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Abstract. With the growing availability of very large image databases,
there has been a surge of interest in methods based on “semantic hash-
ing”, i.e. compact binary codes of data-points so that the Hamming dis-
tance between codewords correlates with similarity. In reviewing and
comparing existing methods, we show that their relative performance can
change drastically depending on the definition of ground-truth neighbors.
Motivated by this finding, we propose a new formulation for learning bi-
nary codes which seeks to reconstruct the affinity between datapoints,
rather than their distances. We show that this criterion is intractable
to solve exactly, but a spectral relaxation gives an algorithm where the
bits correspond to thresholded eigenvectors of the affinity matrix, and
as the number of datapoints goes to infinity these eigenvectors converge
to eigenfunctions of Laplace-Beltrami operators, similar to the recently
proposed Spectral Hashing (SH) method. Unlike SH whose performance
may degrade as the number of bits increases, the optimal code using
our formulation is guaranteed to faithfully reproduce the affinities as
the number of bits increases. We show that the number of eigenfunctions
needed may increase exponentially with dimension, but introduce a “ker-
nel trick” to allow us to compute with an exponentially large number of
bits but using only memory and computation that grows linearly with
dimension. Experiments shows that MDSH outperforms the state-of-the
art, especially in the challenging regime of small distance thresholds.

1 Introduction

Perhaps the most salient aspect of computer vision and machine learning in
recent years is the widespread availability of gigantic datasets with millions
or trillions of items. This effect, sometimes called the “data deluge” creates a
tremendous opportunity for machine learning applied to vision but also requires
new algorithms that can efficiently work with such large datasets, where even a
single, linear scan through the data may be prohibitively expensive.

In theoretical CS, sublinear time search methods are achieved through tech-
niques called Locality Sensitive Hashing (LSH)[1]. In the simplest version of
LSH, called E2-LSH [2], the ith bit in the code of an item x is simply given by
sign(wT

i x − bi), where wi is randomly chosen vector and bi a randomly chosen
threshold. As the number of bits goes to infinity, it can be shown that Hamming
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distance in an E2-LSH code will be a monotonic function of the original Eu-
clidean distance.In [3] it was shown how to construct LSH codes that provably
approximate a kernel function of the distance, rather than the raw distance.

Despite the theoretical guarantees of such randomized approaches in the limit
of many bits, the performance with a limited bit budget is often unsatisfactory,
and this has lead to interest in approaches that learn the hash codes from data.
Semantic Hashing proposed by Salukadnitov and Hinton[4] trains a multi-layer
neural network to learn the binary code. Codes trained in this fashion can out-
perform random codes in both text and image applications[5].

Due to the complexity of training the multilayer neural net, in recent years
there has been much interest in other training algorithms for short binary codes.
Weiss et al.[6] formulated the problem as an optimization problem and searched
for bits that are independent and also minimize the expected Hamming distance
between similar datapoints. They showed that this criterion in intractable but
a spectral relaxation leads to codes where each bit corresponds to thresholds of
eigenfunctions of the Laplace Beltrami operator, and suggested approximating
the distribution of the data with simple parametric families. Xu et al.[7] optimize
a similar criterion but show how to use multiple hash tables to speed up retrieval
significantly. Kumar et al.[8] proposed an alternative criterion where one seeks
to maximize the variance of the bits, and showed that this criterion leads to a
code where each bit is sign of a PCA component. Kulis and Darrell[9] suggested
optimizing the L2 loss between the Hamming distances and the original Eu-
clidean distances. They showed that optimizing one bit given all the others can
be done in closed form. In [10] a hinge loss rather than L2 loss is used, and it is
optimized using techniques from structured prediction. Lin et al. [11] suggested
an algorithm that incrementally adds bits to increase the Hamming distance
between dissimilar objects while keeping the Hamming distance between simi-
lar objects small. Yao and Lazebnik[12] also suggested looking at the difference
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Fig. 1. The puzzle of previous work. The exact same algorithms with the exact same
data (32 dimensional Gaussian) give a very different ranking of performance depending
on our definition of ground truth neighbors. When the neighborhood for the ground
truth is small (left) , SH outperforms all other algorithms, and when it is large (right)
it performs the worst. The rightmost images show the Hamming similarities of the
different codes, projected down to 2D.
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between Hamming distances and Euclidean distances, and suggested an algo-
rithm that finds a rotation of the PCA vectors so that after rotation the thresh-
olding operation causes less quantization errors. They also showed that the sign
of a random rotation of the PCA coefficients often performs better than the sign
the original PCA coefficients.

Given that the recent approaches to learn binary codes use different opti-
mization criteria, it is not surprising that they perform differently on different
datasets. What is surprising, however, is that when performance of the algo-
rithms is evaluated using standard precision-recall curves, the ranking of the
algorithms can change dramatically even on the same dataset. In order to use
precision-recall curves, one first defines a threshold on the original Euclidean
distance. Two datapoints are defined as similar if their Euclidean distance is less
than the threshold. Given a query and a threshold on Hamming distance, the
retrieved items for the query are all datapoints whose Hamming distance is be-
low the threshold. Precision measures the proportion of retrieved points who are
indeed similar, while recall measures the proportion of similar retrieved points
out of all similar points.

To illustrate the different ranking of the algorithms, consider Figure 1 where
we show precision-recall curves1 for Spectral Hashing [6] (SH), LSH [2], Gong and
Lazebnik’s ITQ [12] and Kulis and Darrell’s BRE [9]. The data are sampled from
a 32 dimensional Gaussian, where the standard deviation for the dth dimension
is given by (1/d)2 and all codes are 32 bits. In both figures, the training data,
test data and algorithm results are identical. The only difference is the threshold
that defines a similar neighbor. In the right column this threshold T is set to
be δ, the average distance between any two points in the training set, while in
the left column it is set to be δ/4. It can be seen that this threshold makes a
huge difference on the ranking of the algorithms. In particular, for the smaller
neighborhoods, SH greatly outperforms the other techniques, while for the larger
neighborhood it is the worst algorithm.

We can understand this difference in behavior by visualizing the Hamming
distances from a query point to all other points in the dataset. Although the
data is 32 dimensional, we visualize it in two dimensions using the first two
PCA components (high values are high dot product between the binary code
of a query point and a test point). It can be seen that Spectral Hashing does
a very bad job of approximating the distance to far away points and collapses
all of them to a similar distance, while the other methods do much better at
capturing the far distances but not small distances.

Which of the algorithms shown in Figure 1 is therefore better? Obviously the
answer is application dependent, as it depends on the scale of Euclidean distances
that we want our algorithm to recover. Ideally, we would want an algorithm
that learns different codes depending on the desired scale of distances. In this
paper, we present such an algorithm. Our algorithm seeks a binary code so that

1 Note that since the Hamming distances are discrete, the precision recall curves are
also discrete. We connect the points with lines for ease of visualization, but inter-
mediate points on the lines are not achievable by the algorithms.
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inner product among the codes approximates the affinity between datapoints,
i.e. W (i, j) = exp(−‖xi − xj‖2/2σ2). Since the affinity is a nonlinear function
of distance, approximating the affinity uniformly will lead to approximating the
distances with nonuniform quality. We show that approximating the affinity
matrix can be formalized as a binary matrix factorization problem which is
NP hard, but a simple relaxation yields a problem whose solution is simply
given by the eigenvectors of the affinity matrix. A simple way to learn a binary
code is therefore to simply threshold these eigenvectors, but we discuss two
problems with this simple approach: (1) out-of-sample extension (i.e. calculating
the code for a new datapoint) and (2) the curse of dimensionality whereby the
number of eigenvectors needed to achieve good performance grows exponentially
with dimension. By making a separability assumption on the data distribution
and taking the limit of the eigenvectors as the number of datapoints goes to
infinity we can avoid these two problems. In particular, we introduce a “kernel
trick” that allows us to compute the factorization with an exponentially large
number of eigenvectors, but using only time and memory that grows linearly
with dimension. We compare our algorithm to the state-of-the-art on real and
synthetic datasets.

2 A New Formulation for Learning Binary Codes

Typically the cost function for learning binary codes is given in terms of the
Hamming distance ‖yi − yj‖ between the binary codes of datapoints i and j,
where yi is a binary vector of length k. But since the elements of yi are con-
strained to be plus or minus 1, the Hamming distance is a simple function of the
dot product, or Hamming affinity yTi yj, since: ‖yi − yj‖2 = 2k − 2yTi yj . Thus
instead of requiring that Hamming distances match some target value, we can
equivalently require that the Hamming affinity match some target value. A nat-
ural choice for this target value is the affinity W (i, j) = exp(−‖xi − xj‖2/2σ2),
where as noted above, the scale parameter σ is an explicit input set by the user.
Another small modification we make to the standard formulation of learning
binary codes, is that we allow a weight λ, one for each bit. The code for each
datapoint is still binary valued (requiring very little memory and computation
for each codeword), but the weights can be real-valued. Using these weights, the
Hamming affinity is a linear combination of the agreement between the codes:
yTi Λyj =

∑
k λkyi(k)yj(k), where Λ is a diagonal matrix whose diagonal values

give the weights. We seek codes such that this weighted Hamming affinity is
equal to the original affinity yTi Λyj ≈ W (i, j):

(Y ∗, Λ∗) = arg min
yi∈{−1,1}k,Λ

∑

i,j

(yTi Λyj −W (i, j))2 (1)

Let Y be a n × k matrix, where the ith row gives the binary code of the ith
datapoint, then the cost function can be rewritten as minimizing the Frobenius
norm between the affinity matrix W and the rank k matrix Y ΛY T :

(Y ∗, Λ∗) = arg min
yi∈{−1,1}k,Λ

‖W − Y ΛY T ‖2F (2)
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Under this formalization, the best binary code for a given dataset is equivalent
to performing binary matrix factorization of the affinity matrix.

Before discussing how to optimize equation 2, we point out some of properties
of this formulation and contrast it with related approaches.

– As the number of bits approaches infinity, the optimal code using our for-
mulation (eq. 2) is guaranteed to faithfully reproduce the affinity W . In
other words, with an infinite number of bits, the Hamming affinity will be
inversely related to Euclidean distance for all pairs of points. This should be
contrasted with approaches such as SH [6] whose performance may actually
deteriorate as the number of bits increases [3].

– For a finite bit budget, the optimal code using our formulation will give
different approximations to the distance depending on a user-supplied pa-
rameter σ. Since the affinity maps all distances much greater than σ to a
number that approaches zero, the optimal code will not need to exactly re-
produce the distances between far-away pairs of points, and can simply give
an affinity that is close to zero for all pairs of distant points. This should
be contrasted with approaches such as ITQ, BRE and LSH that attempt
to faithfully reproduce all Euclidean distances. Since the number of pairs of
points that are distant far outweigh the pairs that are nearby, approaches
that try to reproduce all distances will often fail to reproduce the small
distances when given a limited bit budget (see figure 1).

– The optimal code using our approach is not explicitly constructed so that
the bits are independent. We do not require this since for a fixed bit bud-
get, by seeking a low reconstruction error we are implicitly penalizing codes
where one bit is redundant with other bits. This should be contrasted with
approaches such as SH and USPLH[8], where independence between the bits
is explicitly required.

– The mapping from a datapoint xi to its code yi is not restricted to any par-
ticular functional form. This is in contrast to almost all previous approaches
(ITQ, BRE,LSH, MLH etc. ) which restrict each bit to be the sign of wTxi

or (when using kernels) sign of wT f(xi) for a fixed f .

Unfortunately, as in many constrained matrix factorization problems[13], the
discrete constraint that the elements of the matrix are in {1,−1} make this
problem computationally intractable.

2.1 Spectral Relaxation

We notice that removing the binary constraint yields a standard matrix factor-
ization problem for which the optimal solution is easily obtained by taking the
top k eigenvectors ofW . Denote by U a n×k matrix whose columns are the top k
eigenvectors and by Λ a diagonal matrix with the k eigenvalues ofW then UΛUT

is the best rank k approximation of W . If we are lucky, and the eigenvectors are
already binary valued, then we have solved the binary matrix factorization prob-
lem. As we now discuss, even if the eigenvectors are not binary-valued they (1)
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give an upper bound on the performance of any code and (2) can be thresholded
to give an approximate solution for binary matrix factorization.

The preceding discussion suggests an extremely simple method for learning
binary codes that focus on a range of distances defined by σ — use σ to define
an affinity matrix and threshold the eigenvectors of affinity matrix. But this
approach will not give a practical code. In the case of the state-of-the-art algo-
rithms (SH, LSH, ITQ) there is a simple function that allows us to calculate the
code of a new datapoint x (in LSH and ITQ we simply perform k dot products
of x with known vectors and threshold the result). But to calculate the binary
codes using eigenvectors of the affinity matrix, we need to compute the affinity
between x and all other datapoints, form the (n+1)×(n+1) affinity matrix and
calculate its eigenvectors. Alternatively, we can use methods such as the Nys-
trom approximation [14] to approximate the eigenvectors of the affinity matrix
from a smaller matrix, but this approach still requires prohibitive computation
for large datasets. We now show how to calculate the limit of the eigenvectors
as the number of points approaches infinity and how this leads to a practical,
yet inefficient algorithm.

2.2 The Limit of Matrix Factorization

To analyze the limit of the eigenvectors, we need to take a slightly different
viewpoint (cf. [15, 6, 16–18]): rather than thinking of the n dimensional space
defined by the n points, we consider the d dimensional space Rd in which these

points lie. We define an operator W(s, t) = exp(− ‖s−t‖2

2σ2 ) which simply mea-
sures the affinity between any two points s and t in Rd (unlike W (i, j) which
only measures affinity between points in the dataset). It is easy to see that when
the points in the dataset are IID samples from a distribution Pr(x), the matrix
factorization problem approaches a different problem, which we will call the op-
erator factorization problem.

Claim 1: Let xi be IID samples from Pr(x), and W (i, j) the affinity between xi

and xj . For any function y(x) , define yi = y(xi) as the code corresponding to xi,
then as the number of samples goes to infinity 1

N2 ‖W − Y TΛY ‖F approaches:

J(y, Λ) =

∫

s,t

(
W(s, t)− yT (s)Λy(s)

)2
Pr(s) Pr(t)dsdt (3)

The proof follows directly from the law of large numbers.
In the operator factorization problem, we seek a code y(s) so that for any two

points s and t the affinity between the codes y(t)TΛy(s) is equal to the original
affinity W (s, t). The probability Pr(x) defines a weighting on the points, giving
more weight to pairs of points (s, t) with higher density.

Just as the solution to the matrix factorization problem is given by the k
eigenvectors of W , the solution to the operator factorization can be shown
to be given by k eigenfunctions of the operator WP. We define the operator
(Wf)(s) =

∫
t W (s, t)f(t)dt and the operator (Pf)(s) = Pr(s)f(s). A function

f is an eigenfunction of WP if WPf = λf .
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Claim 2: The solution to the operator factorization problem, (y∗, Λ∗) = argmin
J(y, Λ), with J as in equation 3 and y(s) constrained to be a k dimensional
vector, is given by the k eigenfunctions of WP with maximal eigenvalue. Proof:
For the case that Pr(x) is uniform on a region in Rd, the result follows from the
standard matrix factorization result. When Pr(x) is non-uniform, a change of
variables z = P 1/2y converts the problem into one with uniform Pr(x) and the
operator replaced by

√
PW

√
P. This means that the optimal z is given by the

top k eigenfunctions of
√
PW

√
P or alternatively WPy = Λy.

Taken together, claims 1-2 suggest a solution to the binary matrix factoriza-
tion problem: we simply solve for the top k eigenfunctions of the operator WP,
i.e. we solve for both the eigenfunction Φi(s), and their eigenvalues λi. Given
these solutions, we can compute the code for each point x simply by thresholding
at zero y(x) = {sign(Φi(s))}ki=1. Note that this gives an analytical formula for
the code of a new datapoint, so this algorithm is practical. Also, when the eigen-
functions happen to be binary valued, this code is optimal in the limit of many
datapoints — no binary code can do a better job of approximating the affinity.
However, this code may still be very inefficient due to the curse of dimensionality.

2.3 Curse of Dimensionality

How many bits will we need in order to faithfully approximate the original
affinity? We can answer this question by analyzing the eigenspectrum of (WP).
If there are only a small number of eigenvalues that dominate the spectrum,
we can expect a good approximation with a small code. But if the number of
large eigenvalues is very large, we cannot expect any small code to give a good
approximation.

To illustrate this, consider the multidimensional uniform distribution that
was analyzed in [6]. For this case the eigenfunctions of WP are simply the
eigenfunctions of W (since P is uniform) and correspond to the fundamental
modes of vibration of a metallic plate.2 The eigenfunctions are all sinusoidal
functions and can be divided into “single-dimension” eigenfunctions and “outer-
product” eigenfunctions. All single-dimension eigenfunctions are of the form:

Φj(x(i)) = sin

(
π

2
+

jπ

bi − ai
x(i)

)

(4)

λj = e
−σ2

2 | jπ
bi−ai

|2
(5)

where x(i) refers to the ith coordinate of x and x(i) is uniformly distributed in
[ai, bi].

The “outer-product” eigenfunctions are simply products of eigenfunctions
along different dimensions and their eigenvalue is simply the product of the eigen-
values along each dimension. Figure 2 shows the eigenfunctions for a uniform

2 In [6] these eigenfunctions arose from relaxing the balanced-cut problem, while here
the same eigenfunctions arise from binary matrix factorization. For a uniform distri-
bution, both problems give the same eigenfunctions with the eigenvalue λ replaced
by 1− λ.
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Fig. 2. Left: Eigenfunctions for a uniform rectangular distribution in 2D. Right: Bi-
nary codes obtained by thresholding these eigenfunctions. These eigenfunctions can be
divided into single-dimension eigenfunctions and “outer-product” eigenfunctions that
are indicated by a red-frame. In the standard SH algorithm, bits from the outer-product
eigenfunctions are ignored while here we show how to efficiently compute Hamming dis-
tances with an exponential number of such bits using a “kernel trick”.

rectangular distribution in R2 (replotted from [6]), with the “outer-product”
eigenfunctions shown with a red frame.

In the ordinary spectral hashing (SH) algorithm, these “outer-product” eigen-
functions were discarded since the goal of SH is to search for codes where the
bits are independent, and the outer-product eigenfunctions lead to bits that
are deterministic functions of the other bits. But if our goal is to approximate
the affinity matrix, then discarding these eigenfunctions makes no sense — in
fact, the optimal factorization will often contain a very large number of these
outer-product eigenfunctions.

In particular, when the uniform distribution is not over two dimensions, as
in figure 2 but rather over d dimensions, then the number of outer-product
eigenfunctions with large eigenvalue will grow exponentially with the dimension
d. For example, if σ << |bi − ai| for all i then the each dimension will have at
least two eigenfunctions with the maximal eigenvalue λ ≈ 1. In this case, the
number of bits needed to faithfully approximate the affinity grows exponentially
with dimension. Since the eigenfunctions give the optimal low-rank factorization
of the affinity, this means that any code (binary or continuous) that does a good
job of approximating the affinity should have a length that grows exponentially
with the dimension.

Although we have focused above on the uniform distribution, it can be shown
that these “outer-product” eigenfunctions, will exist whenever the distribution
Pr(x) is a product of distributions along single dimensions. The bad news is that
this means we will require an exponentially large number of bits to faithfully ap-
proximate the affinity. The good news, however, is that we do not need to store
the bits corresponding to outer-product eigenfunctions, since we can calculate
their values directly from the bits of the single-product eigenfunctions. This in-
sight leads to the following algorithm, which we call inefficient multidimensional
spectral hashing:

1. calculate the single-dimension eigenfunctions. We denote by Φij(x(i)) the jth
eigenfunction of the ith coordinate and λij the corresponding eigenvalue.

2. Sort λij and find a set of k indices (I, J) so that λij is maximal.

3. encode each datapoint x with y(x) = sign(φij(x)) for all (i, j) ∈ (I, J).
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4. Expand the code of x to include all outer-product eigenfunctions. For any
subset (Il, Jl) ⊂ (I, J) such that no index i appears in Il more than once, add
an additional bit given by yl(x) =

∏
i,j∈(Il,Jl)

sign(Φi,j(x(i))). The weight of

this bit is given by λl =
∏

i,j∈(Il,Jl)
λi,j .

5. The Hamming affinity between xi and xj is given by:

H(i, j) =
∑

l

yl(xi)λlyl(xj) (6)

where the index l goes over the single-dimension bits as well as the outer-
product bits.

We call this algorithm “multidimensional spectral hashing” (MDSH) because
the first three steps (calculating the single-dimension eigenfunctions, sorting the
eigenvalues and encoding using the sign of the eigenfunctions) are exactly the
same as the original SH algorithm. But the difference is that whereas the original
SH used only single-dimension eigenfunctions during retrieval, here we expand
the code to include the outer-product eigenfunctions as well. From the stand-
point of approximating the affinity, this makes a huge difference. Suppose instead
of thresholding the eigenfunctions (in the third step of the algorithm) we would
encode each point with the value of the k top single-dimension eigenfunctions.
It is easy to show that in this case the approximate affinity calculated by the al-
gorithm H(i, j), will be better than any other factorization that uses continuous
codes of length k2, where k2 is the number of eigenfunctions (single dimension
and outer-product) with eigenvalues greater than λk. In general k2 will be much
larger than k (it will grow exponentially in dimension) but the MDSH algorithm
guarantees that we will obtain a factorization that is optimal with rank k2 even
though we only encode each point with a code of length k.

As its name suggests, the inefficient MDSH algorithm requires computation
that scales exponentially with dimension (equation 6). However, we now show
how to compute the same Hamming affinity with computation that is linear in
dimension.

Observation: (Kernel Trick). Let H(i, j) be the weighted Hamming affin-
ity between two points, using all the bits in the inefficient MDSH algorithm
(equation 6). Let Hd(i, j) be the weighted Hamming affinity between these
two points using only pure eigenfunctions along dimension d, i.e. Hd(i, j) =∑

(d,l)∈(I,J) λdlsign(φdl(xi(d)))sign(φdl(xj(d))). Then:

H(i, j) = −1 +
∏

d

(1 +Hd(i, j)) (7)

Proof: This follows directly by expanding the product in equation 7.

Combining the “kernel trick” with the inefficient MDSH algorithm gives our final
algorithm, Multi-Dimensional Spectral Hashing (MDSH):

1. calculate the single-dimension eigenfunctions. We denote by Φij(x(i)) the jth
eigenfunction of the ith coordinate and λij the corresponding eigenvalue.

2. Sort λij and find a set of k indices (I, J) so that λij is maximal.
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Fig. 3. Comparison between different algorithms on toy data (32D Gaussian from
figure 1). We compare MDSH, SH [6], LSH [2], ITQ [12], BRE [9] and MLH [10]. Left:
Performance as a function of distance threshold. Ranking of existing algorithm depends
on distance, but MDSH consistently works best. Middle: Precision-recall curves for
two different thresholds. Right: Performance as a function of number of bits. SH
performance can decrease with more bits, but MDSH continues to improve. Bottom:
A visualization of the affinity for SH and MDSH as the number of bits increases. With
128 bits, the SH affinity has spurious structure, while MDSH is close to the ground
truth.

3. encode each datapoint x with y(x) = sign(φij(x)) for all (i, j) ∈ (I, J).
4. The Hamming affinity between xi and xj is given by equation 7.

Note that this algorithm will give exactly the same Hamming similarity as the
inefficient one but both storage and computation grow linearly with dimension.
Instead of explicitly expanding the codes to include all the outer-product bits, the
kernel trick allows us to compute exactly the same affinity given only the values
and weights of the single-dimension bits. Note also that the first three steps of the
algorithm (i.e. the encoding) are exactly the same as ordinary spectral hashing
(SH) and the only algorithmic difference is in the retrieval algorithm, which
uses the kernel trick to calculate with an exponentially large number of bits.
But MDSH is very different from SH in terms of the formulation (equation 2).
As discussed in section 2 , the optimal code under the MDSH formulation will
faithfully reproduce the affinity W as the number of bits approaches infinity. In
contrast, SH which seeks bits that are independent and minimize the expected
Hamming distance between neighbors, may actually give inferior performance
as the number of bits increases.
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Fig. 4. Left: 2D projection of 32D set constructed to be extremely nonseparable.
Right:MDSH still outperforms the other methods since it is approximating the correct
operator but with an incorrect weighting on the error.

When the input distribution Pr(x) is separable and the eigenfunctions happen
to be binary valued, the MDSH algorithm will give the optimal rank k2 binary
factorization of the affinity matrix, where k22 >> k is the number of eigenfunc-
tions with eigenvalue greater than λk. For real problems, of course, the input
distribution is not guaranteed to be separable nor are the eigenfunctions guar-
anteed to be binary valued. To deal with the separability assumption, we first
apply PCA to the data so that different dimensions are at least uncorrelated
(for Gaussian distributions this would also make the distribution separable).
Note however, that even if the original distribution is non-separable, the eigen-
functions that assume separability are still the optimal solution to an operator
factorization problem (eq. 3) with the correct operator but the wrong density.
As long as the separable density gives nonzero weight to points that had nonzero
weight in the original density, the eigenfunction expansion will converge to the
correct affinity as k increases. In other words, if the eigenfunctions happen to
be binary, the MDSH algorithm will converge to the correct affinity even if the
distribution is nonseparable.

The binary assumption is more problematic, as can be expected from the fact
that binary matrix factorization is intractable. We follow the classic approach of
spectral methods (e.g. [19]) and threshold the nonbinary eigenfunctions to obtain
an approximate solution to the binary problem. The only exception is when the
number of eigenfunctions with significant eigenvalue is less than the number of
desired bits. In such cases (which we determine by counting the number of eigen-
values greater than a threshold of 0.1 times the maximal eigenvalue) , MDSH
cannot create enough bits with significant weight and we concatenate to the cur-
rent code a second code that uses the exact same eigenfunctions but instead of
thresholding at zero, thresholds at another value. We repeat this concatenation
until the number of bits is equal to the bit budget.

We use the code from [16] to numerically calculate the eigenfunctions for a
single dimension, where we use the fact that generalized eigenfunctions of the
graph Laplacian (which are what [16] solves) correspond to eigenfunctions of a
reweighted affinity operator.
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3 Results

We first revisit the toy data shown in the introduction. This data is sampled
from a 32D Gaussian with the standard deviation along the ith dimension equal
to 1/i2. We compare MDSH to five existing approaches [6, 2, 12, 9, 10]. In
all comparisons, we use the code made available by the authors of the paper.
Figure 3 shows that MDSH, which explicitly tries to model the affinity with a
given σ outperforms the other algorithms for different regimes. Note also that
the performance of SH, which ignores the “outer-product” eigenfunctions, may
decrease with more bits but MDSH which does not ignore these eigenfunctions
continues to improve.
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Fig. 5. Results on CIFAR dataset, 64K images. Left: 2 randomly selected test images
and the retrieved neighbors. Middle: Precision-recall curves for different threshold.
Right: Mean precision as a function of number of bits.

To check the robustness to the separability assumption, we take the 32D
synthetic data and set x(i) = x2(i − 1) for all even dimensions. This creates
strong, nonlinear dependencies in the data which PCA cannot undo, thus the
separability assumption does not hold. Nevertheless, we find that MDSH still
outperforms the other methods (Figure 4). As discussed in section 2.3, even
with the separability assumption fails, MDSH is still approximating the correct
operator, but with an incorrect weight function on the error.

Our next experiment uses the exact same CIFAR dataset used in [12]. It con-
sist of 64,800 images from 10 ground-truth classes. We use 32 PCA coefficients
of the GIST descriptors and show results when the “distance threshold”, i.e.
the definition of ground-truth neighbors is set to δ, the average distance be-
tween any two images, and when the distance threshold is set to δ/4. As can
be seen, for large distance thresholds, all algorithms perform well but the ITQ
algorithm works best. In contrast, in the more challenging regime of small dis-
tance thresholds, the MDSH algorithm outperforms all other algorithms. BRE
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Fig. 6. Results on 1 million Tiny images with 32 bits. Top and Middle left: precision
recall curve with T = δ/4, T = δ/20. Bottom left: The average rank in terms of
Euclidean similarity for the kth neighbor retrieved by each code. Low curves are better.
Bottom middle: Expected rank at 100 as a function of number of bits. Low curves
are better. Right: 2 randomly selected test images and the retrieved neighbors.

and MLH were very slow in these runs so were not compared. Note that ITQ
cannot generate more bits than dimensions in the input (32 dims).

Finally, we show results on a database of 1 Million Tiny Images (Figure 6).
Unlike the CIFAR dataset which is structured into 10 groups by construction,
in this unstructured dataset we find that the setting of a reasonable distance
threshold is very tricky— since almost all pairs of points are at distance δ.
When we set the threshold to be δ/20, MDSH performs perfectly and retrieves all
similar pairs with perfect precision. For threshold δ/4, it still has high precision
but returns only a small fraction of the retrieved pairs. In contrast LSH and ITQ
simply retrieve a huge number of pairs even for the smallest possible threshold
and therefore have very low precision in both cases.

To avoid the dependence on setting the distance threshold, we present in the
bottom left figure a different measure of performance. For each algorithm and
number k we find the kth nearest neighbor defined by the code and find the
ranking of that image in the original gist distance. The lower the curve the
better. MDSH is the best using this measure (which does not require a distance
threshold). The middle bottom figure shows that MDSH continues to outperform
the other methods using this measure for different number of bits.

4 Discussion

What makes a good similarity-preserving binary code? One option is to define
a code as good if Hamming distance matches the original Euclidean distance.
In this paper, we have shown that this definition may be problematic, since in
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applications where we care about retrieving “similar” neighbors, matching all
distances exactly may be a waste of bits. Instead we have suggested an alter-
native criterion, where the goal is to have Hamming affinity match the desired
affinity matrix. We have shown that this leads to an intractable, binary ma-
trix factorization problem but that the spectral relaxation can be used to build
excellent codes with very simple learning algorithms.
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