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Abstract. Traditional locality-sensitive hashing (LSH) techniques aim
to tackle the curse of explosive data scale by guaranteeing that similar
samples are projected onto proximal hash buckets. Despite the success of
LSH on numerous vision tasks like image retrieval and object matching,
however, its potential in large-scale optimization is only realized recently.
In this paper we further advance this nascent area. We first identify two
common operations known as the computational bottleneck of numer-
ous optimization algorithms in a large-scale setting, i.e., min/max inner
product. We propose a hashing scheme for accelerating min/max inner
product, which exploits properties of order statistics of statistically cor-
related random vectors. Compared with other schemes, our algorithm
exhibits improved recall at a lower computational cost. The effectiveness
and efficiency of the proposed method are corroborated by theoretic anal-
ysis and several important applications. Especially, we use the proposed
hashing scheme to perform approximate �1 regularized least squares with
dictionaries with millions of elements, a scale which is beyond the capa-
bility of currently known exact solvers. Nonetheless, it is highlighted that
the focus of this paper is not on a new hashing scheme for approximate
nearest neighbor problem. It exploits a new application for the hashing
techniques and proposes a general framework for accelerating a large
variety of optimization procedures in computer vision.

1 Introduction

The rapid development of camera hardware and online sharing communities
has enabled the proliferation of the gigantic image and video corpora at the
scale of millions or even billions. For example, ImageNet1 consists of over 12
Million Web-crawled images corresponding to around 17,000 WordNet nouns.
Another recent notable large-scale benchmark called Multimedia Event Detec-
tion (MED)2 (part of TRECVID 2011), is comprised of over 45,000 videos with
an average duration of 2 minutes. To cope with the increased content complex-
ity associated with gigantic data sets, more sophisticated feature representations
have been introduced in recent literatures, but unfortunately often lead to very

1 http://www.image-net.org
2 http://www.nist.gov/itl/iad/mig/med11.cfm
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high dimensionality. Facing the aforementioned trends, significant attempts have
been devoted to overcoming the curses of gigantic corpora and dimensionality,
either by speeding up non-linear kernel computation (e.g., accelerated histogram
intersection kernel [1]), efficient large-scale visual vocabulary construction [2] or
low-rank matrix approximation [3].

Our work in this paper is inspired by the recent impressive advance of data
indexing techniques, especially locality-sensitive hashing (LSH) [4]. Many com-
puter vision tasks (e.g., image retrieval, object classification) can be treated
as k-nearest-neighbor (k-NN) problem under task-specific metrics. The goal of
LSH is to provide fast approximation for the exact, albeit expensive, linear scan
method for k-NN retrieval. For a database of N samples, it can be proved that
LSH-based approximate k-NN can be accomplished with a sub-linear complex-
ity of O(Nρ) where ρ ∈ (0, 1) is a constant that depends on the desired level of
approximation. This greatly mitigates the computational burden. Previous en-
deavors have also tailored LSH along several directions, including hashing new
types of objects (e.g., subspaces [5]) or hashing with non-Euclidean metrics (e.g.,
kernelized hashing [6], non-metric LSH [7] and anchor graph [8]).

It is only recently realized that LSH can also facilitate efficient large-scale
optimization. A very relevant work is the point-to-hyperplane hashing method
proposed in [9]. It is used to accelerate margin-based active learning SVM,
which iterates between informative sample selection and SVM hyperplane up-
date. To maximally reduce the uncertainties of un-labeled data, a theoretically-
guaranteed effective strategy is to choose those samples closest to the current
SVM hyperplane [10], which can be achieved in reduced complexity via the
afore-mentioned point-to-hyperplane hashing technique [9].

Our paper focuses on the two fundamental linear operations (min/max inner
product) that are at the core of solving several large optimization problems (like
sparse coding, OMP, max-margin clustering and active learning SVM). Assume
ω, x ∈ R

d, where ω is the “query” vector (e.g., the hyperplane normal in SVM)
and x is a specific sample in a database of size N .

– Min-Product: the aim is to select a k-cardinality set which encompasses
the samples with the smallest absolute responses to ω.

X =
{
x | |ωTx| ≤ |ωTx′|, ∀ x′ /∈ X }

. (1)

– Max-Product: the aim is akin to Min-Product, yet pursuing those with
largest absolute response magnitudes.

X =
{
x | |ωTx| ≥ |ωTx′|, ∀ x′ /∈ X }

. (2)

Conventional LSH algorithms are not suitable for solving Min-Product or Max-
Product. Especially, Min-Product frustrates most of prior LSH schemes since
they are not designed to find perpendicular vectors. The only relevant work was
done by Jain et al. [9], yet it suffers from the low collision probability as later
shown in Fig. 2.
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We propose a new hashing scheme based on concomitant order statistics [11,12].
The proposed concomitant hashing scheme is suitable for handling both
Min-Product and Max-Product operations with very nice theoretical guarantees.
It can serve as a general tool to accelerate a large family of large-scale optimization
problems. The reminder of the paper is organized as following: Section 2 illustrates
several exemplar applications of the concomitant hashing. Section 3 describes our
proposed hashing scheme and theoretic analysis. Section 4 elaborates on experi-
mental study. Finally we conclude the work in Section 5.

2 Exemplar Applications

2.1 Min-Product: Active Learning SVM and Maximum Margin
Clustering

The proposed scheme can be applied to scale up a number of tasks fitting the
specifications described in Section 1. Two representative applications for the
Min-Product case are active learning SVM [10] and maximum margin cluster-
ing [13]. A popular active-selection strategy for the former problem is to choose
those samples closest to current hyperplane (i.e., those with minimal absolute
inner products to the hyperplane normal), based on the theoretic guarantee of
optimally reducing the volume of version space [10].

On the other hand, the formulation of maximum margin clustering problem
is similar to conventional SVM, i.e.,

min
y∈{−1,1}N , b, ξ≥0

1

2
wTw + C

N∑
i=1

ξi s.t. yi
(
wTxi + b

) ≥ 1− ξi, ∀i,

where the key difference to conventional SVM is that the data labels y are
unknown variables. Zhao et al. [13] tailored the cutting plane method for iterative
minimization. The set of constraints is initially empty. A new linear constraint is
added in each iteration to progressively tighten the lower bound of the objective
function. Since the constraint is generated by identifying those samples close to
current hyperplane, i.e., |wTxi + b| < 1, it falls into the Min-Product case.

2.2 Max-Product: Sparse Optimization and Gaussian Process
Regression

Max-Product encompasses a variety of optimization problems with maximal ab-
solute correlation greedy selection, including Lasso, orthogonal matching pursuit
(OMP), and Gaussian process regression (GPR), whose formulations are:

(Lasso) : min
α
‖x−Dα‖2 + λ‖α‖1. (3)

(OMP) : min
α
‖x−Dα‖2, s.t. ‖α‖0 ≤ k. (4)

(GPR) : min
α

1

2
αT

(
K + σ2I

)
α− yTα. (5)
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We postpone more details about OMP and GPR to the supplementary mate-
rial, and focus on the Lasso problem here. The Lasso is widely used for computing
sparse representations [14] of signals arising in vision tasks. When the optimal
solution α� is truly sparse, a natural solution is to pre-detect a subset that cov-
ers the true supporting columns of D, which is the idea underlying Grafting [15]
and Grafting-Light [16]. Both methods maintain a working set S initialized as
empty and alternate between the following steps until convergence:

Step-1 : Perform one-step [16] or multi-step gradient descent [15] over the
working set S for Problem (3).

Step-2 : Compute the gradient DT (Dα0−x) at current solution α0 and select
top m candidate samples from the inactive set {1, . . . , |D|} − S with largest
gradient magnitudes above λ. If the candidate set is not empty, add them into
working set S and go to Step-1, otherwise exit.

The computational bottleneck of above algorithm lies in efficiently selecting
active columns in the scenario of large D (possibly on million scale). It obviously
fits Max-Product case and can be largely accelerated via data hashing.

3 Concomitant Hashing

3.1 Basics of Concomitant Order Statistics

David et al. [11] gave a nice introduction to the concomitant rank order statistics
(it was termed “induced order statistics” in [17] and [18]) based on small-
sample theory. More asymptotic results can be found in [19]. Assume the pair
set {(xi, yi)}ni=1 (∀ i, xi, yi ∈ R) are independently sampled from the latent
distribution f(x, y). In the literature [11], yi is called the concomitant of xi, and
vice-verse. Let xk be the r-th smallest element among x1, . . . , xn. We follow the
notations in [11], using Πn

r,s to represent the probability of its concomitant yk
being the s-th smallest among y1, . . . , yn. It can be defined as:

Πn
r,s =

n∑
k=1

Pr (rank(xk) = r, rank(yk) = s) , (6)

where rank(·) returns the ordinal rank in ascending order.

3.2 Our Proposed Concomitant Hashing Method

Recently, Eshghi et al. introduced a new class of hashing functions based on
the concomitant rank order statistics [12]. However, it was designed for the
conventional nearest neighbor search problem. We extend the work of [12] to
expedite solving both Min-Product and Max-Product operations facing large-
scale data. Fig. 1 depicts the algorithmic pipeline. For each feature x ∈ R

d, the
hashing scheme consists of three steps: 1) generate a random matrix R ∈ R

n×d

with elements randomly drawn from normal distribution (typically n � d) and
compute u = Rx ∈ R

n, 2) sort the elements of u = (u(1), . . . , u(n)) in the
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Fig. 1. Illustration of the algorithmic pipeline of the proposed hashing scheme

ascending order, and finally 3) denote imin, imax to be the indices of the smallest
and largest elements of u respectively. Generate the bi-value hash code h(x) =
{h1(x), h2(x)} with h1(x) ← imin and h2(x) ← imax. Two vectors x, y collide
if they generate the same set h(x), ignoring the order of h1 and h2. The subtle
order-removing operation in the third step clearly distinguishes ours from prior
work [12], which enables the new scheme to detect min/max correlations.

Given a new query, we use Hamming distance to the query to rank all the data.
Extensions based on the hash tables as in conventional LSH algorithms [4] will
be introduced in a longer version. Our algorithm first computes the query’s hash
code, and afterwards calculates the Hamming distances to the hash codes in the
database. These distances are then used to filter out most irrelevant samples, ob-
taining a shortlisted candidate set. Particulary, Min-Product and Max-Product
operations significantly diverge in the filtering criterion. Our proposed hashing
scheme tends to throw nearly-orthogonal vectors into different hash buckets, and
keeps those highly-correlated ones in the same bucket. Therefore, the filter rule
for Max-Product is to keep those samples with smallest Hamming distances, as
in the conventional random projection-based LSH [20]. For Min-Product oper-
ation, the candidate set is comprised of those with largest Hamming distances.
The computation can be simplified by inverting each bit of the query’s hash
code, as previously used in H-Hash [9].

3.3 Theoretical Analysis

Our analysis starts from the fact that Gaussian random projections of fixed
vectors are jointly Gaussian:

Proposition 1. Given two 	2-normalized vectors x1, x2 ∈ R
d, project them onto

specific random matrix R ∈ R
n×d via u1 = 1√

n
Rx1, u2 = 1√

n
Rx2, where the
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elements of R are independent standard normal random variables. The following
holds (Lemma 1.3 of [21]):

E
(‖u1‖2

)
= E

(‖u2‖2
)
= 1, E

(
uT
1 u2

)
= xT

1 x2 = ρ, (7)[
u1

u2

]
∼ N

( [
0
0

]
, Σ = n−1 ·

[
1 ρ
ρ 1

] )
, (8)

where ρ is the inner product between normalized vectors x1, x2.
Proposition 1 indicates that the projected variables are subject to the follow-

ing bivariate Gaussian distribution after appropriate scaling3, i.e.,

f(x, y) =
1

2π
√
1− ρ2

exp

(
−1

2
· x

2 − 2ρxy + y2

1− ρ2

)
. (9)

We can express any Πn
r,s in terms of f(x, y). For example,

Πn
1,1 = n

∫ ∞

−∞

∫ ∞

−∞
(λ(x, y))n−1f(x, y) dx dy, (10)

where λ(x, y) =
∫∞
x

∫∞
y

f(u, v) du dv represents the marginal probability that

the pair (x, y) satisfies xk ≥ x, yk ≥ y for k = 1, . . . , n.
Recall that the collision of two vectors is identified via the same bi-value

hash index set. Since we ignore the orders of index set elements, for two 	2-
normalized vectors x1, x2 ∈ R

d, there is two disjoint events that make them
collide, i.e., h1(x1) = h1(x2), h2(x1) = h2(x2) or h1(x1) = h2(x2), h2(x1) =
h1(x2). Therefore the overall collision probability is the sum of two terms (define
ρx1,x2 to be the inner product between x1 and x2):

Pr (h(x1) = h(x2))

= Π1,1(ρx1,x2) ·Πn,n(ρx1,x2) +Π1,n(ρx1,x2) ·Πn,1(ρx1,x2)

= (Π1,1(ρx1,x2))
2 + (Π1,n(ρx1,x2))

2 (11)

= (Π1,1(ρx1,x2))
2 + (Π1,1(−ρx1,x2))

2, (12)

where Equations (11) and (12) hold following the facts Πn
r,s = Πn

n−1−r,n−1−s,
Πn

1,1(ρ) = Πn
1,n(−ρ) respectively (see supplementary material).

The following proposition shows that the larger |xT
1 x2| is, the more likely x1

and x2 are to collide. (see supplementary material for proof):

Proposition 2. For any pair of normalized vectors (x1, x2), the collision proba-
bility P [h(x1) = h(x2)] depends only on their inner product: P [h(x1) = h(x2)] =
g(xT

1 x2). The function g(ρ) is symmetric about ρ = 0, and monotonically in-
creasing on (0, 1).

In Fig. 2, we plot the collision probabilities of several hashing schemes. Note
that given more projection bases (i.e., larger n), it is observed the collision

3 The scaling operation does not affect the theoretic results presented in this paper
since it does not change the sorting results in the proposed hashing scheme.
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ρ

Fig. 2. Comparison of collision probabilities for different hashing schemes under cosine
similarity. Better viewing in color.

rate at ρ = 0 continuously drops towards zero. In fact, from the simple fact
that Π1,1(0) = 1/n, Equation (12) further tells us that the collision rate of our
proposed scheme at ρ = 0 has the closed form 2/n2, which is significantly lower
than that of H-Hash (0.25) or EH-Hash (0.5) [9] and therefore suggests better
ability per hashing function for identifying near-perpendicular vectors.

More importantly, note that the hashing schemes use different numbers of
bits to store the result of a single hashing function. For example, our proposed
scheme requires kn = 2 × 
log(n)� bits per function (for the max and min in-
dices), while H-Hash needs 2 bits. It is meaningful to investigate the bitwise
property. Hereafter we only concern ρ = 0, since it represents the perfect match-
ing (perpendicular vectors) for Min-Product operation and is of great interest.
For the kn bits used by concomitant hashing, denote the bitwise collision rates
by p1, . . . , pkn respectively. Recall that some bits are statistically dependent on
others (e.g., the last half bits denote the max index, whose decimal value is
supposed to exceed that of the first half bits), therefore ∀ i, j, i �= j, in general
pi �= pj . Let p̄n be the averaged collision rate. From Jensen’s Inequality,

p̄n =
1

kn
(p1 + p2 + . . .+ pkn) ≥ (p1p2 · · · pkn)

1/kn (13)

It is easily verified that when log(n) is an integer, we have that

lim
n→+∞ p̄n ≥ lim

n→+∞ (p1p2 · · · pkn)
1/kn = lim

n→+∞ 2
1

2 log n · 2−1 =
1

2
, (14)

where we use the fact that p1p2 · · · pkn = 2/n2 obtained from Equation (12).
Likewise, it can be proved that the bitwise collision rate for H-Hash at ρ = 0

is
√
3/2 and 0.5 for EH-Hash. As mentioned in Section 3.2, inversion of query’s

bits is required for solving Min-Product problem. Consequently a lower collision
rate at ρ = 0 is highly desired. In this sense, our proposed scheme is superior
to H-Hash and comparable to EH-Hash. Nonetheless, note that EH-Hash first
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uplifts the original feature vectors of d dimension into d2 (on million scale for a
typical feature used in computer vision), which is computationally unaffordable.
Due to space limit, more theoretic analysis is presented in the supplementary
material.

3.4 Complexity Analysis and Practical Issues

Complexity: We lose the appealing sub-linear complexity since we choose the
Hamming ranking method for retrieval. The overall computational complexity
of the proposed framework is linear to the size of the database. In fact, the sub-
linear complexity for Min-Product remains an open problem4. In supplemental
material, we provide a discussion on the complexity of the proposed method
based on the data structure of hash tables as in conventional LSH techniques.

Shared Hash Bases:The proposed hashing scheme has a complexity ofO(Bnd)
when calculating B hashing functions during the indexing phase, which is rela-
tively higher than O(Bd) of conventional LSH [20]. The drawback can be miti-
gated by sacrificing the independence among different random projection matrix
in R

n×d. Particularly, in practice we build a large pool of P random projection
bases, and randomly select n bases each time. At most a large set of

(
P
n

)
unique

random matrices can be rendered from the pool. In this way, the random pro-
jections are used multiple times once computed. An empirical study about the
choice of P is presented in Section 4.1.

4 Experiments

The effectiveness of the proposed method is demonstrated by three applications
on five large-scale computer vision benchmarks (MNIST-digit, Tiny-1M, CIFAR-
10, NUS-WIDE, and ImageNet). All features are 	2-normalized. Extension to
un-normalized data will be presented in a longer version of this paper.

4.1 Large-Scale Correlative Image Ranking

The first experiment aims to investigate the performance in large-scale
correlation-based image ranking for Min-Product or Max-Product. Given a query
image, we sort the images in the database according to their Hamming distances
to the query, and contrast the obtained ranks to the ground truth. We choose
two standard image benchmarks, including MNIST-digit5 and Tiny-1M. The for-
mer benchmark is comprised of 70,000 handwritten digits, including 7K images
for digits 0 − 9. We select 1K images per digit as queries. Each 28 × 28-pixel
image is converted into 786-d vector by matrix-to-vector concatenation and af-
terwards 	2-normalized. The Tiny-1M benchmark is a 1M-cardinality random

4 Jain et al. [9] present a complexity analysis yet the derived bound therein is depen-
dent on parameter r.

5 http://cs.nyu.edu/~roweis/data.html

http://cs.nyu.edu/~roweis/data.html
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Fig. 3. Illustration of correlative image ranking on MNIST-digit and Tiny-1M. The
left column presents the performances for Min-Product, and the right column shows
the performance for Max-Product on both datasets. See text for details.

subset from 80M Tiny Images6, which are Web-crawled images based on all
the nouns in the English language. We extract 384-d GIST features from these
images and choose 1K images as queries. Since the goal is mainly to evaluate
correlation-based ranking, we ignore the associated labels and generate ground
truth from m most (or least) correlated samples (m = 3, 000 for MNIST-digit
and m = 10, 000 for Tiny-1M).

The performances are shown in Fig. 3. The results for both Min-Product
and Max-Product cases are reported for MNIST-digit and Tiny-1M, contrasting
baseline algorithms (i.e., H-Hash [9] and conventional LSH [20] respectively).
Another Min-Product algorithm, EH-Hash [9] is not included since it first up-
lifts the original features to a d2-dimensional space and thus the complexity is
beyond the scope of any practitioners. The performances of concomitant hashing
are consistently superior to others. For example, in minimal-correlation based
ranking, concomitant hashing returns nearly all 3,000 ground truth among first
30,000 visited samples (n = 8 and B = 256) while H-Hash only has a roughly
72% recall rate (B = 256).

6 http://horatio.cs.nyu.edu/mit/tiny/data/index.html

http://horatio.cs.nyu.edu/mit/tiny/data/index.html
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Fig. 4. Sensitivity study about hash bits B and hash pool size P . Results are statistical
average over multiple runs. We fix n = 8 in all runs. Better viewed in color mode.

We also perform a parameter sensitivity investigation on MNIST-digit with
respective to the hash bit number B and the hash pool size P . The performances
are measured by mean-average-precision (MAP) and averaged over multiple in-
dependent runs. Fig. 4 is its visualization. Two observations are made: 1) the
performance is stable when the global hash pool size exceeds a reasonable value
(e.g., P = 128), which empirically corroborates the idea of “global pool” in
Section 3.4, and 2) larger hash bit number B consistently improve the accuracy.

4.2 Large-Scale Active Learning SVM

Another interesting Min-Product application is large-scale active learning [10].
We conduct experiment on CIFAR-107, which contains 60,000 images from ten
categories (e.g., bird, truck etc.). We extract 384-d GIST features from each
image and follow the evaluation settings in [9]: for all classes, an initial linear
SVM is trained in one-vs-all manner using randomly-chosen 5 samples and after-
wards it runs active selection for 300 iterations. The performances are reported
in Fig. 5, which contrasts the proposed method with H-Hash, random selection,
linear scan, and sequential feeding (i.e., randomly add one more positive and
negative samples respectively in each iteration. It departs from active learning
yet serves as a contrastive baseline to the active learning strategy). It is observed
that active learning algorithms outruns both sequential feeding and random se-
lection. Both concomitant hash and H-hash approach the performance of linear
scan method with largely reduced number of visited samples. The accuracies in
term of |wTx| for chosen sample slightly drop in contrast to exhaustive search.
Although not as salient as in the correlative ranking experiment, concomitant
hash still outperforms H-hash in terms of both MAP and the quality of selected
samples.

7 http://www.cs.toronto.edu/~kriz/cifar.html

http://www.cs.toronto.edu/~kriz/cifar.html
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Fig. 5. Illustration of active learning SVM on CIFAR-10 dataset. Top left : mean-
average-precision (MAP) values based on trained SVM models in first 300 iterations
for different hashing schemes. We set B = 96 for both concomitant hash and H-hash.
Top right : averaged values of

∣
∣wTx

∣
∣ for the chosen samples (the legend of the figure is

identical to the top-left one). Bottom: averaged visited samples per query in first 300
iterations. The “linear scan” method visits all rest samples in each iteration.

4.3 Sparse Coding with Million-Scale Dictionary

One open problem for sparse methods is the development of scalable solvers.
In this section we apply the proposed method to accelerate two sparse algo-
rithms (Lasso and OMP, see Section 2.2) on two large-scale image datasets:
NUS-WIDE8 and ImageNet9. Table 1 describes the benchmarks, both of which
are split into a dictionary set and query set. We assume that the tags or labels are
known on the dictionary set. The goal is to infer the semantic information of the
query set without any training effort. Following the classical sparse method [14],
each image from the query set is sparsely reconstructed from the dictionary set
based on the proximity of low-level features. Under the assumption that low-level
features and semantic labels share the same reconstruction coefficients, they are

8 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
9 http://www.image-net.org/challenges/LSVRC/2010

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://www.image-net.org/challenges/LSVRC/2010
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Table 1. Data set description and experimental results on NUS-WIDE and ImageNet.
For baseline k-NN algorithm we choose k = 200. The parameter k in Problem (4) for
all OMP-related algorithms are set as 20 after empirical tuning. λ = 0.1 for Lasso.

Dictionary Set Query Set Label Feature

NUS-WIDE 162,642 107,859 81 853
ImageNet 1,261,406 50,000 1,000 1,000

Method
NUS-WIDE ImageNet
MAP Value (0-1) Accuracy (0-100)

k-NN 0.1346 7.47%
Linear SVM 0.1382 8.95%
Lasso-Random 0.0601 0.56%
Lasso-Local 0.1654 8.96%
Lasso-Kmeans 0.1255 5.69%
Lasso-Grafting 0.1977 10.34%
OMP-Local 0.1343 8.17%
OMP-Kmeans 0.0952 6.01%
OMP-All 0.1259 3.27%
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Fig. 6. Investigation of “Lasso-Local” (left) and “Lasso-Grafting” (right) on NUS-
WIDE. The left figure illustrates how the choice of local dictionary size affects the
performance for “Lasso-Local” and “OMP-Local”. Using 2D scatters, the right figure
highlights the proximity of achieved solutions via “Lasso-Grafting” (vertical axis) and
original Lasso solver (horizontal axis).

then used to predict the labels (or tags) for each query image. Performance on
NUS-WIDE are reported in terms of mean-average-precision (MAP) across 81
tags, and for ImageNet we adopt mean accuracy over all classes.

With such million-scale dictionaries, exact Lasso solvers such as LARS/
homotopy or proximal gradient methods are too slow to be practical. For exam-
ple, on NUS-WIDE, Lasso solver like LARS is estimated to take around one-week
computation for processing all queries on our computer equipped with quad-core
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CPU and 18GB memory. We show two ways of accelerating these algorithms us-
ing hashing. While our approach does not guarantee a good approximation to
the Lasso solution, in practice it is significantly more scalable.

Scheme-1 (query-adaptive local dictionary): namely, for specific query, k
dictionary items with largest correlation magnitudes are retrieved based on our
proposed hashing method in sub-linear complexity. Afterwards, we run the stan-
dard Lasso solver on the reduced query-adaptive local dictionary. This scheme is
inspired from the observation in [22], where data are models as mixtures and each
mixture shares a local dictionary. It corresponds to the “Lasso-Local” algorithm
in Table 1 with k = 200.

Scheme-2 (hashing-accelerated Grafting): it corresponds to the “Lasso-
Grafting” in Table 1. Full dictionary set is used as described in Section 2.2.

Table 1 summarizes the performance on two datasets. We also compare with
other algorithms: “Lasso-Random” performs sparse reconstruction on 200
randomly-selected dictionary items. We also group dictionary into 1,000 clusters
(“Lasso-Kmeans”), which are used as reduced dictionary set universally em-
ployed for all queries. They both serve as contrastive baselines to “Lasso-Local”
and “Lasso-Grafting”. The mechanisms for OMP algorithms are similar. The
peak performance on NUS-WIDE is achieved by “Lasso-Grafting”, superior to
state-of-the-art results based on sophisticated graph-oriented tag diffusion [23].
Moreover, we empirically study how the size of local dictionary affects final accu-
racies, as shown in Fig. 6. The OMP-based methods are saliently inferior. Fig. 6
also contrast the achieved minimum of objective function in Problem (3), which
shows high fidelity even only 1.2% dictionary set is visited.

Besides, the computational speedup is notable. On NUS-WIDE, conventional
LARS solver takes around 13 seconds for a query, which is reduced to 0.26 second
in “Lasso-Grafting”. The time on ImageNet for each query is slightly higher
(∼ 0.8 second) due to the increased dictionary size. Recall that the grafting
method is guaranteed to converge to the global optimum [16]. Empirically we
observe that the “Lasso-Grafting” method returns a solution whose objective
function is only within a moderate multiplicative factor of the optimal. Rigorous
justification for general input data is left for future work.

5 Conclusions

In this paper we first analyze the common computational bottlenecks in a large
variety of large-scale optimization problems that are widely used in computer
vision tasks. Two typical sub-routines are summarized as Min-Product and Max-
Product operations, and a novel general hashing scheme is proposed based on
the concomitant order statistics theory. It shows superior performance compared
with prior works and we further develop an efficient practical implementation
based on the idea of global hash pool. Comprehensive experiments are provided
to validate the superior performance of the proposed methods. For future work,
we plan to exploit more of its applications.
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