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Abstract. In this paper we present a novel method to detect the pres-
ence of social interactions occurring in a surveillance scenario. The al-
gorithm we propose complements motion features with proxemics cues,
so as to link the human motion with the contextual and environmen-
tal information. The extracted features are analyzed through a multi-
class SVM. Testing has been carried out distinguishing between casual
and intentional interactions, where intentional events are further subdi-
vided into normal and abnormal behaviors. The algorithm is validated
on benchmark datasets, as well as on a new dataset specifically designed
for interactions analysis.

1 Introduction

The research in video surveillance and environmental monitoring has revealed
a recent trend in bringing the analysis of the scene to a higher level, shifting
the attention from traditional topics, such as tracking and trajectory analysis
[1], towards the semantic interpretation of the events occurring in the scene
[2,3]. In particular, behavior analysis in terms of action and activity recogni-
tion has emerged as a relevant subject of research, especially for classification
and anomaly detection purposes. Important contributions to the field have been
proposed by Scovanner et al. [4], in which authors learn pedestrian parameters
from video data to improve detection and tracking, and by Robertson et al. [5]
where human behavior recognition is modeled as a stochastic sequence of actions
described by trajectory information and local motion descriptors.

Bringing the analysis to a higher level of interpretation involves understand-
ing the real social relationships undergoing between subjects, thus requiring to
extend the analysis domain also to psychology and sociology. To this aim, the
proxemics theory can be effectively exploited to observe the human relationships
captured by a surveillance camera [6,7].

The goal of proxemics is to measure the social distance between subjects in
order to infer interpersonal relationships. In this area, the works by Cristani
et al. [8] aim at understanding the social relations among subjects when shar-
ing a common space. The authors detect the so-called F-Formations present in
the scene, thus inferring whether an interaction between two or more persons
is occurring or not. A recent and relevant approach based on proxemics has
been proposed by Zen et al. [9]. The authors identify proxemics cues in order
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to discriminate personality traits as neuroticism and extraversion, and use the
collected data to construct the corresponding behavioral model. The acquired
data is then used to improve the accuracy of the tracking algorithm. A similar
approach has been proposed by Pellegrini et al. [10], using the social force model
[11]. The solution proposed in [10] considers each subject as an agent, for which
the model of motion has to be optimized, so as to prevent collisions with the
other entities moving in the scene. The authors consider every agent as driven by
its destination, taking into account, besides position, also additional parameters
like velocity and direction of motion. The collected data is then used to build
a model to measure the proximity level between the subjects, and to construct
an avoidance function. A very recent approach is the work by Cui et al. [12].
The authors extract an interaction energy potential to model the relationships
ongoing among groups of people. The relationship between the current state of
the subject and the corresponding reaction is then used to model normal and
abnormal behaviors. The authors also claim that their approach is independent
from the adopted tool for human motion segmentation.

A hierarchical approach is instead proposed by [13] where human behavior
is described at multiple levels of detail ranging from macro events to low-level
actions. Authors exploit the fact that social roles and actions are interdependent
one to each other and related to the macro event that is taking place.

In this work we define the interaction as a combination of energy functions that
capture the state of a subject in the social context he moves. Since tracking is out
of the scope of this work, our goal is to build a classifier to identify and recognize
different types of behaviors. A novel aspect we introduce with respect to [10],
consists in the insertion of an intentionality parameter in the processing chain,
targeted at distinguishing between intentional and casual interactions. This term,
provided by the proxemics information, is used to weight the interaction patterns
acquired in real-time on a sliding window basis. The output of the function is
then brought into the Fourier domain, thus removing the temporal correlation
of the samples, and eventually fed into an SVM classifier. We have devised
three different scenarios: (i) casual interaction, (ii) normal, and (iii) abnormal
interaction. The interactions of type (i) refer to non-intentional events, while
the type (ii) and (iii) reveal intentional interactions, divided into regular and
potentially dangerous events.

The method has been tested on three datasets specifically chosen for human
interaction analysis.

2 Methodology

According to the proxemics principles, distances can say a lot about the rela-
tionships going on between people, about their intimacy level, making it possible
to distinguish between intentional and non-intentional behavioral cues. This in-
formation is generally variable in space in time and depends on the location in
which a person stands, on the density of people in the area, but also on cultural
and religious differences.
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Fig. 1. Flowchart of the proposed architecture

Fig. 1 shows the proposed architecture for social interaction analysis, for which
we will provide additional details in the next subsections.

2.1 Proxemics Parameters

In the model we propose, we follow the path covered by Pellegrini et al. [10] in
order to capture the salient motion features that can be associated to an inter-
action. Each subject i is modeled at each time t by a state vector of parameters
that takes into account the current position and velocity:

Si(t) = [pi(t),vi(t)] (1)

At each time instant t it is then possible to model the distance between each
pair of subjects (i, j) as:

d2ij =
∥
∥pi + tvi − pj − tvj

∥
∥
2

(2)

By defining kt
ij = pt
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j and applying the derivative with
respect to t in Eq. (2), it is possible to find the time instant t∗ at which the
distance d∗ij between the subjects is minimized.
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Eq. (3) is the estimate for the closest point (and the corresponding time instant),
at which the subjects will most probably meet. However, this piece of informa-
tion, although relevant to check whether there is chance for i and j to interact in
the next future, does not necessarily include details about their interaction level.
An estimate can be obtained by building an energy functional between subjects
i and j by measuring the evolution of the proximity between them over time:

Ec
ij = e

− d∗2ij
2σ2

d (4)

In Eq. (4) σd controls the variance of the function in order to make it more or
less responsive. The output of Eq. (4) can be seen as a collision warning, and
represents the closest distance at which the two subjects will be, given the current
motion parameters (position, velocity and direction of motion). This element is
important because it can be used as a hint to predict the future developments
of the interaction.

In line with the previous statement, we define an energy function to model the
actual distance between subjects. This parameter is useful to obtain a proper
modeling of the social behavior, since an interaction is more likely to happen
when two persons are closer rather than when they are far apart from each other.

Ed
ij = e

−‖kw
ij‖2

2σ2
w (5)

In [10], and for tracking purposes, the authors use the term Ed
ij as a weight

to model the outcome of Eq. (4) together with another term depending on the
angle between the direction of motion of i and the position of j. Our goal is
however different, since we want to understand the dynamics of the interaction.
Furthermore, the direction information, is in general noisy, particularly in the
case of unrestricted video scenes, and for these reasons it has been discarded
from out model.

In order to model the intentionality of an interaction, we adopt the so-calledO-
space [14]. The O-space consists of a circular area between the subjects, located
in the direction of their gaze. It can be seen as the interaction space, namely the
area comprised between two people interacting and facing one to each other.

By means of this definition, the O-Space can be used as a selectivity criterion,
i.e. to inform about the presence of an interaction. The O-Space is in general
defined as a static and non-deformable area right in front of the person and is
not suitable for dynamic motion models, in which interactions can occur also
in case the subjects move (e.g. walking together). Therefore, in our proposal we
borrow the idea of the O-space as an area of attention of the subject, which
can be adopted to infer the intentionality (or causality) of an interaction. In our
model the O-space is positioned along the direction of motion of the subject
and its center varies depending on his velocity. This gives us the opportunity of
handling also dynamic interactions, and not only static events.
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The position of the O-space is defined as:

Ox = px + axΛ sin(θ)
Oy = py − ayΛ cos(θ)

(6)

where px and py are the coordinates of the subject, Λ is the displacement of the
subject from the previous frame, ax and ay are tuning parameters depending on
the field of view of the camera, and θ is the absolute direction of motion. The
O-space area is used to calculate the intentionality component of the interaction,
similarly to what we did for the proxemics information:

Eo
ij = e

−‖ko
ij‖2

2σ2
o (7)

where kOij is the distance between the O-space centers of subject i and j , re-
spectively. This parameter allows to filter out the noisy information collected
by the other terms (for example two people very close but facing in opposite
directions), thus reducing the chances of false positives returned in the presence
of casual interactions of subjects standing nearby. The O-space model we have
adopted is shown in Fig. 2.

(a) (b)

Fig. 2. O-space modeling. The figure represents the two cases in which the subject is
(a) standing still, and (b) when he is moving from left to right. In the latter case the
O-space shifts in the direction of motion proportionally with its velocity.

2.2 Feature Extraction

Following the flow chart in Fig. 1 we collect the proxemics values Ed
ij(t), E

c
ij(t),

Eo
ij(t) in a given temporal window (128 samples in our examples), and at each

time instant we apply the FFT (Fast Fourier Transform) (8) on the window
samples. At this stage, the importance of the FFT is to eliminate the temporal
correlation of the samples by only considering the contribution they bring into
the interaction in terms of dynamics of that specific event.

Xk =

N−1∑

n=0

xne
−ı2πk n

N k = 0, ..., N − 1 (8)

The next step consists of concatenating the three sets of features to construct
the feature vector that will be analyzed by the classifier. This process is carried
out at every time instant, resulting in a large number of parameters (128x3).
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Therefore, we apply a dimensionality reduction through Principal Component
Analysis (PCA). Accordingly, the training set is arranged in a n×mmatrix where
n is the number of samples and m the number of features. From the matrix X
the eigenvalues of the related zero mean covariance matrix are extracted and
the obtained vector is sorted by magnitude in descending order. The first value
is the so-called principal component. From eigenvalues vector we can compute
eigenvectors m×m matrix.

Y = WT
s X (9)

As shown in (9) the feature space has now been reduced, restraining the training
set to a new matrix of size n× s where s < m is the number of eigenvectors that
we consider as relevant for our analysis.

Now that we have constructed our training set, we adopt a similar procedure
for prediction. Each new incoming sample consists of a 1 × m vector that is
processed as X in (9) obtaining as output a 1 × s vector. This new vector is
the input for the SVM, from which we will classify the type of the ongoing
interaction.

2.3 Classification Procedure

After obtaining the reduced feature space, classification is computed using a
kernel based SVM. Since the classification output strongly depends on the data
used for training, let us briefly see what are the main steps we follow to obtain
a reliable training set:

– Select the training videos representing the three classes that we want to
classify with the frame-by-frame interaction labeling (manually done in a
previous stage);

– Compute the interaction values as presented in Section 2.1 for the whole
duration of the video;

– Segment the interaction values in accordance with the labels;
– Run the sliding window over the segmented interaction values, and consider

each step as a feature vector;
– Transform each feature vector in the FFT domain and reduce the dimen-

sionality using Principal Component Analysis;
– The resulting arrays consist of the features space for the classifier, which will

be tuned by cross validation optimization to estimate the best configuration
for the class separation.

It is worth noting that samples for training are picked randomly and in equal
number for each class from the dataset, in order to avoid any possible bias in
the training and to prevent overfitting of a particular class with respect to the
others.

In the test phase the procedure simply consists of collecting the sliding window
data at each time step, compute the FFT transform and the PCA decomposition
using the training eigenvectors, thus building the new space. Data are then sent
to the classifier for the final class prediction.
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3 Results

Datasets. To validate our method we have used three different datasets: our
own dataset SI (Social Interactions) Dataset [15], a selection of video sequences
collection of YouTube CCTV videos (different contexts) and some sequences
taken from the BEHAVE database.

The SI Dataset has been acquired to specifically address the topic of interac-
tions analysis, since the number of social interactions occurring in more tradi-
tional datasets such as the PETS is limited, making it difficult to obtain suffi-
cient statistical evidence. The set consists of 12 fully annotated video sequences
of different length recorded at 25 FPS. Sequences mainly represent regular daily
life behaviors such as people chatting, walking together or simply crossing each
other. The dataset also includes more critical types of interactions, simulating
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Fig. 3. Energy functions for distance (left), closest point of approach (center), and
O-Space (right), in presence of two people crossing (first row), chatting (second row),
and fighting (third row)
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fights. The video sequences are recorded outdoor, under three different views,
for which we will use here only the bird’s eye view for similarity with the other
datasets. For our experiments, and considering that tracking is out of the scope
of this paper, we use the collected ground truth, from which it is possible to
extrapolate all the necessary parameters required by our method.

The YouTube dataset is composed by 4 video sequences recorded in as many
different locations. This dataset is not homogeneous because the videos come
from different sources, with different view angles and different fields of view.
For there reasons the videos are very challenging, since they represent real-life
situations, and are not acquired with any specific purpose.

From the BEHAVE dataset [16] we have included in the experiments two
different segments regarding different behavioral situations. Also here videos are
acquired from far range, and are only partially annotated. We have then collected
the corresponding ground truth.

Experiments. As mentioned in Section 2, classification is achieved via a mul-
ticlass SVM with Gaussian kernel. The number of training samples for each
dataset is 1200, balanced over the three classes (400x3). In the training phase
the best SVM parameters have been estimated by cross-validation. The testing
phase takes as input the SVM parameters and the interaction parameters used
to compute the interaction measure. These parameters are estimated through an
exhaustive search and they differ in relation with the properties of the monitored
area (range, field of view, angle). The proposed architecture allows computing

Fig. 4. Sample interactions taken from the three datasets. The first column indicates
casual interactions, the central column refers to normal interactions, while the last
column signals the presence of abnormal interactions.
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the interaction measure on-line, without waiting for the end of the interaction.
In fact, the complexity of the algorithm is negligible, compared to computa-
tional resources required for people detection and tracking. In Fig. 3 the energy
functions obtained from three different sample sequences are shown.

In terms of numerical results we present two different tables, where it is pos-
sible to observe the effectiveness of our approach, especially in unconstrained
scenarios, in which the interpretation of the interactions could be problematic.
As it can be noticed from Table 1 and Table 2, the algorithm performs in general
well especially in detecting the presence of an interaction, in all three datasets
used for testing. As far as the class 3 is concerned (anomalous events) and con-
sidering the complexity of the task, the improvement given by the O-Space term
is considerable (more than 20% in precision) due to the capability of better
isolating the interacting subjects. A graphical presentation of the classification
process is shown in Fig. 4. Here, each line reports three snapshots taken from the
different datasets, each of them representing one of the classes. White lines (left
column) indicate that no interaction is currently ongoing, yellow lines (center
column) refer to normal interactions, while red lines (right column) indicate the
presence of an abnormal event.

Table 1. Performance comparison of the proposed algorithm with and without the
O-Space energy on the three datasets

O-space Method Without O-space Method

Precision Recall HitRate Precision Recall HitRate

Casual 93,3% 94,1% 93,5% 91,1%
SI Normal 75,1% 76,1% 88,5% 63,3% 77,5% 86,1%

Abnormal 55,3% 48,7% 55,4% 45,3%

Casual 75,8% 93,8% 75,3% 93,8%
Behave Normal 98,0% 93,9% 90,1% 97,7% 94,3% 90,1%

Abnormal 42,5% 27,5% 43,6% 22,6%

Casual 88,2% 90,2% 66,3% 76,2%
YouTube Normal 84,4% 80,2% 82,7% 70,9% 43,7% 60,1%

Abnormal 38,2% 40,3% 11,0% 17,7%

Table 2. Confusion matrices for the three datasets obtained using the O-Space energy

Casual Normal Abnormal

Casual 94,07% 3,68% 2,25%
SI Normal 18,49% 76,17% 5,34%

Abnormal 37,56% 15,34% 47,10%

Casual 93,82% 3,53% 2,65%
Behave Normal 3,98% 93,92% 2,10%

Abnormal 61,83% 10,92% 27,25%

Casual 90,16% 5,00% 4,85%
YouTube Normal 12,74% 80,23% 7,03%

Abnormal 29,71% 29,92% 40,37%
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4 Conclusion

In this paper we have proposed a tool to analyze social interactions in surveil-
lance video, combining traditional metrics based on distance and velocity, and
proxemics cues. Proxemics is handled as an intentionality parameter, giving the
opportunity to better focus on the events of interest by considering only the mov-
ing subjects whose motion patterns demonstrate a will to interact. The method
has been evaluated on three different datasets, confirming the viability of the
method in recognizing different types of interactions. One of the datasets, specif-
ically designed for social interactions analysis is provided by the authors as an
additional contribution of the paper.
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