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Abstract. Robust visual tracking requires constant update of the target
appearance model, but without losing track of previous appearance infor-
mation. One of the difficulties with the online learning approach to this
problem has been a lack of flexibility in the modelling of the inevitable
variations in target and scene appearance over time. The traditional
online learning approach to the problem treats each example equally,
which leads to previous appearances being forgotten too quickly and a
lack of emphasis on the most current observations. Through analysis of
the visual tracking problem, we develop instead a novel weighted form
of online risk which allows more subtlety in its representation. However,
the traditional online learning framework does not accommodate this
weighted form. We thus also propose a principled approach to weighted
online learning using weighted reservoir sampling and provide a weighted
regret bound as a theoretical guarantee of performance. The proposed
novel online learning framework can handle examples with different im-
portance weights for binary, multiclass, and even structured output labels
in both linear and non-linear kernels. Applying the method to tracking
results in an algorithm which is both efficient and accurate even in the
presence of severe appearance changes. Experimental results show that
the proposed tracker outperforms the current state-of-the-art.

1 Introduction

Visual tracking is an important topic in computer vision, and has a wide range
of practical applications including video surveillance, perceptual user interfaces,
and video indexing. Tracking generic objects in a dynamic environment poses ad-
ditional challenges, including appearance changes due to illumination, rotation,
and scaling; and problems of partial vs. full visibility. In all cases the fundamen-
tal problem is the variable nature of appearance, and the difficulties associated
with using such a changeable feature to distinguish the target from backgrounds.

A wide variety of approaches have been developed for modelling appearance
variations of targets within robust tracking. Many tracking algorithms attempt
to build robust object representations in a particular feature space, and search for
the image region which best corresponds to that representation. Such approaches
include the superpixel tracker [1], the integral histogram [2], subspace learning
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[3], visual tracking decomposition [4], interest points tracking [5], and sparse
representation tracking [6,7], amongst others.

An alternative approach has been to focus on learning, and particularly on iden-
tifying robust classifiers capable of distinguishing the target from backgrounds,
which has been termed tracking-by-detection. This approach encompases boost-
ing [8,9], ensemble learning [10], multiple instance learning [11], discriminative
metric learning [12], graph mode-based tracking [13], structured output tracking
[14], and many more. One of the features of these approaches has been the ability
to update the appearance model online and thus to adapt to appearance changes.

Despite their successes, existing online tracking-by-detection methods have
two main issues. First, these trackers typically rely solely on an online classifier
for adapting the object appearance model and thus completely discard past
training data. This makes it almost impossible to recover once the appearance
model begins to drift. Second, as tracking is clearly a time-varying process, more
recent frames should thus have a greater influence on the current tracking process
than older ones. Existing approaches to online learning of appearance models do
not take this into account, but rather either include images in the model fully,
or discard them totally.

Contribution. Our contributions are: 1) We propose the first formulation of
visual tracking as a weighted online learning problem. 2) We propose the first
framework for weighted online learning. This is achieved using weighted reservoir
sampling. We also provide a weighted online regret bound for the new method. 3)
Using our weighted online learning framework, we propose a robust tracker with a
time-weighted appearance model. The proposed tracker is capable of exploiting
both structured outputs and kernels, and performs efficiently and accurately
even in the presence of severe appearance drift. The weights associated with
online samples equip the tracker with the ability to adapt quickly while retaining
previous appearance information. The fact that the latest observation is given
higher weight means that it has a higher probability of being maintained in
the reservoir. This makes our method adapt quickly to newly observed data
and also offers flexibility in the modelling of the frequent variations in target
and scene appearance over time. On the other hand, unlike traditional online
learning which sees the recent data only, our weighted online learning method
trains on both the recent data and historical data through the use of weighted
reservoir sampling. The combination of new and old information helps the tracker
recover from drift, since the patterns that the tracker has seen in the past are not
completely discarded. Overall, weighted online learning can update the object
appearance model over time without losing track of previous appearances thus
improving performance.

1.1 Related Work

We now briefly review recent related tracking-by-detection methods. In [15], an
off-line support vector machine (SVM) is used to distinguish the target vehicle
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from the background, but it requires that all appearance variations be repre-
sented within the training data. Since the video frames are often obtained on
the fly, features are obtained in an online fashion [9].For the same reason, online
learning are brought into tracking. For example, Grabner et al. [9] proposed to
update selected features incrementally using online AdaBoost. Babenko et al.
[11] used online multiple instance boosting to overcome the problem of ambigu-
ous labeling of training examples. Grabner et al. [8] combined the decision of
a given prior and an online classier and formulated them in a semi-supervised
fashion.

Structured learning has shown superior performance on a number of computer
vision problems, including tracking. For example, in contrast to binary classifica-
tion, Blaschko et al. [16] considered object localisation as a problem of predicting
structured outputs: they modeled the problem as the prediction of the bounding
box of objects located in images. The degree of bounding box overlap to the
ground truth is maximised using a structured SVM [17]. Hare et al. [14] further
applied structured learning to visual object tracking. The approach, which is
termed “Struck”, directly predicts the change in object location between frames
using structured learning. Since Struck is closely related to our work, we now
provide more details here.

Struck: Structured output tracking with kernels. In [14] Hare et al. used a
Structured SVM [17] to learn a function f : X×Y → R, such that, given the t-th
frame xt ∈ X, and the bounding box of the object Bt−1 in the (t− 1)-th frame,
the bounding box Bt in the t-th frame can be obtained via

Bt = Bt−1 + y∗
t , y∗

t = argmax
y∈Y

f(xt,y). (1)

Here B = (c, l, w, h), where c, l are the column and row coordinates of the upper-
left corner, and w, h are the width and height. The offset is y = (Δc,Δl,Δw,Δh).
Hare et al. set Δw and Δh to always be 0 and f(x,y) = 〈w, Ψ(x,y)〉 for the
feature map Ψ(x,y).

The discriminative function f is learned via structured SVM [17] by minimis-
ing

min
w

1

2
||w||2 + C

T∑

t=1

ξt (2)

s.t. ∀t : ξt ≥ 0 ; ∀t,y �= yt : 〈w, Ψ(xt,yt)〉 − 〈w, Ψ(xt,y)〉 ≥ Δ(yt,y) − ξt,

where the label cost is

Δ(yt,y) = 1− Area((Bt−1 + yt)
⋂
(Bt−1 + y))

Area((Bt−1 + yt)
⋃
(Bt−1 + y))

, (3)

which was introduced in [16] to measure the VOC bounding box overlap ratio.
In practice, y’s are uniformly sampled in the vicinity of the yt in [14]. To enable
kernels, Hare et al. updated the dual variables online following the work of
[16,18,19] and achieved excellent results. Note that prior to the work of [14,16],
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supervised learning in detection and tracking often required large volumes of
manually labeled training examples, which are not easy to obtain in many cases.
Also in tracking, when it is considered as binary classification, the boundary is
not well defined between a target image patch and a non-target image patch.
Using structured learning to optimise a label cost like the VOC bounding box
overlap ratio, the manual labeling requirement is significantly reduced and the
ambiguity between target and non-target images patches is removed[14].

However, tracking is a time-varying process. It is not appropriate to weight
each frame uniformly, as this can cause tracking failure when visual drifts occurs.
It is this problem which motivates our approach.

2 Weighted Online Learning

In this section, we propose a novel framework for online learning with weights on
examples. We first re-visit the standard approach to online learning as applied to
visual tracking, and then propose a weighted online risk that is better suited to
the requirements of the problem. The novel formulation of risk we propose cannot
be directly optimised by traditional online learning, however. We thus propose
an approach based on reservoir sampling for both primal and dual variables. A
weighted regret bound is provided as a performance guarantee.

In online learning, at each iteration, the online algorithm has visibility of one
observation z, or at most a small selection of recent data (a.k.a. mini-batch). Here
z = (x, y) for a binary or multiclass problem, and z = (x,y) for a multilabel or
a structured problem. In our visual tracking context (also in [14]), z = (x,y,y′)
where x is an image frame, y is the ground truth offset of the target bounding
box in the frame, and y′ is a generated offset y′ �= y. The goal of online learning
is to learn a predictor that predicts as well as batch learning (which has visibility
over all data).

Unweighted Risk. The regularised unweighted (empirical) risk for batch learn-
ing is

C

m∑

i=1

�(w, zi) +Ω(w),

where Ω(w) is the regulariser (e.g. Ω(w) = ‖w ‖2/2) that penalises overly
complicated models, and C is a scalar. Here �(·, ·) is a loss function such as
hinge loss and w is the primal parameter.

Online learning algorithms use one datum or a very small number of recent
data to learn at each iteration by definition. Thus at iteration i, the online
algorithm minimises the regularised risk

J(i,w) = C�(w, zi) +Ω(w).
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The regret Q of an online algorithm measures the prediction difference between
the online predictor and the batch learning predictor using the same loss,

Q(m,w) =
1

m

m∑

i=1

�(wi, zi)− 1

m

m∑

i=1

�(w, zi).

The regret reflects the amount of additional loss (compared with batch algo-
rithm) suffered by the online algorithm not being able to see the entire data set
in advance. It has been shown in [20,19] that minimising the risk J(i,w) at each
iteration reduces the regret Q(m,w), and that the regret goes to zero when m
goes to infinity for a bounded Ω(w).

2.1 Weighted Risk

In visual tracking, scene variation over time and target appearance changes mean
that different frames provide varying levels of information about the current
appearance of the target and background. In vehicle tracking, for example, recent
frames are often more important than those earlier ones in the sequence due
to location (and thus background) and target orientation changes. A weighted
formulation of risk is capable of reflecting this variation between the levels of
significance of particular frames. Given nonnegative weights (λ1, λ2, · · · , λm), we
define the weighted (empirical) risk as

C

m∑

i=1

λi�(w, zi) +Ω(w). (4)

In a batch learning setting themiminisation of the weighted risk is straightforward.
In online learning, however, the method processes only the latest observation,
making it impossible to include weights on previous observations. Extending on-
line learning naively to handle weights will causes several problems. For example,
if we drop the regularisation term Ω(w), the weighting with respect to other data
points is of no effect. We thus see that argminw Cλi�(w, zi) = argminw �(w, zi),
and thus that λi has no effect. Even with regularisation, the weights imposed
still do not faithfully reflect the desired weighting of the data due to the shrink-
age of Ω(w) over time. These are the problems with online learning that we aim
to resolve.

2.2 Reservoir and Optimisation

Though (4) is what we would like to minimise, it requires that we are able to
recall all of the observed data at every stage, which is not feasible in an online
setting. Usually one may need to operate over large data sets and long time
periods. Reservoir sampling is an online method for random sampling from a
population without replacement. Using weighted reservoir sampling allows us
to develop an online method for selecting a (constant-sized) set of observations
from a data stream according to their weights.
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Proposition 1 (Expected Reservoir Risk). Minimising (4) is equivalent to
minimising

CZm

|Rm| ERm [
∑

z∈Rm

�(w, z)] +Ω(w), (5)

where Rm is a weighted reservoir with weights (λ1, λ2, · · · , λm) as in [21] and
Zm =

∑m
i=1 λi.

This is due to a property of weighted reservoir sampling (see the proof in sup-
plementary material). The reservoir is updated by replacing an element in the
reservoir by the current datum with certain probability. See [21] for details. The
method is applicable to data streams of unknown, or even infinite length, which
means that rather than store all observations we might later require, we can
instead maintain a reservoir and minimise the expected risk over the samples
therein.

Reservoir Risk. Due to Proposition 1, at each iteration i, we minimise

C
∑

z∈Ri

�(w, z) +Ω(w). (6)

One of the properties of weighted reservoir sampling is that data (i.e. {z1, · · · , zi})
with high weights have higher probability of being maintained in the reservoir.
The advantage of using (6) is that a weighted risk in (4) now is replaced with a
unweighted (i.e. uniformly weighted) risk, to which traditional online algorithms
are applicable. The (sub)gradient of the primal form may be used to update
the parameter wi. Learning in the dual form can be achieved by performing
OLaRank [19] on elements in the reservoir. Details are provided in Section 3.1.

2.3 Regret Bound

Shai et al. [20] introduced a regret for online learning for binary classification.
Bordes et al. [19] extended the regret bound to structured online learning. Based
on the work in [20,19], we derive the following bound on the weighted regret as
a theoretical guarantee of performance. Without losing generality, from now on,
we assume convexity on Ω(w) and assume a fixed size for the reservoir at any
iteration i. That is, denote N = |Ri| < m for all i.

Theorem 1 (Weighted Regret Bound). At each iteration i we perform
OLaRank[19] on each training example bij ∈ Ri, where Ri is the reservoir at
iteration i, 1 ≤ j ≤ N . Assume that for each update, the dual objective value
increase after seeing the example bij is at least Cμ(�(wij ,bij)), with

μ(x) =
1

C
min(x,C)(x − 1

2
min(x,C)),

then, we have for any w,

1

m

m∑

i=1

1

N
ERi

[ N∑

j=1

�(wij ,bij)
]
≤ 1

m

m∑

i=1

( 1

Zi

i∑

j=1

λj�(w, zj)
)
+

Ω(w)

CmN
+

C

2
,
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Fig. 1. An illustration of greedy inference. LEFT: a contour plot of f in (8) for varying
y′
t. The centre blue solid square indicates the position of object in previous frame. The

centre point and some random points (purple) are used as the initial positions. The
y∗
t with the highest f is obtained (green solid point) via Algorithm 2. RIGHT: The

contour plot and true bounding box shown over the relevant frame of the video.

where Zi =
∑i

j=1 λj.

The proof is provided in supplementary material.

3 Tracking with Weights

In tracking, z = (x,y,y′) ∈ Rt as mentioned earlier. Thus we have the loss

�(w, (x,y,y′)) = [Δ(y,y′)− 〈Ψ(x,y),w〉+ 〈Ψ(x,y′),w〉]+,
where [x]+ = max(0, x). The risk at the t-th frame becomes

C
∑

(x,y,y′)∈Rt

�(w, (x,y,y′)) +Ω(w).

3.1 Kernelisation

Updating the dual variable α enables us to use kernels, which often produce
superior results in many computer vision tasks. Using a similar derivation to
that introduced by [18], we rewrite the optimisation problem of (2) by introduc-
ing coefficients βy

i for each (xi,yi,y
′
i) ∈ Rt, where βy

i = −αy
i if y �= yi and∑

ȳ �=yi
αȳ
i otherwise and denote β as the vector of the dual variables β,

max
β

−
∑

i,y

Δ(y,yi)β
y
i − 1

2

∑

i,y,j,ȳ

βy
i β

ȳ
j k((xi,y), (xj , ȳ)) (7)

s.t. ∀i, ∀y : βy
i ≤ δ(y,yi)C; ∀i :

∑

y

βy
i = 0,

where δ(y,yi) is 1 when y = yi and 0 otherwise, and k(·, ·) is the kernel function.
The discriminant scoring function becomes

f(x,y) =
∑

i,ȳ

βȳ
i k((xi, ȳ), (x,y)). (8)
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Algorithm 1. Online Dual Update for Tracking with Weights

Require: current frame xt, offset yt, previous dual variable βt−1, reservoir Rt−1, the
preset reservoir size N , number of offsets nt, and the preset time factor q > 1 (we
use q = 1.8 in our experiments).

1: Generates nt offsets {ytj}nt
j=1 in the vicinity of the yt and Rt = Rt−1.

2: for each ytj do

3: Calculate a key vtj = u
1/λt
tj , where λt = qt and utj ∼ Uniform(0, 1).

4: if |Rt| < N then
5: Rt = Rt ∪ (xt,yt,ytj). [In implementation, only pointers are stored]
6: else
7: Find the element (x,y,y′) in Rt with the smallest key denoted as v∗.
8: If vtj > v∗, replace (x,y,y′) in Rt with (xt,yt,ytj)
9: end if
10: end for
11: for each (x,y,y′) ∈ Rt do
12: Perform OLaRank to update βt−1.
13: end for
14: βt = βt−1

15: return Rt and βt

As in [14], at the t-th frame, nt many yti are generated. We update the reservoir
and perform OLaRank on the elements of the reservoir. Pseudo code for online
update of the dual variables and the reservoir is provided in Algorithm 1. By
Theorem 1 we know the below holds (for the proof see supplementary material).

Corollary 1 (Tracking Bound). Assume that for each update in Algorithm 1,
the dual increase after seeing the example bij ∈ Ri is at least Cμ(�(wij ,bij)),
then we have for any w,

1

tN

t∑

i=1

ERi

[ N∑

j=1

�(wij ,bij)
]
≤ 1

t

t∑

i=1

( 1

Zi

i∑

j=1

λj

nj∑

l=1

�(w,xj ,yj ,yjl)
)
+

√
2Ω(w)

tN
,

where Zi =
∑i

j=1 λjnj.

3.2 Greedy Inference

Given f , we can predict yt using (1) and (8). The exhaustive search used in [14]
is computationally expensive, because kernel evaluations on all support vectors
and all possible y ∈ Y are required. Note, however, that the contour of (8) is
very informative and can guide the moving of the offset candidate y′

t. We have
therefore developed a significantly faster greedy search approach using the con-
tour information in Algorithm 2 to predict offset y∗

t . The current bounding box
is predicted via Bt = Bt−1 +y∗

t . An example is given in Fig. 1 for the inference.
The experiments in Section 4.2 show that our greedy inference accelerates the
speed of prediction without compromising predictive accuracy.
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Algorithm 2. Greedy inference for prediction

Require: Frame xt, Bt−1, search radius s, and the number of initial points n.
1: Generate a set Ŷ = {ytj = (Δctj ,Δltj , 0, 0)}nj=1, whose elements are randomly

generated within the radius s, that is (Δctj)
2 + (Δltj)

2 < s2.
2: for each offset ytj do
3: ytj = ytj +Δy∗ where Δy∗ = argmaxΔy f(xt,ytj +Δy) as in (8). Here Δy ∈

{(Δyc,Δyl, 0, 0)|Δyc,Δyl = 0, 1,−1} and same location won’t be re-checked.
4: end for
5: return y∗

t = argmaxy∈Ŷ f(xt,y). [search over Ŷ can be avoided by updating the
maximum value and index]

4 Experiments

In this section we first demonstrate the performance impact of different reservoir
sizes, and different numbers of initial offsets on greedy inference. We then present
qualitative and quantitative tracking results for the proposed method and its
competitors on 12 challenging sequences.

Experiment Setup. In order to enable a fair comparison, our tracker uses
the same features as Struck [14], MIL [11] and OAB [9]. The search radius is set
to 30 pixels for all sequences. As will be discussed in Section 4.1, the maximum
reservoir size is set to 200, time factor q is set to 1.8, and the weights to qt. The
number of initial offsets for inference is set to 48 for all sequences. Furthermore,
the proposed tracking algorithm is implemented in C++ on a workstation with
an Intel Core 2 Duo 2.66GHz processor and 4.0G RAM. Without specific code
optimisation, the average running time of our tracker is about 0.08 seconds per
frame in the above setting.

Test Sequences and Compared Algorithms. Tracking evaluation uses
12 challenging sequences with 6, 435 frames in total. The coke, tiger1, tiger2,
and sylv sequences have been used in [14]. The basketball, shaking, singer1 se-
quence were obtained from [4]. Other sequences were obtained from [1]. These
video sequences contain a variety of scenes and object motion events. They
present challenging lighting, large variation in pose and scale, frequent half or
full occlusions, fast motion, shape deformation and distortion, and similar in-
terference. Our tracker is compared with 8 of the latest state-of-the-art tracking
methods named Struck(structured output tracker [14]), MIL(multiple instance
boosting-based tracker [11]), OAB(online AdaBoost [9]), Frag(Fragment-based
tracker [2]), IVT(incremental subspace visual tracker [3]), VTD(visual track-
ing decomposition [4]), L1T(L1 minimisation tracker [6]). These trackers were
evaluated on the basis of their publicly available source codes from the original
authors. For OAB, there are two different versions with r = 1 (OAB1) and r = 5
(OAB5) [11].

Evaluation Criteria. For quantitative performance comparison we use three
popular evaluation criteria, i.e. centre location error (CLE), Pascal VOC over-
lap ratio(VOR), VOC tracking success rates. VOC overlap ratio is defined as
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Fig. 2. Performance of our tracker with various reservoir sizes on four sequences(coke,
tiger1, iceball, bird). LEFT and MIDDLE: the average VOR and CLE. RIGHT:
the run time. The square, diamond, upward-pointing and down-pointing triangle in
three plots correspond to the performance of Struck on four sequences, respectively.

Fig. 3. Comparison of structured SVM scores and tracking results under various scenes.
TOP ROW: the tracking result of our tracker with reservoir size N = 200 and Struck,
where the solid rectangle shows result of our tracker and the dashed rectangle marks the
result of Struck. BOTTOM ROW: structured SVM score over time for our tracker
and Struck. Ours always has a higher score.

Roverlap = Area(BT ∩BGT )/Area(BT ∪BGT ), where BT is the tracking bound-
ing box and BGT the ground truth bounding box. If the VOC overlap ratio is
larger than 0.5, it is considered to be successful in visual tracking for each frame.

4.1 Effect of Differing Reservoir Sizes

To show the effect of the reservoir size we use ten different reservoir sizesN , from
100 to 1000.We compute the average CLE, VOR and CPU time for each sequence
with each different reservoir size, and plot in Fig. 2. We see that for 100 ≤ N ≤
200, increasing the reservoir size N increases the CLE and VOR significantly.
However, for N > 200, CLE and VOR do not change much. Meanwhile, the CPU
run time also increases as the reservoir size increases as expected. The result of
Struck is also shown in Fig. 2.
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Fig. 4. Quantitative evaluation of tracking performance with different number of ini-
tial offsets for greedy inference. LEFT: the CPU time of the proposed tracker with
greedy inference under various initial offsets on four video sequences. MIDDLE and
RIGHT: the average CLE and VOR. The square, diamond, upward-pointing and
down-pointing triangle in three plots correspond to the performance of the proposed
tracker with full search on four video sequences, respectively.

Evaluation of Structured SVM Score. Fig. 3 shows the quantitative
structured SVM scores and qualitative tracking results of our tracker and Struck.
Due to the observation in Fig. 2, we set the reservoir size to 200. As we can see,
our tracker always has higher SVM score than Struck under the same setting (i.e.
same feature, kernel and regularisation). Our tracker manages to keep tracking
of the object even under challenging illumination (coke), fast movement (tiger1 ),
similar interference (iceball) and occlusion (bird).

4.2 Effect of the Number of Initial Offsets on Inference

The number of initial offsets for greedy inference affects tracking speed and
accuracy. To investigate this, we fix the reservoir size to 200, and use the same
four video sequences as Fig. 2. A quantitative evaluation is shown in Fig. 4 under
different number of initial offsets that equal to 4, 8, 16, 24, 36, 48 and 56. As
can be seen in the left plot of Fig. 4, the CPU time for full search is significantly
higher than that for the greedy algorithm on four video sequences. In some cases,
the performance will not be boosted as the number of initial offset increases. For
example, performance varies little with varying numbers of initial offsets on the
iceball and bird sequences. This is due to simple scene background and slow
the object movement. In this case, the local maximum of structured SVM score
is often the global optimal. Furthermore, when the number of initial offsets is
already large (e.g. ≥ 48), no significant improvement is obtained via increasing
the number of initial offsets (see Fig. 4).

4.3 Comparison of Competing Trackers

We compare our tracker to eight state-of-the-art trackers. For visualisation pur-
pose, we only show the results of best four methods in Fig. 5. The full qualitative
tracking results of all the nine trackers over twelve challenging video sequences
are provided in supplementary material.
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Table 1. Compared average VOC overlap ratio on 12 sequences

Sequence Ours Struck MIL OAB1 OAB5 Frag IVT VTD L1T

Coke 0.69±0.15 0.54±0.17 0.35±0.22 0.18±0.18 0.17±0.16 0.13±0.16 0.08±0.22 0.09±0.22 0.05±0.20
Tiger1 0.75±0.13 0.66±0.22 0.61±0.18 0.44±0.23 0.24±0.26 0.21±0.29 0.02±0.12 0.10±0.24 0.45±0.37
Tiger2 0.68±0.15 0.57±0.18 0.63±0.14 0.37±0.25 0.18±0.20 0.15±0.23 0.02±0.12 0.20±0.23 0.27±0.32
Sylv 0.67±0.11 0.68±0.14 0.67±0.18 0.47±0.38 0.12±0.12 0.60±0.23 0.06±0.16 0.58±0.31 0.45±0.35
Iceball 0.69±0.18 0.50±0.33 0.37±0.28 0.08±0.22 0.40±0.30 0.52±0.31 0.03±.12 0.56±0.28 0.03±0.10
Basketball 0.72±0.14 0.45±0.34 0.15±0.27 0.12±0.23 0.12±0.24 0.46±0.35 0.02±0.07 0.64±0.10 0.03±0.10
Shaking 0.72±0.14 0.10±0.18 0.60±0.26 0.56±0.28 0.50±0.21 0.33±0.27 0.03±0.11 0.69±0.14 0.05±0.16
Singer1 0.71±0.08 0.33±0.36 0.18±0.32 0.17±0.32 0.07±0.19 0.13±0.26 0.20±0.28 0.49±0.20 0.18±0.32
Bird 0.75±0.10 0.55±0.25 0.58±0.32 0.56±0.28 0.59±0.30 0.34±0.32 0.08±0.19 0.10±0.26 0.44±0.37
Box 0.74±0.17 0.29±0.38 0.10±0.18 0.16±0.27 0.08±0.18 0.06±0.17 0.46±0.29 0.41±0.34 0.13±0.26
Board 0.69±0.25 0.39±0.29 0.16±0.27 0.12±0.24 0.17±0.26 0.49±0.25 0.10±0.21 0.31±0.27 0.11±0.27
Walk 0.63±0.18 0.46±0.32 0.50±0.34 0.52±0.36 0.49±0.34 0.08±0.25 0.05±0.14 0.08±0.23 0.09±0.25

Average 0.71 0.46 0.41 0.31 0.26 0.29 0.10 0.35 0.19

Fig. 5. Visual tracking result. Yellow, blue, green, magenta and red rectangles show
results by our tracker, Struck, MIL, Frag and VTD methods, respectively.

Pose and Scale Changes. As can be seen in first row of Fig. 5, our algorithm
exhibits the best tracking performance amongst the group. In the box sequence,
the other four trackers cannot keep track of the object after rotation, as they are
not effective in accounting for appearance change due to large pose change. In the
basketball sequences, Struck, MIL and Frag methods lose the object completely
after frame 476 due to the rapid appearance change of object. The VTD tracker
gets an average error similar to ours on the basketball sequence, but its VOC
overlap ratio is worse (see Tab. 2 and Tab. 1).

Illumination Variation and Occlusion. The second row of Fig. 5 illus-
trates performance under heavy lighting and occlusion scenes. The MIL and
Frag methods drift to a background area in early frames in the singer1 sequence
as they are not designed to handle full occlusions. Although Struck maintains
track under strong illumination (frame 111 in the singer1 sequence), it loses
the object completely after illumination changes. As can be seen in the right
image of Fig. 3, frequent occlusion also affects the performance of Struck. On
the contrary, our tracker adapts to the appearance changes, and achieves robust
tracking results under illumination variation and partial or full occlusions.
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Table 2. Compared average centre location errors(pixel) on 12 sequences

Sequence Ours Struck MIL OAB1 OAB5 Frag IVT VTD L1T

Coke 5.0±4.5 8.3±5.6 17.5±9.5 25.2±15.4 56.7±30.0 61.5±32.4 10.5±21.9 47.3±21.9 55.3±22.4
Tiger1 5.1±3.6 8.6±12.1 8.3±6.6 17.6±16.9 39.2±32.8 40.1±25.6 56.3±20.6 68.7±36.2 23.2±30.6
Tiger2 6.1±3.7 8.5±6.0 7.0±3.7 19.7±15.2 37.3±27.0 38.7±25.1 92.7±34.7 37.0±29.7 33.1±28.1
Sylv 8.8±3.5 8.4±5.3 8.7±6.4 33.0±36.6 75.3±35.3 12.6±11.5 73.9±37.6 21.6±35.9 21.7±32.6
Iceball 4.9±3.6 15.6±22.1 61.6±85.6 97.7±53.4 58.1±84.0 40.3±72.9 90.2±67.5 13.5±26.0 77.1±50.0
Basketball 9.6±6.2 89.6±163.7 163.9±104.0 167.8±100.6 199.5±99.9 53.9±59.8 31.5±36.7 9.8±5.0 120.1±66.2
Shaking 9.2±5.7 123.1±54.3 37.8±75.6 26.9±49.2 29.1±48.7 47.1±40.5 94.3±36.8 12.5±6.7 132.8±56.9
Singer1 5.1±1.8 29.2±23.6 187.9±120.1 189.4±114.3 158.0±48.6 172.5±94.5 17.3±13.0 10.5±7.5 108.5±78.5
Bird 8.6±4.1 20.7±14.7 49.0±85.3 47.9±87.7 48.6±86.2 50.0±43.3 107.7±57.6 143.9±79.3 46.3±49.3
Box 13.4±15.7 162.2±132.8 140.9±77.0 153.5±95.8 165.4±84.1 147.0±67.8 34.7±43.8 63.5±65.7 150.0±82.7
Board 32.9±32.5 85.3±56.5 211.7±124.8 216.5±111.6 213.7±96.1 65.9±48.6 223.8±97.5 112.3±66.9 240.5±96.2
Walk 11.3±7.7 36.8±46.4 33.8±47.3 35.5±49.0 36.9±48.5 102.6±46.1 90.2±56.5 100.9±46.9 79.6±41.3

Average 9.9 49.6 77.3 85.8 93.1 69.3 76.9 53.4 90.6

Table 3. Compared success rates on 12 sequences

Sequence Ours Struck MIL OAB1 OAB5 Frag IVT VTD L1T

Coke 0.95 0.71 0.27 0.05 0.03 0.06 0.08 0.08 0.05
Tiger1 0.96 0.82 0.83 0.41 0.18 0.19 0.01 0.13 0.47
Tiger2 0.85 0.66 0.81 0.34 0.12 0.09 0.01 0.15 0.30
Sylv 0.93 0.90 0.76 0.52 0.01 0.69 0.03 0.67 0.53
Iceball 0.86 0.61 0.30 0.09 0.42 0.67 0.02 0.76 0.02
Basketball 0.90 0.61 0.16 0.13 0.13 0.56 0.01 0.90 0.02
Shaking 0.96 0.07 0.78 0.55 0.46 0.29 0.01 0.86 0.02
Singer1 0.99 0.39 0.21 0.21 0.07 0.17 0.18 0.63 0.26
Bird 0.97 0.53 0.73 0.74 0.75 0.34 0.06 0.14 0.48
Box 0.92 0.36 0.06 0.19 0.07 0.04 0.55 0.48 0.15
Board 0.70 0.29 0.13 0.08 0.09 0.45 0.09 0.23 0.12
Walk 0.76 0.58 0.67 0.68 0.62 0.10 0.03 0.08 0.10

Average 0.90 0.54 0.48 0.33 0.25 0.30 0.09 0.43 0.21

Quantitative Comparisons to Competing Trackers. Tab. 1 and Tab. 2
show the average VOR and CLE (best results are highlighted in bold) obtained
by our tracker and other eight competitor trackers. Because several trackers in-
volve some randomness, we also show the standard deviation of each evaluation
result. Tab. 3 reports the success rates of the nine trackers over the twelve video
sequences. From Tab. 1, Tab. 2 and Tab. 3, we found that the proposed track-
ing algorithm achieves the best tracking performance on most video sequences.
Furthermore, we report the CLE of tracking result in supplementary material1.

5 Conclusion

We have developed a novel approach to online tracking which allows continuous
development of the target appearance model, without neglecting information
gained from previous observations. The method is extremely flexible, in that
the weights between observations are freely adjustable, and it is applicable to
binary, multiclass, and even structured output labels in both linear and non-
linear kernels. In formulating the method we also developed a novel principled

1 The demonstration videos are available at http://www.youtube.com/woltracker12.

http://www.youtube.com/woltracker12
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method of optimising weighted risk using weighted reservoir sampling. We also
derived a weighted regret bound in order to provide a performance guarantee,
and showed that the tracker outperformed the state-of-the-art methods.
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