.g., about people and their roles, about organizations, processes, and so forth,
by providing the vocabulary (concepts and their relationships) for expressing
concepts as well as concrete instances. In other words, the domain of a PIMO
is meant to be ”all things and native resources that are pertinent for the user
when doing work involving knowledge”. Though ”native” information models
and structures are widely used, there is still much potential for a more effective
and efficient exploitation of the underlying knowledge. Compared to the cogni-
tive representations humans build, there are mainly two shortcomings in native
structures:



Scrum Conceptualization Using K-CRIO Ontology 207

– Model richness: current state of cognitive psychology assumes that humans
build very rich models, representing not only detailed factual aspects, but
also episodic and situational informations. Native structures are mostly
taxonomy-oriented or keyword-oriented.

– Models coherence: though nowadays (business) life is very fragmented, hu-
mans tend to interpret situations as a coherent whole and have representa-
tions of concepts that are comprehensive across contexts. Native structures,
on the other hand, often reflect the fragmentation of multiple contexts. They
tend to be redundant (i.e., the same concepts at multiple places in multiple
native structures). Frequently, inconsistencies are the consequence.

In brief, the PIMO shall mitigate the shortcomings of native structures by pro-
viding a comprehensive model on a sound formal basis.

Multilayered Semantic Social Network (MSSN) Model [4] proposes a mul-
tilayered semantic social network model that offers different views of common
interests underlying a community of people, which is working within an ontology-
based personalization framework [18], user preferences are represented as vectors
ui = (ui,1, ui,2, ..., ui,N ) where the weight ui,j ∈ [0, 1] measures the intensity of
the interest of user i for concept cj in the domain ontology, N being the total
number of concepts in the ontology. Similarly, the objects dk in the retrieval
space are assumed to be described (annotated) by vectors (dk,1, dk,2, ..., dk,N )
of concept weights, in the same vector-space as user preferences. Based on this
common logical representation, measures of user interest for content items can
be computed by comparing preference and annotation vectors, and these mea-
sures can be used to prioritize, filter and rank contents (a collection, a catalog,
a search result) in a personal way. The applicability of the proposed model to a
collaborative filtering system is empirically studied. Starting from a number of
ontology-based user profiles and taking into account their common preferences,
the concept space domain is automatically clustered. With the obtained seman-
tic clusters, similarities among individuals are identified at multiple semantic
preference layers, and emergent, layered social networks are defined, suitable to
be used in collaborative environments and content recommenders.

The AIC Model represents such a system as a tripartite graph with hyper-
edges [13]. The set of vertices is partitioned into the three (possibly empty)
disjoint sets A = {a1, a2, ..., ak}, C = {c1, c2, ..., ci}, I = {i1, i2, ..., im} corre-
sponding to the set of actors (users), the set of concepts (tags, keywords) and
the set of annotated objects (bookmarks, photos etc). It extends the traditional
bipartite model of ontology (concepts and instances) by incorporating actors in
the model. In a social tagging system, users tag objects with concepts, creat-
ing ternary associations between the user, the concept and the object. Thus the
folksonomy is defined by a set of annotations T ∈ A × C × I. Such a network
is most naturally represented as an hypergraph with ternary edges, where each
edge represents the fact that a given actor is associated with a certain instance
and a certain concept. In particular, the author defines the representing hyper-
graph of a folksonomy T as a (simple) tripartite hypergraph H(T ) = (V,E)
where V = A ∪ C ∪ I, E = {{a, c, i} | (a, c, i) ∈ T }.



208 Y. Lin et al.

The MOISE+ Model [9] structure is built up in three levels: one is the be-
haviors that an agent playing a role is responsible for (individual), the other is
the structure and interconnection of the roles with each other (social), and the
last is the aggregation of roles in large structures (collective). In MOISE+, as
in MOISE, three main concepts, roles, role relations, and groups, are be used to
build, respectively, the individual, social, and collective structural levels of an
organization. Furthermore, the MOISE original structural dimension is enriched
with concepts such as inheritance, compatibility, cardinality, and sub-groups.

– Individual level is formed by the roles of the organization. A role means
a set of constraints that an agent ought to follow when it accepts to enter
a group playing that role. Following, these constraints are defined in two
ways: in relation to other roles (in the collective structural level) and in a
deontic relation to global plans (in the functional dimension). In order to
simplify the specification, like in Object-Oriented (OO) terms, there is an
inheritance relation among roles. If a role p′ inherits a role p (denoted by
p ⊂ p′), with p 
= p′, p′ receives some properties from p, and p′ is a sub-role,
or specialization, of p. In the definition of the role properties presented in
the sequence, it will be precisely stated what one specialized role inherits
from another role. For example, in the soccer domain, the attacker role has
many properties of the player role (pplayer ⊂ pattacker). It is also possible
to state that a role specialize more than one role, i.e., a role can receive
properties from more than one role. The set of all roles are denoted by Rss.
Following this OO inspiration, we can define an abstract role as a role that
cannot be played by any agent. It has just a specification purpose. The set
of all abstract roles is detonated by Rabc(Rabc ⊂ Rss). There is also a special
abstract role Psocwhere ∀(p∈ Rss)Psoc ⊂ P , trough the transitivity of ⊂, all
other roles are specializations of it.

– Social level is when the inheritance relation does not have a direct effect
on the agents’ behavior, there are other kinds of relations among roles that
directly constrain the agents. Those relations are called links and are repre-
sented by the predicate link(ps,pd,t) where ps is the link source, pd is the link
destination, and t ∈ acq, com, aut is the link type. In case the link type is
acq (acquaintance), the agents playing the source role ps are allowed to have
a representation of the agents playing the destination role pd (pd agents, in
short).In a communication link(t = com), the ps agents are allowed to com-
municate with pd agents. In an authority link(t = aut), the ps agents are
allowed to have authority on pd agents, i.e., to control them. An authority
link implies the existence of a communication link that implies the existence
of an acquaintance link:

linkps,pd,aut =⇒ linkps,pd,com (1)

linkps,pd,com =⇒ linkps,pd,acq (2)



Scrum Conceptualization Using K-CRIO Ontology 209

Regarding the inheritance relation, the links follow the rules:

(link(ps,pd,t) ∧ ps ⊂ ps′) =⇒ link(ps′ ,pd,t) (3)

(link(ps,pd,t) ∧ ps ⊂ pd′) =⇒ link(ps,pd′ ,t) (4)

Take an instance, if the coach role has authority on the player role
link(pcoah,pplayer ,aut) and player has a sub-role (pplayer ⊂ pattacker), by Eq.
(4), a coach has also authority on attackers. Moreover, a coach is allowed
to communicate with players (by Eq. (1)) and it is allowed to represent the
players (by Eq. (2)).

– Collective Level: the links constrain the agents after they have accepted to
play a role. However we should constrain the roles that an agent is allowed to
play depending on the roles this agent is currently playing. This compatibility
constraint pa �� pb states that the agents playing the role are also allowed
to play the role pb (it is a reflexive and transitive relation). As an example,
the team leader role is compatible with the back player role pleader �� pback.
If it is not specified that two roles are compatible, by default they are not.
Regarding the inheritance, this relation follows the rule

(pa �� pb ∧ pa 
= pb ∧ pa 
 p′) =⇒ (p′ �� pb) (5)

Hence, there should be a series of rules and relationships defined within the
collective level.

The software & Systems Process Engineering meta-model (SPEM) allows the
Modelling of software processes using OMG (Object Management Group) stan-
dard such as the MOF (meta-object facility) and UML: making possible to rep-
resent software processes using tools compliant with UML. Daniel Rodriguez
et al [14] represents generic processes modeled with SPEM using an under-
lying ontology based on the OWL representation together with data derived
from actual projects. SPEM is generally used to design generic software pro-
cesses such as Scrum. Therefore, Daniel Rodriguez et al [14] discussed a first ap-
proach to create an ontology from the Scrum process as example using SPEM. In
Daniel Rodriguez et al [14], Scrum Ontology extends from the Role class in the
method-content ontology in SPEM. Method-Content: Role has scrum:Pig and
scrum:Chicken as subclasses. The productOwner, scrumMaster and team were
instances of the Scrum Chicken role. Moreover WorkProduct as one class in the
method content ontology has three subclasses: Artifact, Deliverable and Out-
come. The term like SprintBacklog is as an instance or individual of Artifact as
the part of the scrum Ontology. Furthermore, the process ontology of SPEM has
Activity class with Iteration and Phase classes defined as subclasses. Relatively,
the PreGame, Game and PostGame are defined in the scrum ontology.

One of the earliest initiatives was the TOVE project that aimed at develop-
ment of a set of integrated ontologies for modeling all kinds of enterprise, such as
commercial and public ones. The TOVE Organization Ontology [8] for Enterprise
Modelling is one of these, which puts forward a number of conceptualizations
as agents, roles, positions, goals, communication, authority, commitment. Pre-
cisely, one organization consists a set of Organization-Agents(OA) having two



210 Y. Lin et al.

sub-classes: Individual-Agents and Group-Agents, a set of Organization-Units
as recursive subcomponents and an Organization-Goal tree (could divide into
sub-goals). An Organization-Role defines a prototypical function of an agent in
an organization. Each Organization-Role played by OA has Organization-Goals
or Role-Goals, Role-Skills, Role-Process or Organization-Activity, Role-Policy,
Role-Communication-Link. Moreover, an Organization-Position defines a formal
position that can be filled by OA in the Organization.

5 Conclusion

The goal of this paper was to present K-CRIO, an ontology of organizations
for their understanding, analysis and also to enable reasoning. The targeted
organizations are those dedicated to the realization of products following a given
design process. The definition of this ontology relies on OWL and on the concepts
used in the CRIO metamodel. The Scrum software development process is taken
as example to illustrate the use of K-CRIO for describing a specific organization.

We are aware that the K-CRIO ontology is not complete. It is a first attempt to
build a rich ontology for organizations. Further studies, done with heterogeneous
organizations will help us in refining K-CRIO and adding new concepts and
relationships. In the meanwhile, the idea is to use K-CRIO as a semantic layer
for collaborative softwares in order to enhance Knowledge Management within
the targeted organizations.

References

1. http://en.wikipedia.org/wiki/scrum

2. Beco, S., Cantalupo, B., Giammarino, L., Matskanis, N., Surridge, M.: OWL-WS:
A workflow ontology for dynamic grid service composition. In: eScience, pp. 148–
155. IEEE Computer Society (2005)

3. Bottazzi, E., Ferrario, R.: Preliminaries to a dolce ontology of organizations. Inter-
national Journal of Business Process Integration and Management 4(4), 225–238
(2009)

4. Cantador, I., Castells, P.: Multilayered Semantic Social Network Modeling by
Ontology-Based User Profiles Clustering: Application to Collaborative Filtering.
In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 334–
349. Springer, Heidelberg (2006)

5. Cossentino, M., Gaud, N., Galland, S., Hilaire, V., Koukam, A.: A Holonic
Metamodel for Agent-Oriented Analysis and Design. In: Mař́ık, V., Vyatkin, V.,
Colombo, A.W. (eds.) HoloMAS 2007. LNCS (LNAI), vol. 4659, pp. 237–246.
Springer, Heidelberg (2007)

6. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: Aspecs: an agent-
oriented software process for engineering complex systems. Autonomous Agents
and Multi-Agent Systems 20, 260–304 (2010), doi:10.1007/s10458-009-9099-4

7. Deemer, P., Benefield, G., Larman, C., Vodde, B.: The scrum primer. Technical
report (2010), http://www.goodagile.com

http://en.wikipedia.org/wiki/scrum
http://www.goodagile.com


Scrum Conceptualization Using K-CRIO Ontology 211

8. Fox, M.S., Barbuceanu, M., Gruninger, M.: An organisation ontology for enterprise
modeling: Preliminary concepts for linking structure and behaviour. Computers in
Industry 29(1-2), 123–134 (1996); WET ICE 1995

9. Hübner, J.F., Sichman, J.S., Boissier, O.: A Model for the Structural, Functional,
and Deontic Specification of Organizations in Multiagent Systems. In: Bitten-
court, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128.
Springer, Heidelberg (2002)

10. Lin, Y., Hilaire, V., Gaud, N., Koukam, A.: K-CRIO: An Ontology for Organi-
zations Involved in Product Design. In: Cherifi, H., Zain, J.M., El-Qawasmeh, E.
(eds.) DICTAP 2011 Part II. CCIS, vol. 167, pp. 362–376. Springer, Heidelberg
(2011)

11. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness,
D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.:
Bringing Semantics to Web Services: The OWL-S Approach. In: Cardoso, J., Sheth,
A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg
(2005)

12. McGuinness, D.L., Van Harmelen, F.: http://www.w3.org/tr/owl-features/
13. Mika, P.: Ontologies are us: A unified model of social networks and semantics. J.

Web Sem. 5(1), 5–15 (2007)
14. Rodrguez-Garca, D., Barriocanal, E.G., Alonso, S.S., Nuzzi, C.R.-S.: Defining soft-

ware process model constraints with rules using owl and swrl. International Journal
of Software Engineering and Knowledge Engineering

15. Sauermann, L., Van Elst, L., Dengel, A.: Pimo - a framework for representing
personal information models. In: Proceedings of I-Semantics 2007, JUCS, pp. 270–
277 (2007)

16. Schreiber, G.: http://www.cs.vu.nl/~guus/public/owl-restrictions/
17. ScrumMethodology.org. Scrum phases (2009),

http://www.scrummethodology.org/scrum-phases.html

18. Vallet, D., Mylonas, P., Corella, M.A., Fuentesa, J.M., Castells, P., Avrithis, Y.:
A semantically-enhanced personalization framework for knowledge-driven media
services. In: IADIS WWW/Internet Conference, pp. 11–18 (2005)

http://www.w3.org/tr/owl-features/
http://www.cs.vu.nl/~guus/public/owl-restrictions/
http://www.scrummethodology.org/scrum-phases.html

	Scrum ConceptualizationUsing K-CRIO Ontology
	Introduction
	Background
	K-CRIO
	Introduction to Scrum

	Scrum Represented by K-CRIO
	Related Works
	Conclusion
	References




